
Complexity and Stru
ture in

Formal Language Theory

Klaus-J�orn Lange

Fakult�at f�ur Informatik, Te
hnis
he Universit�at M�un
hen,

80290 M�un
hen, Germany

Abstra
t: The following survey reviews some
onne
tions between for-

mal languages and
omplexity theory. Families of formal languages are

treated with
omplexity theoreti
al methods. In parti
ular, the
on
ept

of unambiguity,
ommon to both areas, is treated in detail. Some
om-

plexity theoreti
al aspe
ts of operations on formal languages are indi-

ated. This pi
ture is
ompleted by taking parallel models into a

ount.

1 Introdu
tion

The
entral aim of this paper is to illustrate the
lose relationship between the theory of

formal languages and
omplexity theory. This sele
tion of results is not meant to be a

systemati
 survey, but represents a rather personal view, strongly biased by dis
ussions

and results of the
omplexity group at the Te
hnis
he Universit�at M�un
hen. It is

an extended version of an invited talk at the Stru
ture in Complexity Theory 1993

Conferen
e [44℄ .

The gist of this work is to see families of formal languages with
omplexity theoreti
al

eyes. Here by family of formal languages we refer to a typi
al member of the world of

pumping and iteration. More formally, we will treat language families with
onstru
tive

losure properties and a de
idable emptiness problem with tools used in
omplexity

theory. Here we will not be interested in absolute lower and upper bounds, but rather

in their behaviour with respe
t to stru
tural
omplexity theory. To do so, the notion

of a
anoni
al storage type is introdu
ed whi
h relates families of formal languages and

the
omplexity
lasses generated by them under appropriate redu
ibilities.

This paper is divided into two parts: in the �rst part, Sequential Complexity, we

treat relations between families of formal languages and
omplexity
lasses de�ned by

various types of sequential automata. This is done �rst for deterministi
 and nondeter-

ministi
 families and then for the intermediate
on
epts unambiguity and symmetry.

The se
ond part, Parallel Complexity, relates these
lasses and families to parallel
om-

plexity theory. These investigations
on
entrate on the models of parallel random a

ess

ma
hines and of Boolean
ir
uits.

2 Preliminaries

The reader is assumed to be familiar with the basi
 fa
ts of
omplexity theory as they are

ontained in [3℄ or [33℄. So we will use without explanation the
lasses DSPACE(logn),

1

NSPACE(logn), P, NP, and PSPACE. In addition, let DEXPOLYTIME denote

DTIME(2

pol

), whi
h is meant to be an abbreviation of

S

k�1

DTIME(2

n

k

). DTISP(f; g)

and NTISP(f; g) denote the
lass of languages re
ognized by deterministi
 resp. by non-

deterministi
 Turing ma
hines whi
h are bounded in time by f and, simultaneously, in

spa
e by g.

For a family A of languages let LOG(A) denote the
lass of sets redu
ible to some

element of A by a many-one logspa
e redu
tion. For a single language L

0

we will write

LOG(L

0

) instead of LOG(fL

0

g).

Throughout this paper, we will refer to various families of formal languages. In

parti
ular, we assume the reader to know CFL, the family of
ontext-free languages,

LIN, the family of linear
ontext-free languages, and DCFL, the family of deterministi

ontext-free languages. Further material may be found in [6, 29, 33℄. DLIN will denote

the family of deterministi
 linear languages whi
h are re
ognized by deterministi
 one-

turn push down automata [32℄.

By 1{NPDA we denote the family of languages a

epted by nondeterministi
 push

down automata with a one-way input tape. As is well-known, this
lass
oin
ides

with CFL. The
orresponding
lasses for nested sta
k automata, sta
k automata,

nonerasing sta
k automata,
he
king sta
k automata, one-turn push down automata,

and one
ounter automata are denoted by 1{NNstSA, 1{NSA, 1{NNeSA, 1{NChSA,

1{NPDA

1�turn

= LIN, and 1{NOCA [1, 26, 68℄. For deterministi
 automata this leads to

the
lasses 1{DPDA=DCFL, 1{DNstSA, 1{DSA, 1{DNeSA, 1{DChSA, 1{DPDA

1�turn

= DLIN, and 1{DOCA.

The family INDEX of indexed languages was
hara
terized by nested sta
k automata

in [1℄. Ma
ro Grammars were introdu
ed in [21℄ and led to the families IO and OI of

inside-out and outside-in ma
ro languages. The later family
oin
ides with INDEX.

Context-free Lindenmayer languages are de�ned by iterating homomorphisms and

�nite substitutions. For the de�nition of the families EDOL, EDTOL, EOL, and ETOL

we refer to [60℄.

3 Sequential Complexity

The most typi
al
lass of formal languages is CFL, the family of
ontext-free languages.

Its relations to
omplexity
lasses have been investigated by many resear
hers. In the

following we will look at families of formal languages like CFL as
omplexity
lasses or as

generators of
omplexity
lasses. We will �rst review the relation of determinism versus

nondeterminism. In a se
ond subse
tion, unambiguity and symmetry, intermediate

on
epts between determinism and nondeterminism, are shortly
onsidered.

3.1 Determinism versus Nondeterminism

One of the
entral issues of the Theory of Formal Languages is the opposition of deter-

minism versus nondeterminism. In
ontrast to the situation in Complexity Theory, the

pre
ise relations within formal language theory are well-known; e.g., it is easy to exhibit

ontext-free languages whi
h are not deterministi

ontext-free and the same holds true

for an abundan
e of other families of formal languages. On the other hand, nothing like

that is known for the
orresponding
omplexity
lasses LOG(CFL) and LOG(DCFL).

In this subse
tion we will �rst look at
omplexity
lasses generated by families of for-

mal languages. In most
ases, the relation between determinism and nondeterminism

2

leads us to the well-known open questions of Complexity Theory, like P versus NP

or DSPACE(logn) versus NSPACE(logn). In a se
ond paragraph this transition from

determinism to nondeterminism is
hara
terized by operations on formal languages.

3.1.1 Complexities of Families of Formal Languages

In the following, we will
onsider
omplexity
lasses generated by families of formal

languages via many-one logspa
e redu
ibilities. While these redu
ibilities are well-suited

for tasks of sequential
omplexity, they are to powerful and to
oarse to deal with small

omplexity
lasses below DSPACE(logn), as they appear in parallel
omplexity theory.

Fortunately, most of the relations
onsidered here, do not vary if we
hange to simpler

notions of redu
ibility like AC

0

redu
tions or even proje
tions.

Most of the more prominent families of formal languages are
omplete for
omplexity

lasses de�ned in terms of time or spa
e. The following table summarizes some of these

results by listing for some
omplexity
lasses A some families of formal languages B

i

su
h that A = LOG(B

i

). It should be noted that in all these
ases these families of

formal languages are
omplete in a stronger sense, in that there always exists a single

element in that family whi
h is
omplete for the
orresponding
omplexity
lass.

Complexity Class Complete Families Referen
es

NP INDEX = 1{NNstSA = OI, ETOL, 1{NSA, [59, 71, 65℄

1{NNeSA, 1{NChSA

P 1{DNstSA, 1{DSA, 1{DNeSA [45℄

NSPACE(logn) LIN = 1{NPDA

1�turn

, 1{NOCA, EDTOL [67, 68, 37℄

DSPACE(logn) DLIN = 1{DPDA

1�turn

, 1{DOCA, 1{DChSA [32, 34℄

Table 1: Complete Families for Time and Spa
e Classes

In
ontrast to these
lose relations between families of formal languages and time

or spa
e bounded
omplexity
lasses, LOG(CFL), the
lass of all problems redu
ible

to a
ontext-free language, appears to be a
lass of its own, not de�nable as a time

or spa
e
lass. Nevertheless, there are many families of formal languages whi
h are

LOG(CFL)-
omplete.

Theorem 1 The following families of formal languages are
omplete for LOG(CFL):

a) IO, the family of inside-out ma
ro languages [2℄,

b) EOL, the family of
ontext-free Lindenmayer languages without tables [69℄,

) (CF)EDTOL, the family of
ontext-free
ontrolled, deterministi
, Lindenmayer sys-

tems with tables [41℄, and

d) GCSL, the family of growing
ontext-sensitive languages [15℄.

Thus, Complexity theory allows us to see some in
lusions in a new light. For exam-

ple, the proper in
lusions LIN � EDTOL, CFL � EOL, CFL � IO, and ETOL � OI

turn into equalities when
onsidering the
omplexity
lasses generated by these families

3

of formal languages. On the other hand, it is possible to relate the families IO and

OI, whi
h are in
omparable as families of formal languages, within the framework of

omplexity theory by the in
lusion LOG(IO) � LOG(OI):

Greiba
h exhibited in [28℄ a hardest
ontext-free language L

Greiba
h

. Every
ontext-

free language is the inverse homomorphi
 image of L

Greiba
h

whi
h is therefore LOG(CFL)-

omplete. Homomorphisms are
omputable in linear time and thus redu
tions by inverse

homomorphisms preserve not only spa
e bounds, but also running time of
ontext-free

languages; i.e.: if you
ould parse L

Greiba
h

in quadrati
 time, you
ould do that for

every
ontext-free language. This is no longer true for logspa
e redu
ibilities, whi
h

may distinguish DSPACE(log

2

n) from DSPACE(log

3

n), but not DTIME(n

2

) from

DTIME(n

3

). On the other hand, Greiba
h's result made use of existen
e of Greiba
h

Normal Form for
ontext-free languages (or in terms of automata: the fa
t that ea
h

ontext-free language
an be a

epted by a push-down automaton without �-moves).

Thus, this approa
h applies neither to the various families of sta
k languages nor to

DCFL, just to give some examples. With logspa
e redu
ibilities, however, it is enough

to know that derivation lengths (resp. the runtimes of the
orresponding automata)

are polynomially bounded.

By the algorithms of Co
ke, Kasami, and Younger [74℄ and of Lewis, Stearns, and

Hartmanis [50℄ we have:

Theorem 2 a) LOG(CFL) � P

b) LOG(CFL) � DSPACE(log

2

n):

It is still open, whether a polynomial time bound and a polylogarithmi
 spa
e bound

an be a
hieved simultaneously. This is only known for DCFL, for whi
h Cook exhibited

in [14℄ an algorithm with these simultaneous bounds:

Theorem 3 DCFL � DTISP(pol; log

2

n) = SC

2

.

For arbitrary
ontext-free languages only CFL � NTISP(pol,log

2

n) is known (see [73℄).

There is also a ma
hine
hara
terization of LOG(CFL) in terms of Auxiliary Push

Down automata, whi
h were introdu
ed by Cook in [13℄. In an auxiliary push-down

automaton the power of a push-down automaton is enhan
ed in two ways: �rst, the

ma
hine is equipped with a worktape bounded logarithmi
ally

1

in the length of the

input, and se
ond, the ma
hine has two-way a

ess to its input. Observe, that the

runtime of this enhan
ed automaton is no longer linear but may be exponential, i.e.

O(2

pol

). We will denote by NAuxPDA-TIME(f) (resp. DAuxPDA-TIME(f)) the
lass

of all languages re
ognizable by nondeterministi
 (resp. deterministi
) auxiliary push-

down automata in time O(f). Cook showed in [13℄:

Theorem 4 P = NAuxPDA-TIME

�

2

pol

�

= DAuxPDA-TIME

�

2

pol

�

:

The relations to CFL and DCFL were determined by Sudborough, who showed in

[70℄:

Theorem 5 a) LOG(CFL) = NAuxPDA-TIME(pol)

b) LOG(DCFL) = DAuxPDA-TIME(pol):

The relations between formal languages and
omplexity
lasses resembled in this

se
tion so far, are depi
ted in Figure 1.

1

Cook worked with arbitrary spa
e bounds and his results hold in a more general way than indi
ated

here.

4

DSPACE(log n) � DLIN

SC

2

NAuxPDA{TIME(pol) � CFL� EOL � IO

DAuxPDA-TIME(pol) � DCFL

P

NSPACE(log n) � LIN � EDTOL

NP � INDEX = OI � ETOL

DSPACE(log

2

n)

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

�

�

�

�

�

�

�

�

H

H

H

H

H

H

H

H

Figure 1: Complexity
lasses and families of formal languages

Theorems 4 and 5 are not restri
ted to the
ontext-free languages, but hold for

a large variety of families of formal languages. To express this we use the following

notions:

De�nition 6 a) An automaton type X is
alled 2-
anoni
al i� the word prob-

lem of the X automaton with one-way input is
omplete for the

lass of languages a

epted by polynomially time bounded auxil-

iary X automata, i.e.: by X automata equipped by a logarithmi-

ally spa
e bounded working tape and with a two-way input tape

restri
ted by a polynomial time bound.

b) An automaton type X is
alled ;-
anoni
al i� the emptiness prob-

lem of the X automaton with one-way input is
omplete for the

lass of languages a

epted by auxiliary X automata (without any

time bound).

Theorem 5 tells us that both nondeterministi
 and deterministi
 pushdown au-

tomata behave 2-
anoni
ally. The majority of all automata types
onsidered in the

theory of formal languages is 2-
anoni
al. In parti
ular, all types of automata o

urring

in Table 1 are 2-
anoni
al. This is not restri
ted to determinism or nondeterminism,

but also holds for parity and mod
on
epts [57℄. On the other hand, unambiguous au-

tomata, whi
h will be treated in the following subse
tion, don't seem to be
anoni
al.

Another
ounterexample are �nite automata. But here we have the problem that the

orresponding
omplexity
lasses are lo
ated below DSPACE(logn). Hen
e the usual

logspa
e redu
ibilities are no longer appropriate. These low
lasses will be
onsidered

in the se
tion on parallel
omplexity. Throughout of this se
tion we will use logspa
e

redu
tions and just mention that the listed results also hold for simpler types of re-

5

du
ibilities like DLOGTIME mappings or proje
tions, sin
e the typi
al redu
tions used

in this
ontext are of the form v ! v

p(jvj)

for some polynomial p.

Another
ounterexample to 2-
anoni
al relations are Turing ma
hines or any other

universal automata type, sin
e then the polynomial time bounds
annot be a
hieved.

But these don't lead to typi
al families of formal languages with pumping lemmata and

a de
idable emptiness problem. In fa
t, all known families of formal languages with a

de
idable emptiness problem and e�e
tive
losure properties are
ontained in NP.

Theorem 4 tells us, that both nondeterministi
 and deterministi
 push down stores

are ;-
anoni
al. Again, this is very
ommon for many storage types. All storage types

o

urring in Table 1 ex
ept for the deterministi

he
king sta
ks are ;-
anoni
al. The

ba
kground underlying ;-
anoni
al
ompleteness results are relations between word

problems of two-way automata and emptiness problems of one-way automata, whi
h

hold in a very general way ([20, 18, 48℄). A related
lass of problems are General (or

variable) membership problems, i.e., where the grammar or automaton is not �xed

but regarded as part of the input [38℄. They are typi
ally
omputationally equivalent

to the emptiness problem, if something
orresponding to �-produ
tions or �-moves is

allowed in the language generating devi
e given as part of the input. Otherwise, lower

omplexities, typi
ally those of the �xed membership problem are met.

Considering Theorems 4 and 5, we see that push down stores are even fully
anon-

i
al, i.e.: they are not only 2- and ;-
anoni
al with respe
t to both determinism and

nondeterminism, but in addition, deterministi
 and nondeterministi
 auxiliary push

down automata are of equal
omputational power. This pattern of relations is
ommon

for a variety of storage types and the automata asso
iated with them. The following

table gives some examples for these relations. The �rst
olumn lists some storage types.

The se
ond one gives the
omplexity
lass for whi
h the emptiness problem of the
or-

responding one-way automaton is
omplete. This is equivalent to the word problem of

the
orresponding two-way automaton. Here determinism and nondeterminism do not

di�er w.r.t.
omplexity. The third and fourth
olumn list the
omplexity of the word

problem in the one way
ase([34, 45, 70℄).

Storage type Two-way
lass Nondeterministi
 Deterministi

one-way
lass one-way
lass

Nested Sta
k DEXPOLYTIME NP P

Sta
k DEXPOLYTIME NP P

Nonerasing Sta
k PSPACE NP P

Push Down P LOG(CFL) LOG(DCFL)

Table 2: Fully
anoni
al Storage Types

It is possible to show, that this pattern is also full�lled by various types of top-down

automata
hara
terizing several families of
ontext-free Lindenmayer languages [60℄.

3.1.2 Complexity of Operations on Formal Languages

An important topi
 in the theory of formal languages are investigations of
losure prop-

erties, that is of questions under whi
h operations a given family of formal languages

6

is
losed. This results in notions like Trios or AFLs. A Trio (or
one) is an nonempty

olle
tion of sets
ontaining at least one nonempty language,
losed under homomor-

phisms, inverse homomorphisms, and interse
tions with regular sets. An Abstra
t

Family of Languages is a Trio whi
h is additionally
losed under the regular opera-

tions, i.e.: union,
on
atenation, and Kleene's *-operation. CFL, OI, and ETOL are

AFLs, LIN is a Trio, but not an AFL, and DCFL is not a Trio, sin
e it is not
losed

under homomorphisms. There is a ri
h theory built upon these notions (see e.g. [6, 25℄).

Most of the ties between
omplexity and formal languages are found when
onsid-

ering the
omplexities of de
ision problems, in parti
ular of membership problems, of

formal languages. This results in
ompleteness of languages and of families of formal

languages. In the following, we brie
y deal with the
omplexity of operations on formal

languages.

AFL Operations

Trio Operations: From the
omplexity theoreti
al view, the easiest operations

are inverse homomorphisms and interse
tions with regular sets. Nearly every sequential

ma
hine with a �nite
ontrol admits the appli
ation of these operations. So, at least

with respe
t to sequential
omplexity, both operations are very easy. In
ontrast to

that, the potential
omplexity of the remaining Trio operation, the homomorphism, is

unbounded, sin
e every re
ursively enumerable set is representable as the homomorphi

image of a simple set. Here simple means
ontainment in DSPACE(logn). In fa
t,

every re
ursively enumerable set is the homomorphi
 image of some element in Co-

NLOGTIME.

Here we see a fundamental di�eren
e of families of formal languages and of
om-

plexity
lasses
on
erning the impa
t of erasing. While formal languages usually are

rather insensitive with respe
t to erasing homomorphisms,
omplexity
lasses generate

all re
ursively enumerable sets in
onne
tion with erasings. Hen
e within
omplexity

theory only nonerasing homomorphism
an be
onsidered. Still these
an be of a high

omplexity (see e.g. [9℄): ea
h set in NTIME(n) is the homomorphi
 image of the

interse
tion of three
ontext-free sets, as it was shown in [8℄. This implies the NP-

ompleteness of H

nonerasing

(LOG(CFL)), sin
e LOG(CFL) is
losed under interse
tion.

It is easy to see, that this holds even for deterministi
 logspa
e:

Proposition 7 NP = LOG(H

nonerasing

(DSPACE(logn))):

On the other hand, NP is
losed under nonerasing homomorphisms:

Proposition 8 H

nonerasing

(NP) = NP:

These two equations tell us, that the operation of taking the nonerasing homomorphi

image is NP-
omplete. For a more formal treatment see [31℄.

Boolean Operations: Sin
e the
omplexity
lasses investigated in this paper are

de�ned by automata with a two-way input tape, they are
losed both under union

and under interse
tion. Hen
e there is no in
rease in
omplexity when applying the

operation of union or interse
tion to
omplexity
lasses like DSPACE(logn).

The situation is similar with respe
t to the operation of taking
omplements. Classes

based on determinism or on nondeterministi
 spa
e are
losed under
omplementation.

But also for
lasses and
on
epts whi
h possibly are not
losed under
omplementation

7

like nondeterministi
 time, symmetry, or unambiguity there is no jump of
omplexity.

This may be illustrated by the fa
t, that the
losure of P under nonerasing homomor-

phisms and
omplement is only the polynomial hierar
hy and not PSPACE.

Regular Operations: In the same way as nonerasing homomorphisms may be

regarded as being NP-
omplete, Kleene's

�

-operation is NSPACE(logn)-
omplete, sin
e

we have:

Theorem 9 a) NSPACE(logn) = LOG(DSPACE(logn)

�

)

2

and

b) NSPACE(logn)

�

� NSPACE(logn):

(See [22, 51℄. Again these results hold for
omplexity
lasses below DSPACE(logn),

e.g. (AC

0

)

�

ontains NSPACE(logn)-
omplete sets.)

All
omplexity
lasses used here are
losed under
on
atenation, whi
h seems to be as

easy as inverse homomorphisms or interse
tion with regular sets. There is one example

due to Inga Niepel whi
h
hara
terizes the
omplexity of
on
atenation. Hartmanis and

Mahaney
onsidered in [30℄ the LOG(�)-
losure of all single letter alphabet languages

in NSPACE(logn). They showed this
lass to
oin
ide with the
lass of all languages

re
ognizable by logspa
e automata whi
h in the beginning work deterministi
ally and

then enters a se
ond nondeterministi
 phase that is blind, that is in whi
h the input

an no longer be read ex
ept for its length. Niepel renamed this
lass ENL (ending

nondeterminism) and
onfronted it with BNL (beginning nondeterminism) where the

logspa
e ma
hine starts with a blind nondeterministi
 phase and then enters a se
ond,

deterministi
 one in whi
h the ma
hine has full a

ess to its input. Niepel was able to

show:

Theorem 10 ([53℄) a) ENL � BNL,

b) BNL = LOG(ENL�ENL), and

) BNL�BNL � BNL.

Thus the
omplexities of ENL and BNL are related by the operation of
on
atena-

tion.

Iterated Insertions

Another nondeterministi

omplexity
lass representable in this way is LOG(CFL).

The related operation on formal languages will be
B , the operation of iterated binary

insertion [31℄. The underlying idea of this approa
h is the simulation of the grammar

with rules S ! aSbS
 j d, whi
h is a generator of the
ontext-free languages (see [6℄).

For languages L

1

; L

2

; and L

3

we de�ne the operation of Binary Insertion by

(L

1

; L

2

)! L

3

:= fuvwxy j v 2 L

1

; x 2 L

2

; uwy 2 L

3

g.

We will now iterate this operation to get the desired operator
B . There are two

possibilities to do so:

Outside-In One possibility is to insert atomi
 words into
omposed words, i.e. to

de�ne: L

OI�0

:= f�g, L

OI�i+1

:= L

OI�i

[((L; L)! L

OI�i

), and

L

OI�
B

:=

S

i�0

L

OI�i

.

2

Here A

�

denotes fL

�

j L 2 Ag.

8

Inside-Out The other possibility is to insert
omposed words into atomi
 words, i.e.

to de�ne: L

IO�0

:= f�g, L

IO�i+1

:= L

IO�i

[((L

IO�i

; L

IO�i

)! L), and

L

IO�
B

:=

S

i�0

L

IO�i

.

Observe, that these two possibilities
oin
ide for asso
iative operations like
on
atena-

tion: the iterated
on
atenation both in the outside-in and the inside-out way results

in the *-opration. In the
ase of binary insertion, these two approa
hes do not seem

to be equivalent, sin
e OI-
B is NP-
omplete and IO-
B is LOG(CFL)-
omplete; i.e. we

have:

Theorem 11 a) NP = LOG

�

DSPACE(logn)

OI�
B

�

= LOG

�

NP

OI�
B

�

;

b) NAuxPDA-TIME(pol) = LOG

�

DSPACE(logn)

IO�
B

�

, and

) NAuxPDA-TIME(pol) = LOG

�

NAuxPDA-TIME(pol)

IO�
B

�

:

(Compare this with the NP-
ompleteness of OI and the LOG(CFL)-
ompleteness of

IO.) Hen
e we will in the following only
onsider the operation IO-
B , whi
h will be

alled
B , for short. These relation also hold on the formal language side: there is a

�nite set F , su
h that F

B

is not only a generator of CFL, but also a hardest
ontext-

free language. In addition, CFLis
losed under the
B operation. Further details will

be
ontained in [31℄.

Remark 1 It is also possible to do the same for monadi
 insertions, i.e.: for the

operation L

1

! L

2

:= fuvw j v 2 L

1

; uw 2 L

2

g. Iterating this we get two operations

OI-
M and IO-
M. Again OI-
M is NP-
omplete, while IO-
M now is NSPACE(logn)-

omplete. Sin
e OI-
M essentially
oin
ides with OI-
B, we will deal in the following only

with IO-
M, whi
h we will name
M , for short. The
M operation is
losely
onne
ted with

the linear
ontext-free languages.

Relativization

A remarkable fa
t of these results is that the relations des
ribed in this paragraph

do relativize. We have [42℄:

Theorem 12 NP

A

= LOG

�

H

�

DSPACE(logn)

A

��

for every ora
le set A.

When relativizingNSPACE(logn) or NAuxPDA-TIME(pol) we have to be
areful whi
h

kind of relativization to
hoose. There are two basi
 types: In the LL-relativization of

Ladner and Lyn
h in [40℄ the ora
le ma
hine is allowed to perform nondeterministi

steps during the generation of a query string. In the RST-relativization of Ruzzo, Simon,

and Tompa in [63℄, the ora
le ma
hine is only allowed to perform nondeterministi

steps, while the query tape is empty. None of the relations Co-NSPACE(logn) =

NSPACE(logn), NSPACE(logn) � DSPACE(log

2

n), or NSPACE(logn) � P does LL-

relativize, but all do when using the RST-relativization. As usual, NSPACE(logn)

A

denotes the LL-relativization, and NSPACE(logn)

hAi

the RST-version. We then have

[42℄:

Theorem 13 NSPACE(logn)

hAi

= LOG

��

DSPACE(logn)

A

�

�

�

for every ora
le set A.

In the same way we have [31℄:

9

Theorem 14 NSPACE(logn)

hAi

= LOG

�

DSPACE(logn)

A

�

M

!

for every ora
le set

A.

Essentially, the same holds true for the operation
B . Again, we have to use the

RST-relativization, whi
h in this
ase pertains also to the use of the push-down store.

(So, here RST and LL no longer
oin
ide in the deterministi

ase.) We then have [31℄

Theorem 15 NAuxPDA-TIME(pol)

hAi

= LOG

�

DSPACE(logn)

A

�

B

!

for every ora
le set A.

3.2 Between Determinism and Nondeterminism

The
onsideration of the relationship between determinism and nondeterminism led

to the investigation of intermediate
on
epts like symmetry or unambiguity. A non-

deterministi
 automaton is said to be unambiguous, if for any input there is at most

one a

epting
omputation. Obviously, every deterministi
 automaton is unambiguous.

While in a usual de�nition of a language a

epted by some automaton the re
exive and

transitive
losure of some one-step transition relation is used, a symmetri

omputation

is based on the symmetri
, re
exive, and transitive
losure of that relation. Sin
e the

on�guration graph of a deterministi
 automaton is a tree, the language a

epted by

a deterministi
 automaton
oin
ides with its symmetri
 language, i.e.: the set of all

words a

epted by symmetri

omputations. Thus both
on
epts are lo
ated between

determinism and nondeterminism.

3.2.1 Unambiguity

The
on
ept of Unambiguity is well known from the theory of automata and formal

languages. An automaton is unambiguous if there exists at most one a

epting
ompu-

tation for every input. Correspondingly, a grammar is unambiguous if there exist no two

di�erent derivations produ
ing the same word. Thus, if there exists an a

epting
ompu-

tation or a derivation for some input, it is unique. On the formal language side, this leads

to the families UCFL of unambiguous
ontext-free languages and ULIN of unambiguous

linear
ontext-free languages, whi
h
oin
ide with the families of languages a

epted by

unambiguous push-down and one-turn push-down automata. On the
omplexity theo-

reti
al side, we get
lasses like UP, USPACE(logn), and UAuxPDA-TIME(pol).

This feature has to be distinguished from the
on
ept of Uniqueness. While an un-

ambiguous automaton allows for at most one a

epting
omputation, a unique ma
hine

simply reje
ts all words having more than one a

epting
omputations. Thus unam-

biguity means using the unique existen
e of a

epting
omputations as a restri
tion,

whereas uniqueness is using this as a tool. Hen
e unambiguity is a
on
ept lo
ated

between determinism and nondeterminism. On the other hand uniqueness seem to be

more powerful than nondeterminism. The
lass US of unique polynomial time intro-

du
ed in [7℄
ontains Co-NP and is
onje
tured to be di�erent from it. Unique spa
e

lasses
oin
ide with their nondeterministi

ounterparts, be
ause of the
omplement

losure of nondeterministi
 spa
e
lasses.

While uniqueness is a
onstru
tive
on
ept and
lasses de�ned by uniqueness possess

omplete sets, unambiguity is a non
onstru
tive
on
ept. Complexity
lasses de�ned

by unambiguity don't seem to be re
ursively representable or to possess
omplete sets.

10

Neither they seem to be 2-
anoni
al: it is not known, whether the families UCFL and

ULIN are
omplete for UAuxPDA-TIME(pol) and USPACE(logn). The
orrespond-

ing
onstru
tion in [70℄ preserves determinism, but not unambiguity. We only have

LOG(UCFL) � UAuxPDA-TIME(pol) and LOG(ULIN) � USPACE(logn).

There are two possibilities to de�ne unambiguity. Apart from the weak version

of looking only at a

epting
omputations or whole derivations, we
ould be more

restri
tive and require that for no pairs of
on�gurations there are two or more di�erent

omputations leading from the �rst
on�guration to the se
ond one. For grammars

this would mean that for no pair of sentential forms there are two or more di�erent

derivations deriving one out of the other. For time
lasses these
on
epts do not di�er,

sin
e we have enough spa
e to keep tra
k of the whole history of a
omputation. In this

way no
on�guration has more than one prede
essor. For spa
e bounded
lasses and

ma
hines augmented with a spa
e bounded working tape this method does not work and

we get additional
lasses
orresponding to strong unambiguity: StUAuxPDA-TIME(pol)

and StUSPACE(logn). (In fa
t there are many more variants, see e.g. [12℄.)

These two
on
epts
oin
ide on the formal language side, sin
e we
an get rid of

both the unprodu
tive and the unrea
hable nonterminals of a grammar. With this it

is possible to show the in
lusion of formal languages even in the
orresponding strong

unambiguous
lasses (see [47, 12℄):

Proposition 16 LOG(UCFL) � StUAuxPDA-TIME(pol) � UAuxPDA-TIME(pol)

and

Proposition 17 LOG(ULIN) � StUSPACE(logn) � USPACE(logn):

Allthough we know DCFL � UCFL � CFL and DLIN � ULIN � LIN, the pre
ise

relationship of unambiguous
omplexity
lasses to deterministi
 and nondeterministi

ones is open. There are some indi
ations that unambiguity is a proper restri
tion of

nondeterminism. An example for this are parity and mod
lasses; A language L � X

�

is in
SPACE(logn) (Parity Logspa
e) i� there is a nondeterministi
 logarithmi
ally

spa
e bounded Turing ma
hine, whi
h has an odd number of a

epting
omputations

for ea
h element of L and an even number number on ea
h input from X

�

nL. Counting

modulo an arbitrary positive integer instead of
ounting modulo two leads from parity

lasses to mod
lasses [11℄. By de�ntion of unambiguity we have:

Proposition 18 a) USPACE(logn) �
SPACE(logn) and

b) UAuxPDA-TIME(pol) �
AuxPDA-TIME(pol).

These in
lusions are not known to be true forNSPACE(logn) and NAuxPDA-TIME(pol).

The parity
on
ept
an also be de�ned for formal languages and leads to the
anoni
al

equations:

Theorem 19 ([57℄) a) LOG(
CFL) =
AuxPDA{TIME(pol) and

b) LOG(
LIN) =
SPACE(logn).

A further hint that unambiguity might be less powerful than nondeterminism and be

rather
lose to determinism is given in [12℄ by:

Theorem 20 StUSPACE(logn) � DAuxPDA-TIME(pol):

11

As a
onsequen
e, StUSPACE(logn) and hen
e ULIN is a subset ofDTISP(pol; log

k

n)

= SC

2

. The
orresponding relationship for nondeterminism: NSPACE(logn) � SC

2

is

not known to be true and generally
onje
tured to be wrong.

The idea underlying the in
lusion of StUSPACE(logn) in DAuxPDA-TIME(pol) is

to prune the rea
hability subtree of the rea
hability graph of a strongly unambiguous

ma
hine. The proof
an be extended to some slightly larger
lasses, but not (yet)

to the
lass USPACE(logn) (see [12℄). With the same idea it
an be shown that

StUSPACE(logn) is
losed under
omplement and even
oin
ides with its alternating

version.

One
onsequen
e of this in
lusion is, that we now
an relate the families ULIN and

DCFL. As families of formal languages they are in
omparable: the Dy
k languages are

not linear
ontext-free and the Mirror Language fw

w

j w 2 fa; bg

�

g is not deterministi

ontext-free. But if we look at them from the
omplexity theoreti
al side, we now have

LOG(ULIN) � DAuxPDA-TIME(pol) = LOG(DCFL):

But it seems appropriate to give a
aveat: In the same way CFL and EDTOL

are in
omparable as families of formal languages. If we now look at the generated

omplexity
lasses, we get

LOG(EDTOL) = NSPACE(logn) � LOG(CFL):

But things turn over, if we look at the AFLs generated by CFL and by EDTOL,

whi
h in this
ase means to allow for inverse homomorphisms. Observe that inverse

homomorphisms are very harmless from the
omplexity theoreti
al point of view in

that very low
lasses like NC

1

are
losed under inverse homomorphisms. But while

AFL(CFL)=CFL stays in NAuxPDA-TIME(pol), the AFL generated by COPY
ontains

NP-
omplete languages (see [22℄).

3.2.2 Symmetry

The
on
ept of a symmetry was introdu
ed in [49℄. In a symmetri

omputation one

is allowed to go
omputational steps both ba
kward and forward. As unambiguity,

symmetry is intermediate in
omputational power between determinism and nondeter-

minism. But in
ontrast to unambiguity, symmetry is of a more
onstru
table nature,

sin
e it is de�ned in terms of lo
ally
he
kable properties. Thus, symmetri

lasses

possess
omplete problems.

Stru
tural Relations: At the expense of spa
e it is possible to make arbitrary non-

deterministi

omputations symmetri
 by keeping tra
k of the whole history of a
om-

putation. This is the reason for the equivalen
e of symmetri
 time and nondetermin-

isti
 time. Mu
h more interesting is the
ase of symmetri
 spa
e
lasses. They re-

semble
ertain similarities with unambiguous spa
e
lasses
on
erning their stru
tural

behaviour. As StUSPACE(logn), also SSPACE(logn) is
ontained in both SC

2

and

SPACE(logn):

Theorem 21 a) SSPACE(logn) � SC

2

[55℄, and

b) SSPACE(logn) �
SPACE(logn)[39; 11℄:

But it should be mentioned that the proofs on the symmetri
 side are mu
h more

involved than those on the unambiguous one. But there are also
ertain di�eren
es.

12

On the one hand, it was observed in [49℄ that all problems in NSPACE(logn)
an be

re
ognized by symmetri
 ma
hines, whi
h are simultaneously bounded by polynomial

time and O(log

2

n) spa
e:

Theorem 22 NSPACE(logn) � STISP(pol; log

2

n):

Here STISP(f,g) denotes the
lass of all problemes re
ognizable by symmetri
 Turing

ma
hines bounded in time by f and simultaneously in spa
e by g. An unambiguous

version of this
ontainment is not known to be true. On the other hand, it was re
ently

shown in [56℄ that SSPACE(logn) is
ontained in DSPACE(log

1:5

n). Again, it is an

open problem whether the
orresponding in
lusions hold for the
lasses USPACE(logn)

or StUSPACE(logn).

Complete Operations The known
omplete sets for SSPACE(logn) are undire
ted

variants of NSPACE(logn)-
omplete problems. But there is up to now no family of

formal languages whi
h
ould play for SSPACE(logn) the role, LIN and DLIN played

for NSPACE(logn) and DSPACE(logn). This seems to be
onne
ted with the problem

of de�ning the
on
ept of symmetry for automata with a one-way a

ess to the input.

In the following we will des
ribe an operation SYM-

�

on formal languages whi
h

is SSPACE(logn)-
omplete. To de�ne SYM-

�

whi
h will be a symmetri
 version of

the *-operation we need the following notation: If w = a

1

a

2

:::a

n

is a word of length

n, we sele
t subwords of w for 0 � i � j � n by setting

i

w

j

:= a

i+1

:::a

j

. Then

w is an element of L

�

for some language L i� there exists an integer k and indi
es

0 =: i

0

< i

1

< i

2

::: < i

k

:= n su
h that for all 1 � � � k

i

��1

w

i

�

is in L. We

extend now the

i

w

j

-notation to \negative" subwords by letting

i

w

j

be the reversal of

j

w

i

, i.e. a

i

a

i�1

:::a

j+1

, if j < i. We then de�ne w to be an element of L

SYM-

�

i� there

exist an integer k and indi
es i

0

:= 0; i

1

; i

2

; :::; i

k

:= n su
h that for all 1 � � � k

i

��1

w

i

�

is an element of L. Observe, that now the sequen
e of the i

�

no longer has

to be in
reasing. As for * and NSPACE(logn), there exist a simple set L

0

su
h that

L

SYM-

�

0

is SSPACE(logn)-
omplete. (In fa
t we
an take the same set L

0

, for whi
h

L

�

0

is NSPACE(logn)-
omplete;
ompare to Theorem 9.)

Theorem 23 ([31℄) a) SSPACE(logn) = LOG

�

DSPACE(logn)

SYM-

�

�

and

b) SSPACE(logn)

SYM-

�

� SSPACE(logn).

An interesting question is now, whether the SYM-

�

-operation
an be
hara
terized

as the iteration of a more simple operation, just as the *-operation is iterated
on-

atenation,
M is iterated monadi
 insertion, and
B is iterated binary insertion. This

question seems to be
losely related to the problem of properly de�ning symmetry for

one-way devi
es.

Relativization: We �nally remark, that as in subse
tion 3.1.2 it is possible to

relativize Theorem 23 when using an appropriate relativization of symmetri
 pa
e [31℄.

Some of the
onne
tions between unambiguous and symmetri

omplexity
lasses

and families of formal languages are indi
ated in Figure 2.

4 Parallel Complexity

There are several di�erent models used in parallel
omplexity theory, the most basi
s

being parallel random a

ess ma
hines, Boolean
ir
uits, alternating automata, and in

13

DSPACE(log n) = LOG(DLIN)

DSPACE(log

1:5

n)

SSPACE(log n)

SC

2

SPACE(log n) NSPACE(log n) = LOG(LIN)

DSPACE(log

2

n)

LOG(ULIN)

StUSPACE(log n)

P

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 2: Unambiguous and symmetri
al aspe
ts of formal languages

some sense auxiliary push-down automata. In the following, we will mainly deal with

PRAMs and
ir
uits.

All these devi
es lead to the same
lass NC of languages, whi
h are eÆ
iently

parallelizable. Dealing with PRAMs, this leads to the
lass of problems, solvable si-

multaneously with small (i.e.: polylogarithmi
) time and moderate (i.e.: polynomial)

number of pro
essors. For
ir
uits it would mean small depth and moderate size, for

alternating ma
hines small depth and logarithmi
 spa
e, and for auxiliary push-down

automata time O(2

polylog

) and logarithmi
 size of the auxiliary working tape ([62℄
on-

tains a ni
e uni�
ation of several approa
hes). Parallel
omplexity theory now
ontrasts

membership in NC as meaning eÆ
iently parallelizable with P-
ompleteness meaning

inherently sequential. On the one hand, this leads to a beautiful theory, on the other

hand, it is not
lear how to relate these results to existing parallel ma
hines.

The following explanations are
entered around CFL and its subfamilies. We start

with a treatment of the most important model of parallel
omplexity theory, the PRAM.

LOG(DCFL)
oin
ides with a parallel
omplexity
lass. Then we review some results

on
omplexity
lasses repreented by boolean
ir
uits. In this
ontext LOG(CFL) will be

exhibited as a parallel
omplexity
lass, as well. In a third subse
tion on unambiguity

we present some of the surprisingly
lose relationships between
on
epts of automata

theory like nondeterminism, unambiguity, and determinism and
on
epts of a

essing

a shared memory like
on
urrent write, ex
lusive write, and owner write.

14

4.1 Parallel Random A

ess Ma
hines

The
on
ept of a PRAM goes ba
k to [23, 27℄. A PRAM is a set of Random A

ess

Ma
hines,
alled pro
essors,
ommuni
ating via a global memory. The pro
essors work

in a syn
hronous way, i.e.: ea
h step takes one time unit regardless whether it performs

a lo
al or a global (i.e.: remote) operation. The number of pro
essors is variable,

depending in the size of the input. Unless stated otherwise, we have a polynomial

bound on the number of pro
essors. An essential restri
tion we put on this ma
hine,

is the assumption, that the length o� all register
ells, being either global or lo
al, is

bounded logarithmi
ally in the length of the input. Thus all address and data stored

in a memory
ell is polynomially bounded.

There are several types of PRAMs
lassi�ed a

ording to their ability to a

ess

simultaneously a
ell of global memory when reading or writing. We will
onsider

three versions
on
erning the write a

ess: a ma
hine with Con
urrent Write a

ess

allows the simultaneous write a

ess of several pro
essors to the same memory
ell at

one moment. There are several
onventions how to solve this
on
i
t, i.e.: how to

determine what will be the new value of the referen
ed
ell. In our
ontext, all these

methods are equivalent. A ma
hine with Ex
lusive Write a

ess forbids simultaneous

writes and requires that in ea
h step at most one pro
essor may
hange the
ontent of

a global memory
ell. A ma
hine with Owner Write a

ess is even more restri
ted by

assigning to ea
h
ell of global memory a pro
essor,
alled the Write-Owner, whi
h is

the only one to have write a

ess to this memory
ell (see [19℄). Correspondingly, we get

three ways to manage read a

ess to the global memory: Con
urrent Read, Ex
lusive

Read, and Owner Read. In this way we get nine versions of PRAMs, denoted as XRYW-

PRAMs with X; Y 2 fO;E;Cg, where XR spe
i�es the type of read a

ess and YW

that of the write a

ess and where the a

ess types are designated by their initials.

For histori
al reasons, the
ommonly used models are CRCW-, CREW-, and EREW-

PRAMs. By XRYW-TIME(f(n)) we denote the
lass of all languages re
ognizable in

time f by XRYW-PRAMs with a polynomial number of pro
essors. By de�nition we

know that XRYW-TIME(f) � X'RY'W-TIME(f) for X,X',Y,Y' 2 fO;E;Cg if X � X'

and Y � Y' where we set O � E � C.

In the most powerful of these models, the CRCW-PRAM, the global memory looks

like a shared memory, sin
e ea
h pro
essor
an a

ess ea
h
ell of global memory. In the

most restri
ted model, the OROW-PRAM, however, the global memory is deteriorated

to a set of one-dire
tional
hannels between pairs of pro
essors. Thus an OROW-PRAM

is something like a
ompletely
onne
ted syn
hronous network. Although this ma
hine

seems to be mu
h more restri
ted, the relations to other parallel
lasses listed in the

next paragraphs indi
ate that it is a model as \parallel" as a CRCW-PRAM.

Relations to Context-free Languages The
ontext-free languages are well-known

to be
ontained in NC . In fa
t, Ruzzo showed in [61℄:

Theorem 24 CFL � CRCW-TIME(O (log n)):

This algorithm makes essential use of the
on
urrent write feature and it is open

whether
ontext-free languages
ould be re
ognized in logarithmi
 time by CREW or

CROW-PRAMs. The largest subfamily of CFL known to be re
ognizable in logarithmi

time without
on
urrent write, are the unambiguous
ontext-free languages sin
e Rytter

showed in [64℄:

Theorem 25 UCFL � CREW-TIME(O (log n)):

15

Again it is open, whether this
ould be done without ex
lusive write a

ess. The

largest subfamily of UCFL known to be re
ognizable in logarithmi
 time with owner

write a

ess, are the deterministi

ontext-free languages, as Dymond and Ruzzo showed

in [19℄:

Theorem 26 DCFL � CROW-TIME(O (log n)):

The �rst of these three in
lusions implies that NSPACE(logn) and NAuxPDA{

TIME(pol) are sub
lasses of CRCW-TIME(O (log n)). The se
ond in
lusion im-

plies that LOG(UCFL) is
ontained CREW-TIME(O (log n)), but says nothing

on
erning StUAuxPDA-TIME(pol) or UAuxPDA-TIME(pol). Using the
ir
uit

model, it is possible to in
lude StUAuxPDA-TIME(pol) and StUSPACE(logn) in

CREW-TIME(O (log n)), as will be shown below. Also, we will give some evi-

den
e, that UAuxPDA-TIME(pol) and USPACE(logn) are probably not
ontained in

CREW-TIME(O (log n)). The third in
lusion implies that DAuxPDA-TIME(pol) is a

sub
lass of CROW-TIME(O (log n)). Surprisingly, also the
onverse holds, as Dymond

and Ruzzo showed in [19℄:

Theorem 27 DAuxPDA-TIME(pol) = CROW-TIME(O (log n)):

It should be remarked that this result implies the in
lusion of DCFL in SC

2

, i.e.:

Theorem 3. All these algorithms make use of the
on
urrent read feature. Even for the

linear subfamilies LIN and ULIN there is up to now no logarithmi
ally time bounded

algorithm known without using
on
urrent read. Only for the deterministi
 linear

ontext-free languages we know something better by Rossmanith (see [58℄):

Theorem 28 DSPACE(logn) � OROW-TIME(O (log n)):

Sin
e DLIN is
ontained in DSPACE(logn) [32℄, this yields an PRAM re
ognizing

deterministi
 linear languages in logarithmi
 time without the
on
urrent read feature.

Corollary 29 DLIN � OROW-TIME(O (log n))

4.2 Cir
uits

A very important parallel model within stru
tural
omplexity theory are boolean
ir-

uits. Formally, a
ir
uit is a dire
ted a
y
li
 graph C. The nodes,
alled gates, are

labelled by boolean fun
tions su
h that the number of arguments of a fun
tion f
or-

responds to the number of ingoing ar
s of ea
h node v labelled by f. The nodes of

in-degree 0, whi
h have to be labelled by boolean
onstants, are
alled Inputs. Nodes

of outdegree 0 are
alled Outputs. By atta
hing boolean values to ea
h node a

ording

to the boolean fun
tions passed at ea
h node, going from the inputs into the dire
tion

of the outputs a
ir
uit C
omputes a boolean fun
tion with domain f0; 1g

n

and range

f0; 1g

m

, if C has n inputs and m outputs. If m = 1, C might be regarded as a language

a

eptor by setting L(C):= fw 2 f0; 1g

n

j C on input w evaluates to 1g.

Throughout of this paper, we will work with disjun
tions and
onjun
tions as labels,

only. Negation is avoided by the usual assumption, that the inputs are given pairwise,

i.e.: with ea
h input x

i

also an input x

i

is given, labelled with the negation of the label

of x

i

.

Sin
e a �xed
ir
uit has always some �nite domain f0; 1g

n

, it is ne
essary to
onsider

ir
uit families C = (C

n

)

n�1

, where C

n

is a
ir
uit with n inputs. To
apture
omplexity

16

lasses, it is usual to assume Uniformity restri
tions whi
h make the stru
ture of ea
h

C

n

easily
omputable for given n and thus relate the elements of a
ir
uit family with

ea
h other (see [62℄).

Complexity measures of a
ir
uit are the size, whi
h is the number of nodes of a

ir
uit, and the depth, whi
h is the height, i.e.: the length of the longest path from

any input to any output. In the following we will be interested in
ir
uit families

of polynomial size, i.e.: the size of C

n

is bounded by some polynomial p(n), and of

polylogarithmi
 depth, i.e.: the depth of C

n

is bounded by
 log

k

n, for some
 and k

independently of n.

Cir
uit families are
lassi�ed a

ording the fan-in, that is the in-degree of the nodes

of ea
h
ir
uit. A
ir
uit family C is of bounded fan-in if there is a
onstant
, su
h

that the indegree of every node in every C

n

is not larger than
. C is of semi-unbounded

fan-in if all nodes, labelled by a
onjun
tion, have an indegree bounded by some �xed
.

If the indegrees of neither the
onjun
tions nor the disjun
tions are uniformly bounded,

C is said to be of unbounded fan-in. Let AC

k

be the
lass of all languages re
ognized

by uniform
ir
uit families of polynomial size, depth O(log

k

n), and unbounded fan-in.

The
orresponding
lasses for
ir
uit families of semi-unbounded and bounded fan-in

are denoted by SAC

k

and NC

k

.

By de�nition, we have

Proposition 30 NC

k

� SAC

k

� AC

k

for ea
h positive integer k.

Sin
e a node of large indegree t labelled by a disjun
tion (resp.
onjun
tion) may

be repla
ed by a tree of disjun
tions (resp.
onjun
tions) of height log t, we have

Proposition 31 AC

k

� NC

k+1

for ea
h k � 1.

4.2.1 Stru
tural Relations

Sto
kmeyer and Vishkin proved in [66℄:

Theorem 32 CRCW-TIME

�

O

�

log

k

n

��

= AC

k

for ea
h positive integer k.

This result implies a \log-length" normal form for CRCW-PRAMs: ea
h CRCW-

PRAM A with polynomially many pro
essors working in time O(f)
an be simulated

by a CRCW-PRAM B with polynomially pro
essors working in time O(f) su
h that

in B all values stored in global or lo
al memory
ells are polynomially bounded and

thus
an be stored in O(logn) bits. This kind of normal form is not known to exist

for ex
lusive write or owner write PRAMs. Hen
e we had to add this restri
tion as a

property of PRAMs as they were des
ribed in the previous subse
tion.

By [58℄ we have

Theorem 33 NC

k

� OROW-TIME

�

O

�

log

k

n

��

for ea
h k � 1.

Sin
e OROW-TIME

�

O

�

log

k

n

��

is a subset of DAuxPDA-TIME

�

2

O

(

log

k

n

)

�

(for

this in
lusion we need the restri
tion that PRAMs have a logarithmi
ally bounded

word length), this result implies the following in
lusion of Ruzzo derived in [62℄:

Theorem 34 NC

k

� DAuxPDA-TIME

�

2

O

(

log

k

n

)

�

for k � 1.

For k = 1 it is possible to show ([10, 72℄):

17

Proposition 35 NC

1

� DSPACE(logn) � SAC

1

:

None of these in
lusions is known, but all are
onje
tured, to be proper.

A rather surprising relation, motivating the notion of semi-unbounded fan-in, is the

equation

Theorem 36 SAC

k

= NAuxPDA-TIME

�

2

O

(

log

k

n

)

�

for every k � 1

by Venkatesvaran in [72℄. In parti
ular, this gives a new
omplexity theoreti
al

hara
terization of the
ontext-free languages:

Corollary 37 LOG(CFL) = SAC

1

Thus, in view of Theorem 24
ir
uits give a very informative
hara
terizations of

the relations between CRCW-PRAMs and NAuxPDAs in terms of the
on
epts of

unbounded and semi-unbounded fan-in.

4.2.2 Low
ir
uit
lasses

In this part the very
lose
onne
tions between low
ir
uit
lasses and subfamilies of

regular languages are shortly indi
ated.

The lowest
ir
uit
lasses and sequential
omplexity
lasses are related by the in-

lusions

AC

0

� NC

1

� DSPACE(logn) � NSPACE(logn) � AC

1

:

When dealing with
omplexity
lasses below DSPACE(logn) it is ne
essary to use re-

du
ibility notions whi
h are �ner than the usual logspa
e or polynomial time redu
tions.

This leads to many-one redu
ibilities based on fun
tions
omputable by AC

0

or NC

1

ir
uits or even to DLOGTIME redu
tions and proje
tions [36℄. We don't go into the

details here, but only mention that the following relations of this subse
tion hold for

DLOGTIME redu
tions. Let DLOGTIME(A) be the
lass of all problems many-one

redu
ible to some element of A by a DLOGTIME
omputable fun
tion.

The pre
ise relation between NC

1

and DSPACE(logn) is unknown. The general

onje
ture assumes these
lasses to be di�erent. There is a
hara
terization of this

relation in terms of formal languages. Let LIN

LL(1)

and LIN

LR(1)

denote the set of all

languages generated by linear
ontext-free grammars subje
t to a LL(1) respe
tively

LR(1)
ondition. We then have 1{DPDA

1�turn

= LIN

LR(1)

[32℄. This is the reason why

LIN

LR(1)

and not the proper subset LIN

LL(1)

should be
alled DLIN, the family of deter-

ministi
 linear
ontext-free languages. The relation between NC

1

and DSPACE(logn)

is now
hara
terized by:

Theorem 38 a) DLOGTIME

�

LIN

LL(1)

�

= NC

1

[35℄ and

b) DLOGTIME

�

LIN

LR(1)

�

= DSPACE(logn) [32℄.

Thus we see that deterministi
 one-turn push down automata are 2-
anoni
al.

On the other hand AC

0

is known to be a proper subset of NC

1

[24℄. Again there

is a
hara
terization of this relation in terms of formal languages:

Theorem 39 a) DLOGTIME(REG) = NC

1

[4℄ and

b) DLOGTIME(REG

��free

) = AC

0

[5℄.

18

Here REG

��free

denotes the family of star-free regular sets. It
oin
ides with the family

of those regular sets, in whi
h the transformation monoid of the minimal automaton

doesn't
ontain any nontrivial group. If solvable groups are allowed, this
orresponds

to AC

0

ir
uits enri
hed by mod gates [5℄. If the transformation monoid
ontains a

nonsolvable group, the a

epted language is NC

1

-
omplete [4℄.

It is remarkable, that EDOL is of an even lower
omplexity:

Theorem 40 ([16, 17℄) DLOGTIME(EDOL) is a proper subset of AC

0

.

4.3 Unambiguity

We will now deal with unambiguity in parallel models. As suggested by Rytter's in-

lusion UCFL � CREW-TIME(O (log n)), the
on
ept of ex
lusive a

ess to a global

memory turns out to be very
losely related to unambiguity. The way to show this is

by introdu
ing unambiguity for
ir
uits.

The notion of an unambiguous
ir
uit is introdu
ed in [46℄. It might be explained

by the intuitive notion of a vulnerable gate: In
ontrast to a normal robust OR-gate, a

vulnerable OR-gate or vulnerable disjun
tion is a partially de�ned OR-fun
tion whi
h

works
orre
tly on inputs
ontaining at most one bit equal to 1. On inputs
ontaining

more than 1, the output is unde�ned and the gate is assumed to be destroyed. We

assume that the value unde�ned as input of a vulnerable gate implies the output of

that gate to be unde�ned, too. On the other hand, unde�ned as an input to a robust

gate behaves like a value \0:5".

Unambiguous
ir
uits
onsist in two types of gates:

� Small robust AND and OR-gates of bounded fan-in and

� Large vulnerable AND and OR-gates of unbounded fan-in.

A

ording to the two types of weak and strong unambiguity for sequential ma
hines,

there are two types of unambiguous
ir
uits:

In order to
hara
terize CREW-PRAMs by
ir
uits, the following notion has been

introdu
ed in [46℄: A
ir
uit is
alled unambiguous, i� for all
ombinations of the input

bits no vulnerable gate re
eives an input
ontaining more than one 1.

In [47℄ an notion
orresponding to the usual version of unambiguity has been in-

vestigated: A
ir
uit is
alled weakly unambiguous, i� for all
ombinations of the input

bits the result of no destroyed vulnerable gate a�e
ts the output bit of the
ir
uit.

That is, in a weakly unambiguous
ir
uit we allow some vulnerable gate to be

destroyed, but require that the output of every destroyed gate on its way to the output

of the whole
ir
uit is later either robustly
onjoined with a 0 or robustly disjoined with

a 1.

In
orresponden
e to AC

k

, we get the unambiguous
lasses UAC

k

and WUAC

k

. It

was shown in [46℄ that

Theorem 41 CREW-TIME

�

O

�

log

k

n

��

= UAC

k

for ea
h k � 1:

When looking for unambiguous
ir
uit
lasses
orresponding to SAC

1

, two possibil-

ities may be
onsidered:

� A more powerful one using large vulnerable disjun
tions, small robust disjun
-

tions, and small robust
onjun
tions or

19

� A more restri
ted one without the use of any robust disjun
tion.

In [43℄, the original version of [46℄, the �rst
lass was named USAC, and the se
ond one

URAC. But the properties of these two
lasses strongly suggest to
hoose the se
ond

possibility to be the unambiguous version of SAC
ir
uits.

3

Thus, in the following

USAC

k

and WUSAC

k

denote language
lasses
orresponding to unambiguous
ir
uits

using vulnerable disjun
tions and small robust
onjun
tions.

That these are the
orre
t
hoi
e as unambiguous versions of SAC

k

is illustrated by

the two equations from [47℄:

Theorem 42 a) USAC

1

= StUAuxPDA-TIME(pol) and

b) WUSAC

1

= UAuxPDA-TIME(pol):

It is remarkable how the stru
tural properties of unambiguity (and the ex
lusive

write feature) resemble the nondeterministi

ase (and the
on
urrent write feature).

In [46℄ the in
lusion NC

k

� USAC

k

was shown for all k� 1. For the
ase k = 1,

the more re�ned in
lusion stru
ture is:

NC

1

� DSPACE(logn) � OROW-TIME(O (log n))

� LOG(DCFL) � LOG(UCFL) � USAC

1

:

These relations are summarized in Figure 3.

We mention in passing, that there is also a
ir
uit
hara
terization of ex
lusive read

(see [54℄).

Dis
ussion and Open Questions

One aim of this paper was to illustrate the very many and very deep
onne
tions

between
omplexity
lasses and families of formal languages. One striking example

for this is the
lose
orresponden
e of the following pairs: determinism versus owner

a

ess, unambiguity versus ex
lusive a

ess, and nondeterminism versus
on
urrent a
-

ess. For histori
al reasons, ex
lusive write and read are very
ommonly used models.

The
onne
tion to unambiguity explains the many non
onstru
tive aspe
ts of this
on-

ept, e.g. the apparent nonexisten
e of
omplete problems. Even worse, for polynomial

size, i.e.: for logarithmi
ally spa
e bounded Turing ma
hines or auxiliary push-down

automata, there is no single problem known, being a member of some unambiguous

lass, whi
h is suspe
t of being not an element of the
orresponding deterministi

lass.

Relations like that are only known for families; e.g.: UCFL, whi
h is known to be in

UAuxPDA-TIME(pol), is
onje
tured not to be in DAuxPDA-TIME(pol). Thus the use

of PRAMs of ex
lusive a

ess type to solve a single problem should be regarded as

a bit lazy. It might be probable, that all existing XREW-PRAM algorithms solving

spe
i�
 problems
ould be
onverted into XROW-algorithms. It would be very inter-

esting to single out a spe
i�
 problem resisting this approa
h, sin
e this would be a

andidate of a single problem known to be unambiguously solvable, but apparently not

deterministi
ally in polynomial size.

We
lose with a list of open questions:

3

Some new results
on
erning the
lasses built a

ording to the �rst possibility may be found in

[52℄.

20

NC

1

DSPACE(log n)

OROW-TIME(log n) StUSPACE(log n)

CROW-TIME(log n) = DAuxPDA-TIME(pol)

USAC

1

= StUAuxPDA-TIME(pol)

NSPACE(log n)

CREW-TIME(log n) = UAC

1

SAC

1

= NAuxPDA-TIME(pol)

CRCW-TIME(log) = AC

1

EREW-TIME(log)

P

H

H

H

H

H

H

H

H

H

H

H

H

H

H �

�

�

�

�

�

�

�

�

�

�

�

�

� H

H

H

H

H

H

H

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�H

H

H

H

H

H

H

�

�

�

�

�

�

� H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

H

H

H

H

H

H

H

Figure 3: The NC-Stru
ture between NC

1

and AC

1

1. Are there families of formal languages whi
h are
omplete for SSPACE(logn)? In

parti
ular, is there a reasonable de�nition of a symmetri
 (one-turn) push down

automaton whi
h would be 2-
anoni
al?

2. Under whi
h
onditions storage types are 2-
anoni
al or fully
anoni
al? (See

[20, 18℄ for ;-
anoni
al storage types.)

3. Are there families of formal languages
omplete for AC

k

, k� 1, or for NC

k

, k� 2?

4. Is every family of formal languages whi
h is e�e
tively
losed under the AFL

operations and whi
h has a de
idable emptiness problem
ontained in NP?

5. Sequential and parallel models provide a unifying framework to stru
ture families

of formal languages. In parti
ular, this is true for boolean
ir
uits. It would

be interesting to �nd a
ir
uit feature representing determinism as a sub
ase of

nondeterminism. In parti
ular this would mean to
hara
terize DSPACE(logn),

LOG(DCFL), or P by
ir
uits of logarithmi
 depth.

6. Are there versions of PRAMs or
ir
uits whi
h
orrespond to symmetri

omplex-

ity
lasses?

21

Referen
es

[1℄ A. Aho. Nested sta
k automata. J. Asso
. Comp. Ma
h., 16:383{406, 1969.

[2℄ P. Asveld. Time and spa
e
omplexity of inside-out ma
ro languages. Internat. J.

Comput. Math., 10:3{14, 1981.

[3℄ J. Bal
�a
ar, J. Di�az, and J. Gab�arro. Stru
tural Complexity Theory I. Springer,

1988.

[4℄ D.A. Barrington. Bounded-width polynomial-size bran
hing programs
an re
og-

nize exa
tly those languages in NC

1

. J. Comp. System S
i., 38:150{164, 1989.

[5℄ D.A. Barrington, N. Immerman, and H. Straubing. On uniformity
onditions

within NC

1

. In Pro
. 3rd Stru
ture in Complexity Theory, pages 47{59. IEEE,

1988.

[6℄ J. Berstel. Transdu
tions and Context-Free Languages. Teubner Verlag, Stuttgart,

1979.

[7℄ A. Blass and Y. Gurevi
h. On the unique satis�ability problem. Inform. and

Control, 55:80{88, 1982.

[8℄ R. Book and S. Greiba
h. Quasi-realtime languages. Math. System Theory, 4:97{

111, 1970.

[9℄ R. Book, S. Greiba
h, and B. Wegbreit. Time- and tape-bounded turing a

eptors

and AFLs. J. Comp. System S
i., 4:606{621, 1970.

[10℄ A. Borodin. On relating time and spa
e to size and depth. SIAM Journal on

Computing, 6(4):733{744, 1977.

[11℄ G. Buntro
k, C. Damm, U. Hertrampf, and C. Meinel. Stru
ture and importan
e

of logspa
e-MOD-
lasses. In Pro
. 7th Symposium Theoreti
al Aspe
ts of Computer

S
ien
e, number 480 in LNCS, pages 360{371. Springer, 1991.

[12℄ G. Buntro
k, B. Jenner, K.-J. Lange, and P. Rossmanith. Unambiguity and few-

ness for logarithmi
 spa
e. In Pro
. of the 8th Conferen
e on Fundamentals of

Computation Theory, number 529 in LNCS, pages 168{179, 1991.

[13℄ S. Cook. Chara
terizations of pushdown ma
hines in terms of time-bounded
om-

puters. J. Asso
. Comp. Ma
h., 18:4{18, 1971.

[14℄ S. Cook. Deterministi
 CFL's are a

epted simultaneously in polynomial time

and log squared spa
e. In Pro
. of the 11th Annual ACM Symp. on Theory of

Computing, pages 338{345, 1979.

[15℄ E. Dahlhaus and M. K. Warmuth. Membership for growing
ontext-sensitive gram-

mars is polynomial. J. Comp. System S
i., 33:456{472, 1986.

[16℄ C. Damm, M. Holzer, and K.-J. Lange. The parallel
omplexity of iterated mor-

phisms and the arithmeti
 of small numbers. In Pro
. 17th Symposium on Math-

emati
al Foundations of Computer S
ien
e, number 629 in LNCS, pages 227{235.

Springer, 1992.

22

[17℄ C. Damm, M. Holzer, K.-J. Lange, and P. Rossmanith. The very low
omplexity

of deterministi
 0L languages: D0L is in AC

0

. In Pro
. Developments in Language

Theory, 1993. to appear.

[18℄ J. Dassow and K.-J. Lange. Complexity of automata with abstra
t storages. In

Pro
. of the 8th Conferen
e on Fundamentals of Computation Theory, number 529

in LNCS, pages 200{209. Springer, 1991.

[19℄ P. Dymond and W. Ruzzo. Parallel RAMs with owned global memory and deter-

ministi

ontext-free language re
oginition. In Pro
. of 13th International Collo-

quium on Automata, Languages and Programming, number 226 in LNCS, pages

95{104. Springer, 1986.

[20℄ J. Engelfriet. Iterated pushdown automata and
omplexity
lasses. In Pro
. on the

15th Annual ACM Symp. on Theory of Computing, pages 365{373, 1983.

[21℄ M.J. Fis
her. Grammars with ma
ro-like produ
tion. Ph.d. thesis, Harvard Univ.,

1968.

[22℄ P. Flajolet and J. Steyaert. Complexity of
lasses of languages and operators. Rap.

de Re
her
he 92, IRIA Laboria, Nov. 1974.

[23℄ S. Fortune and J. Wyllie. Parallelism in random a

ess ma
hines. In Pro
. of the

10th Annual ACM Symposium on Theory of Computing, pages 114{118, 1978.

[24℄ M. Furst, J. B. Saxe, and M. Sipser. Parity,
ir
uits, and the polynomial-time

hierar
hy. Math. Systems Theory, 17:13{27, 1984.

[25℄ S. Ginsburg. Formal Languages. North-Holland, Amsterdam, 1975.

[26℄ S. Ginsburg, S. Greiba
h, and M. Harrison. One-way sta
k automata. J. Asso
.

Comp. Ma
h., 14:389{418, 1967.

[27℄ L. M. Golds
hlager. A uni�ed approa
h to models of syn
hronous parallel
om-

putation. In Pro
. of the 10th Annual ACM Symposium on Theory of Computing,

pages 89{94, 1978.

[28℄ S. Greiba
h. The hardest
ontext-free language. SIAM J. Comp., 2:304{310, 1973.

[29℄ M.A. Harrison. Introdu
tion to Formal Language Theory. Addison-Wesley, Reading

Mass., 1978.

[30℄ J. Hartmanis and S. Mahaney. Languages simultaneously
omplete for one-way

and two-way log-tape automata. SIAM J. Comp., 10:383{390, 1981.

[31℄ M. Holzer and K.-J. Lange. On the
omplexity of operations on formal languages.

In preparation.

[32℄ M. Holzer and K.-J. Lange. On the
omplexities of linear LL(1) and LR(1) gram-

mars. In Pro
. of the 9th FCT, number 710 in LNCS, pages 299{308. Springer

Verlag, 1993.

[33℄ J. Hop
roft and J. Ullman. Introdu
tion to Automata Theory, Language, and

Computation. Addison-Wesley, Reading Mass., 1979.

23

[34℄ O. Ibarra. Chara
terizations of some tape and time
omplexity
lasses of Turing

ma
hines in terms of multihead and auxiliary sta
k automata. J. Comp. System

S
i., 5:88{117, 1971.

[35℄ O.H. Ibarra, T. Jiang, and B. Ravikumar. Some sub
lasses of
ontext-free lan-

guages in NC

1

. Information Pro
essing Letters, 29:112{117, 1988.

[36℄ D.S. Johnson. A
atalog of
omplexity
lasses. In J. van Leeuwen, editor, Handbook

of Theoreti
al Computer S
ien
e, Vol. A, pages 67{161. Elsevier, Amsterdam, 1990.

[37℄ N. Jones and S. Skyum. Re
ognition of deterministi
 ETOL languages in logarith-

mi
 spa
e. Inform. and Control, 35:177{181, 1977.

[38℄ N. Jones and S. Skyum. Complexity of some problems
on
erning L systems. Math.

Systems Theory, 13:29{43, 1979.

[39℄ M. Kar
hmer and A. Wigderson. On span programs. In Pro
. of the 8th IEEE

Stru
ture in Complexity Theory Conferen
e, pages 102{111, 1993.

[40℄ R. Ladner and N. Lyn
h. Relativization of questions about log spa
e
omputability.

Math. Systems Theory, 10:19{32, 1976.

[41℄ K.-J. Lange. Context-free
ontrolled ETOL systems. In Pro
. of 9th International

Colloquium on Automata, Languages and Programming, number 154 in LNCS,

pages 723{733. Springer, 1983.

[42℄ K.-J. Lange. De
ompositions of nondeterministi
 redu
tions. Theoret. Comput.

S
i., 58:175{181, 1988.

[43℄ K.-J. Lange. Unambiguity of
ir
uits. In Pro
. of the 5th IEEE Stru
ture in

Complexity Conferen
e, pages 130{137, 1990.

[44℄ K.-J. Lange. Complexity and stru
ture in formal language theory. In Pro
. of the

8th IEEE Stru
ture in Complexity Conferen
e, pages 224{238, 1993.

[45℄ K.-J. Lange. A note on the P-
ompleteness of deterministi
 one-way sta
k lan-

guages. In preperation, 1993.

[46℄ K.-J. Lange. Unambiguity of
ir
uits. Theoret. Comput. S
i., 107:77{94, 1993.

[47℄ K.-J. Lange and P. Rossmanith. Chara
terizing unambiguous augmented push-

down automata by
ir
uits. In Pro
. of 15th Symposium on Mathemati
al Founda-

tions of Computer S
ien
e, number 452 in LNCS, pages 399{406. Springer, 1990.

[48℄ K.-J. Lange and M. S
hudy. The
omplexity of the emptiness problem for EOL

systems. In G. Rozenberg and A. Salomaa, editors, Lindenmayer Systems, pages

167{175, Berlin, 1992. Springer.

[49℄ P. Lewis and C.H. Papadimitriou. Symmetri
 spa
e-bounded
omputation. Theo-

ret. Comput. S
i., 19:161{187, 1982.

[50℄ P. Lewis, R. Stearns, and J. Hartmanis. Memory bounds for re
ognition of
ontext-

free and
ontext-sensitive languages. In Pro
. 6th Annual IEEE Symp. on Swit
hing

Cir
uit Theory and Logi
al Design, pages 191{209, 1965.

24

[51℄ B. Monien. About the deterministi
 simulation of nondeterministi
 (logn)-tape

bounded turing ma
hines. In 2-te GI Fa
htagung Automatentheorie und Formale

Spra
hen, number 33 in LNCS, pages 118{126. Springer, 1975.

[52℄ R. Niedermeier and P. Rossmanith. Unambiguous simulations of auxiliary push-

down automata and
ir
uits. Inform. and Control, 1993. (to appear).

[53℄ I. Niepel. Logarithmis
h platzbes
hr�ankte Kompleit�atsklassen - Charakterisierung

und o�ene Fragen. Diplomarbeit, Universit�at Hamburg, 1987. (in German).

[54℄ I. Niepel and P. Rossmanith. Uniform
ir
uits and ex
lusive read PRAMs. In Pro
.

of the 11th FST&TCS, number 560 in LNCS, pages 307{318. Springer Verlag, 1990.

[55℄ N. Nisan. RL � SC. In Pro
. of the 24th Annual ACM Symposium on Theory of

Computing, pages 619{623, 1992.

[56℄ N. Nisan, E. Szemeredi, and A. Wigderson. Undire
ted
onne
tivity in O(log

1:5

n)

spa
e. In Pro
. of 34th Annual IEEE Symposium on Foundations of Computer

S
ien
e, pages 24{29, 1992.

[57℄ K. Reinhardt. Counting and empty alternating pushdown automata. In Pro
. 7th

International Meeting of Young Computer S
ientists, pages 198{207, Smoleni
e

Castle, Ts
he
hoslowakei, 1992.

[58℄ P. Rossmanith. The owner
on
ept for PRAMs. In Pro
. of the 8th STACS, number

480 in LNCS, pages 172{183. Springer, 1991.

[59℄ W. C. Rounds. Complexity of re
ognition in intermediate-level languages. In Pro
.

of the 14th Annual IEEE Symposium on Swit
hing and Automata Theory, pages

145{158, 1973.

[60℄ G. Rozenberg and A. Salomaa. The Mathemati
al Theory of L Systems. A
ademi

Press, New York, 1980.

[61℄ W. Ruzzo. Tree-size bounded alternation. J. Comp. System S
i., 21:218{235, 1980.

[62℄ W. Ruzzo. On uniform
ir
uit
omplexity. J. Comp. System S
i., 22:365{338,

1981.

[63℄ W. Ruzzo, J. Simon, and M. Tompa. Spa
e { bounded hierar
hies and probabilisti

omputations. J. Comp. System S
i., 28:216{230, 1984.

[64℄ W. Rytter. Parallel time O(log n) re
ognition of unambiguous
ontext-free lan-

guages. Inform. and Control, 73:75{86, 1987.

[65℄ E. Shamir and C. Beeri. Che
king sta
ks and
ontext-free programmed grammars

a

ept p-
omplete languages. In Pro
. of 2nd ICALP, number 14 in LNCS, pages

277{283. Springer, 1974.

[66℄ L. Sto
kmeyer and C. Vishkin. Simulation of random a

ess ma
hines by
ir
uits.

SIAM J. Comp., 13:409{422, 1984.

[67℄ I. Sudborough. A note on tape-bounded
omplexity
lasses and linear
ontext-free

languages. J. Asso
. Comp. Ma
h., 22:499{500, 1975.

25

[68℄ I. Sudborough. On tape-bounded
omplexity
lasses and multi-head �nite au-

tomata. J. Comp. System S
i., 10:62{76, 1975.

[69℄ I. Sudborough. The
omplexity of the membership problem for some extensions of

ontext-free languages. Internat. J. Comput. Math. SECT A, 6:191{215, 1977.

[70℄ I. Sudborough. On the tape
omplexity of deterministi

ontext-free languages. J.

Asso
. Comp. Ma
h., 25:405{414, 1978.

[71℄ J. van Leeuwen. The membership question for ETOL languages is polynomially

omplete. Information Pro
essing Letters, 3:138{143, 1975.

[72℄ H. Venkateswaran. Properties that
hara
terize LOGCFL. In Pro
. of the 19th

Annual ACM Symp. on Theory of Computing, pages 141{150, 1987.

[73℄ T. Verbeek. Time-spa
e trade-o�s for general re
ursion. In Pro
. of 22th Annual

IEEE Symposium on Foundations of Computer S
ien
e, pages 228{234, 1981.

[74℄ D. Younger. Re
ognition and parsing of
ontext-free languages in time n

3

. Inform.

and Control, 10:189{208, 1967.

26

