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Abstract: The following survey reviews some connections between for-
mal languages and complexity theory. Families of formal languages are
treated with complexity theoretical methods. In particular, the concept
of unambiguity, common to both areas, is treated in detail. Some com-
plexity theoretical aspects of operations on formal languages are indi-
cated. This picture is completed by taking parallel models into account.

1 Introduction

The central aim of this paper is to illustrate the close relationship between the theory of
formal languages and complexity theory. This selection of results is not meant to be a
systematic survey, but represents a rather personal view, strongly biased by discussions
and results of the complexity group at the Technische Universitit Miinchen. Tt is
an extended version of an invited talk at the Structure in Complexity Theory 1993
Conference [44] .

The gist of this work is to see families of formal languages with complexity theoretical
eyes. Here by family of formal languages we refer to a typical member of the world of
pumping and iteration. More formally, we will treat language families with constructive
closure properties and a decidable emptiness problem with tools used in complexity
theory. Here we will not be interested in absolute lower and upper bounds, but rather
in their behaviour with respect to structural complexity theory. To do so, the notion
of a canonical storage type is introduced which relates families of formal languages and
the complexity classes generated by them under appropriate reducibilities.

This paper is divided into two parts: in the first part, Sequential Complexity, we
treat relations between families of formal languages and complexity classes defined by
various types of sequential automata. This is done first for deterministic and nondeter-
ministic families and then for the intermediate concepts unambiguity and symmetry.
The second part, Parallel Complexity, relates these classes and families to parallel com-
plexity theory. These investigations concentrate on the models of parallel random access
machines and of Boolean circuits.

2 Preliminaries

The reader is assumed to be familiar with the basic facts of complexity theory as they are
contained in [3] or [33]. So we will use without explanation the classes DSPACE(logn),



NSPACE(logn), P, NP, and PSPACE. In addition, let DEXPOLYTIME denote
DTIM E(2°°), which is meant to be an abbreviation of Uy, DTIME(2"). DTISP(f, g)
and NTISP(f, g) denote the class of languages recognized by deterministic resp. by non-
deterministic Turing machines which are bounded in time by f and, simultaneously, in
space by g.

For a family A of languages let LOG(A) denote the class of sets reducible to some
element of A by a many-one logspace reduction. For a single language L, we will write
LOG(Ly) instead of LOG({Lo}).

Throughout this paper, we will refer to various families of formal languages. In
particular, we assume the reader to know CFL, the family of context-free languages,
LIN, the family of linear context-free languages, and DCFL, the family of deterministic
context-free languages. Further material may be found in [6, 29, 33]. DLIN will denote
the family of deterministic linear languages which are recognized by deterministic one-
turn push down automata [32].

By 1-NPDA we denote the family of languages accepted by nondeterministic push
down automata with a one-way input tape. As is well-known, this class coincides
with CFL. The corresponding classes for nested stack automata, stack automata,
nonerasing stack automata, checking stack automata, one-turn push down automata,
and one counter automata are denoted by I-NNstSA, 1-NSA, 1-NNeSA, 1-NChSA,
1-NPDA;:_4yrn = LIN, and 1-NOCA [1, 26, 68]. For deterministic automata this leads to
the classes I-DPDA = DCFL, 1-DNstSA, 1-DSA, 1-DNeSA, 1-DChSA, 1-DPDA{_ .
= DLIN, and 1-DOCA.

The family INDEX of indexed languages was characterized by nested stack automata
in [1]. Macro Grammars were introduced in [21] and led to the families IO and OI of
inside-out and outside-in macro languages. The later family coincides with INDEX.

Context-free Lindenmayer languages are defined by iterating homomorphisms and
finite substitutions. For the definition of the families EDOL, EDTOL, EOL, and ETOL
we refer to [60].

3 Sequential Complexity

The most typical class of formal languages is CFL, the family of context-free languages.
Its relations to complexity classes have been investigated by many researchers. In the
following we will look at families of formal languages like CFL as complexity classes or as
generators of complexity classes. We will first review the relation of determinism versus
nondeterminism. In a second subsection, unambiguity and symmetry, intermediate
concepts between determinism and nondeterminism, are shortly considered.

3.1 Determinism versus Nondeterminism

One of the central issues of the Theory of Formal Languages is the opposition of deter-
minism versus nondeterminism. In contrast to the situation in Complexity Theory, the
precise relations within formal language theory are well-known; e.g., it is easy to exhibit
context-free languages which are not deterministic context-free and the same holds true
for an abundance of other families of formal languages. On the other hand, nothing like
that is known for the corresponding complexity classes LOG(CFL) and LOG(DCFL).
In this subsection we will first look at complexity classes generated by families of for-
mal languages. In most cases, the relation between determinism and nondeterminism



leads us to the well-known open questions of Complexity Theory, like P versus NP
or DSPACE(logn) versus NSPACE(logn). In a second paragraph this transition from
determinism to nondeterminism is characterized by operations on formal languages.

3.1.1 Complexities of Families of Formal Languages

In the following, we will consider complexity classes generated by families of formal
languages via many-one logspace reducibilities. While these reducibilities are well-suited
for tasks of sequential complexity, they are to powerful and to coarse to deal with small
complexity classes below DSPACE(logn), as they appear in parallel complexity theory.
Fortunately, most of the relations considered here, do not vary if we change to simpler
notions of reducibility like AC? reductions or even projections.

Most of the more prominent families of formal languages are complete for complexity
classes defined in terms of time or space. The following table summarizes some of these
results by listing for some complexity classes A some families of formal languages B;
such that A = LOG(B;). It should be noted that in all these cases these families of
formal languages are complete in a stronger sense, in that there always exists a single
element in that family which is complete for the corresponding complexity class.

Complexity Class Complete Families References

NP INDEX = 1-NNstSA = OI, ETOL, 1-NSA, [59, 71, 65]
1-NNeSA, 1-NChSA

P 1-DNstSA, 1-DSA, 1-DNeSA [45]
NSPACE(logn)  LIN = 1-NPDA;_yurn, 1-NOCA, EDTOL 67, 68, 37]

DSPACE(logn)  DLIN = 1-DPDA_yym, 1-DOCA, 1-DChSA  [32, 34]

Table 1: Complete Families for Time and Space Classes

In contrast to these close relations between families of formal languages and time
or space bounded complexity classes, LOG(CFL), the class of all problems reducible
to a context-free language, appears to be a class of its own, not definable as a time
or space class. Nevertheless, there are many families of formal languages which are
LOG(CFL)-complete.

Theorem 1 The following families of formal languages are complete for LOG(CFL):
a) 10, the family of inside-out macro languages [2],
b) EOL, the family of contexrt-free Lindenmayer languages without tables [69)],

c) (CF)EDTOL, the family of context-free controlled, deterministic, Lindenmayer sys-
tems with tables [/1], and

d) GCSL, the family of growing context-sensitive languages [15].

Thus, Complexity theory allows us to see some inclusions in a new light. For exam-
ple, the proper inclusions LIN C EDTOL, CFL ¢ FOL, CFL C 10, and ETOL C OI
turn into equalities when considering the complexity classes generated by these families
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of formal languages. On the other hand, it is possible to relate the families /0 and
OI, which are incomparable as families of formal languages, within the framework of
complexity theory by the inclusion LOG(I0) C LOG(OI).

Greibach exhibited in [28] a hardest context-free language LeGreipacn- Every context-
free language is the inverse homomorphic image of Lgyeipacr, Which is therefore LOG(CFL)-
complete. Homomorphisms are computable in linear time and thus reductions by inverse
homomorphisms preserve not only space bounds, but also running time of context-free
languages; i.e.: if you could parse Lgreipacn, in quadratic time, you could do that for
every context-free language. This is no longer true for logspace reducibilities, which
may distinguish DSPACE(log®n) from DSPACE(log®n), but not DTIME(n?) from
DTIME(m?). On the other hand, Greibach’s result made use of existence of Greibach
Normal Form for context-free languages (or in terms of automata: the fact that each
context-free language can be accepted by a push-down automaton without e-moves).
Thus, this approach applies neither to the various families of stack languages nor to
DCFL, just to give some examples. With logspace reducibilities, however, it is enough
to know that derivation lengths (resp. the runtimes of the corresponding automata)
are polynomially bounded.

By the algorithms of Cocke, Kasami, and Younger [74] and of Lewis, Stearns, and
Hartmanis [50] we have:

Theorem 2 a) LOG(CFL) C P
b) LOG(CFL) C DSPACE(log® n).

It is still open, whether a polynomial time bound and a polylogarithmic space bound
can be achieved simultaneously. This is only known for DCFL, for which Cook exhibited
in [14] an algorithm with these simultaneous bounds:

Theorem 3 DCFL C DTISP(pol,log®>n) = SC2.

For arbitrary context-free languages only CFL C NTISP(pol,log” n) is known (see [73]).

There is also a machine characterization of LOG(CFL) in terms of Auziliary Push
Down automata, which were introduced by Cook in [13]. In an auxiliary push-down
automaton the power of a push-down automaton is enhanced in two ways: first, the
machine is equipped with a worktape bounded logarithmically' in the length of the
input, and second, the machine has two-way access to its input. Observe, that the
runtime of this enhanced automaton is no longer linear but may be exponential, i.e.
O(27°!). We will denote by NAuzPDA-TIME(f) (resp. DAuzPDA-TIME(f)) the class
of all languages recognizable by nondeterministic (resp. deterministic) auxiliary push-
down automata in time O(f). Cook showed in [13]:

Theorem 4 P = NAuxPDA-TIME(zpol) — DAua;PDA-TIME(zpol).

The relations to CFL and DCFL were determined by Sudborough, who showed in
[70]:

Theorem 5 a) LOG(CFL) = NAuzPDA-TIME(pol)
b) LOG(DCFL) = DAuzPDA-TIME(pol).

The relations between formal languages and complexity classes resembled in this
section so far, are depicted in Figure 1.

! Cook worked with arbitrary space bounds and his results hold in a more general way than indicated
here.



NP ~ INDEX = Ol =~ ETOL

DSPACE(log? n) P

SC? NAuxPDA-TIME(pol) ~ CFL~ EOL =~ I0

/
\
/

DAuxPDA-TIME(pol) ~ DCFL.  NSPACE(log n) ~ LIN ~ EDTOL

/
\

DSPACE(log n) = DLIN

Figure 1: Complexity classes and families of formal languages

Theorems 4 and 5 are not restricted to the context-free languages, but hold for
a large variety of families of formal languages. To express this we use the following
notions:

Definition 6 a) An automaton type X is called €-canonical iff the word prob-
lem of the X automaton with one-way input is complete for the
class of languages accepted by polynomially time bounded auxil-
iary X automata, i.e.: by X automata equipped by a logarithmi-
cally space bounded working tape and with a two-way input tape
restricted by a polynomial time bound.

b) An automaton type X is called (-canonical iff the emptiness prob-
lem of the X automaton with one-way input is complete for the
class of languages accepted by auziliary X automata (without any
time bound).

Theorem 5 tells us that both nondeterministic and deterministic pushdown au-
tomata behave €-canonically. The majority of all automata types considered in the
theory of formal languages is €-canonical. In particular, all types of automata occurring
in Table 1 are €-canonical. This is not restricted to determinism or nondeterminism,
but also holds for parity and mod concepts [57]. On the other hand, unambiguous au-
tomata, which will be treated in the following subsection, don’t seem to be canonical.
Another counterexample are finite automata. But here we have the problem that the
corresponding complexity classes are located below DSPACE(logn). Hence the usual
logspace reducibilities are no longer appropriate. These low classes will be considered
in the section on parallel complexity. Throughout of this section we will use logspace
reductions and just mention that the listed results also hold for simpler types of re-



ducibilities like DLOGTIMFE mappings or projections, since the typical reductions used
in this context are of the form v — vP{*D for some polynomial p.

Another counterexample to €-canonical relations are Turing machines or any other
universal automata type, since then the polynomial time bounds cannot be achieved.
But these don’t lead to typical families of formal languages with pumping lemmata and
a decidable emptiness problem. In fact, all known families of formal languages with a
decidable emptiness problem and effective closure properties are contained in NP.

Theorem 4 tells us, that both nondeterministic and deterministic push down stores
are ()-canonical. Again, this is very common for many storage types. All storage types
occurring in Table 1 except for the deterministic checking stacks are (-canonical. The
background underlying (-canonical completeness results are relations between word
problems of two-way automata and emptiness problems of one-way automata, which
hold in a very general way ([20, 18, 48]). A related class of problems are General (or
variable) membership problems, i.e., where the grammar or automaton is not fixed
but regarded as part of the input [38]. They are typically computationally equivalent
to the emptiness problem, if something corresponding to e-productions or e-moves is
allowed in the language generating device given as part of the input. Otherwise, lower
complexities, typically those of the fixed membership problem are met.

Considering Theorems 4 and 5, we see that push down stores are even fully canon-
ical, i.e.: they are not only €- and ()-canonical with respect to both determinism and
nondeterminism, but in addition, deterministic and nondeterministic auxiliary push
down automata are of equal computational power. This pattern of relations is common
for a variety of storage types and the automata associated with them. The following
table gives some examples for these relations. The first column lists some storage types.
The second one gives the complexity class for which the emptiness problem of the cor-
responding one-way automaton is complete. This is equivalent to the word problem of
the corresponding two-way automaton. Here determinism and nondeterminism do not
differ w.r.t. complexity. The third and fourth column list the complexity of the word
problem in the one way case([34, 45, 70]).

Storage type Two-way class Nondeterministic Deterministic
one-way class one-way class

Nested Stack DEXPOLYTIME NP P

Stack DEXPOLYTIME NP P

Nonerasing Stack PSPACE NP P

Push Down P LOG(CFL) LOG(DCFL)

Table 2: Fully canonical Storage Types

It is possible to show, that this pattern is also fullfilled by various types of top-down
automata characterizing several families of context-free Lindenmayer languages [60].
3.1.2 Complexity of Operations on Formal Languages

An important topic in the theory of formal languages are investigations of closure prop-
erties, that is of questions under which operations a given family of formal languages



is closed. This results in notions like Trios or AFLs. A Trio (or cone) is an nonempty
collection of sets containing at least one nonempty language, closed under homomor-
phisms, inverse homomorphisms, and intersections with regular sets. An Abstract
Family of Languages is a Trio which is additionally closed under the regular opera-
tions, i.e.: union, concatenation, and Kleene’s *-operation. CFL, OI, and ETOL are
AFLs, LIN is a Trio, but not an AFL, and DCFL is not a Trio, since it is not closed
under homomorphisms. There is a rich theory built upon these notions (see e.g. [6, 25]).

Most of the ties between complexity and formal languages are found when consid-
ering the complexities of decision problems, in particular of membership problems, of
formal languages. This results in completeness of languages and of families of formal
languages. In the following, we briefly deal with the complexity of operations on formal
languages.

AFL Operations

Trio Operations: From the complexity theoretical view, the easiest operations
are inverse homomorphisms and intersections with regular sets. Nearly every sequential
machine with a finite control admits the application of these operations. So, at least
with respect to sequential complexity, both operations are very easy. In contrast to
that, the potential complexity of the remaining Trio operation, the homomorphism, is
unbounded, since every recursively enumerable set is representable as the homomorphic
image of a simple set. Here simple means containment in DSPACE(logn). In fact,
every recursively enumerable set is the homomorphic image of some element in Co-
NLOGTIME.

Here we see a fundamental difference of families of formal languages and of com-
plexity classes concerning the impact of erasing. While formal languages usually are
rather insensitive with respect to erasing homomorphisms, complexity classes generate
all recursively enumerable sets in connection with erasings. Hence within complexity
theory only nonerasing homomorphism can be considered. Still these can be of a high
complexity (see e.g. [9]): each set in NTIME(n) is the homomorphic image of the
intersection of three context-free sets, as it was shown in [8]. This implies the NP-
completeness of Hyonerasing(LOG(CFL)), since LOG(CFL) is closed under intersection.
It is easy to see, that this holds even for deterministic logspace:

Proposition 7 NP = LOG(Honerasing(DSPACE(logn))).
On the other hand, NP is closed under nonerasing homomorphisms:
Proposition 8 Honerasing(NP) = NP.

These two equations tell us, that the operation of taking the nonerasing homomorphic
image is NP-complete. For a more formal treatment see [31].

Boolean Operations: Since the complexity classes investigated in this paper are
defined by automata with a two-way input tape, they are closed both under union
and under intersection. Hence there is no increase in complexity when applying the
operation of union or intersection to complexity classes like DSPACE(logn).

The situation is similar with respect to the operation of taking complements. Classes
based on determinism or on nondeterministic space are closed under complementation.
But also for classes and concepts which possibly are not closed under complementation
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like nondeterministic time, symmetry, or unambiguity there is no jump of complexity.
This may be illustrated by the fact, that the closure of P under nonerasing homomor-
phisms and complement is only the polynomial hierarchy and not PSPACE.

Regular Operations: In the same way as nonerasing homomorphisms may be
regarded as being NP-complete, Kleene’s *-operation is NSPACE(logn)-complete, since
we have:

Theorem 9 a) NSPACE(logn) = LOG(DSPACE(logn)*)? and
b) NSPACE(logn)" C NSPACE(logn).

(See [22, 51]. Again these results hold for complexity classes below DSPACE(logn),
e.g. (AC")* contains NSPACE(logn)-complete sets.)

All complexity classes used here are closed under concatenation, which seems to be as
easy as inverse homomorphisms or intersection with regular sets. There is one example
due to Inga Niepel which characterizes the complexity of concatenation. Hartmanis and
Mahaney considered in [30] the LOG(+)-closure of all single letter alphabet languages
in NSPACE(logn). They showed this class to coincide with the class of all languages
recognizable by logspace automata which in the beginning work deterministically and
then enters a second nondeterministic phase that is blind, that is in which the input
can no longer be read except for its length. Niepel renamed this class ENL (ending
nondeterminism) and confronted it with BNL (beginning nondeterminism) where the
logspace machine starts with a blind nondeterministic phase and then enters a second,
deterministic one in which the machine has full access to its input. Niepel was able to
show:

Theorem 10 ([53]) a) ENL C BNL,
b) BNL = LOG(ENL-ENL), and
c) BNL-BNL C BNL.

Thus the complexities of ENL and BNL are related by the operation of concatena-
tion.

Iterated Insertions

Another nondeterministic complexity class representable in this way is LOG(CFL).
The related operation on formal languages will be ®), the operation of iterated binary
insertion [31]. The underlying idea of this approach is the simulation of the grammar
with rules S — aSbSc|d, which is a generator of the context-free languages (see [6]).
For languages L, Ly, and L3 we define the operation of Binary Insertion by

(L1, Ly) — L3 := {uvwzy | v € L,z € Ly, uwy € L3}.

We will now iterate this operation to get the desired operator ®). There are two
possibilities to do so:

Outside-In One possibility is to insert atomic words into composed words, i.e. to
define: LO7=0:= {e}, LOT=1+1 .= [OT=*y ((L, L) — L°'=%), and
1,01-®).— U LOT,

2Here A* denotes {L* | L € A}.



Inside-Out The other possibility is to insert composed words into atomic words, i.e.
to define: L1970 := {¢}, L1071 .= [IO—y (L1971 L1O~%) — L), and
[io-®)._ U L1071

Observe, that these two possibilities coincide for associative operations like concatena-
tion: the iterated concatenation both in the outside-in and the inside-out way results
in the *-opration. In the case of binary insertion, these two approaches do not seem
to be equivalent, since OI-®)is NP-complete and I0-®)is LOG(CFL)-complete; i.e. we
have:

Theorem 11 a) NP — LOG(DSPACE(log n)OI_ — LOG(NPOI,
b) NAuzPDA-TIME(pol) — LOG(DSPAC’E(Iogn)IO_, and
c¢) NAuzPDA-TIME(pol) = LOG(NAuxPDA—TIME(pol)IO.

(Compare this with the NP-completeness of OI and the LOG(CFL)-completeness of
10.) Hence we will in the following only consider the operation IO-®), which will be
called ®), for short. These relation also hold on the formal language side: there is a
finite set F', such that F® is not only a generator of CFL, but also a hardest context-
free language. In addition, CFLis closed under the ®) operation. Further details will
be contained in [31].

Remark 1 It is also possible to do the same for monadic insertions, i.e.: for the
operation Ly — Ly := {uvw | v € Li,uw € Lo}. Iterating this we get two operations
OI-& and IO-@) Again OI-@) is NP-complete, while IO-&) now is NSPACE(logn)-
complete. Since OI-) essentially coincides with OI-®) we will deal in the following only
with 10-Q1, which we will name &), for short. The @operation is closely connected with
the linear context-free languages.

Relativization

A remarkable fact of these results is that the relations described in this paragraph
do relativize. We have [42]:

Theorem 12 NP* = LOG(H(DSPAC’E(log n)A)) for every oracle set A.

When relativizing NSPACE(logn) or NAuzPDA-TIME(pol) we have to be careful which
kind of relativization to choose. There are two basic types: In the LL-relativization of
Ladner and Lynch in [40] the oracle machine is allowed to perform nondeterministic
steps during the generation of a query string. In the RST-relativization of Ruzzo, Simon,
and Tompa in [63], the oracle machine is only allowed to perform nondeterministic
steps, while the query tape is empty. None of the relations Co-NSPACE(logn) =
NSPACE(logn), NSPACE(logn) C DSPACE(log® n), or NSPACE(logn) C P does LL-
relativize, but all do when using the RST-relativization. As usual, NSPACE(logn)"
denotes the LL-relativization, and NSPACE(logn)" the RST-version. We then have
[42]:

Theorem 13 NSPACE(logn)™ = LOG((DSPACE(log n)A)*) for every oracle set A.

In the same way we have [31]:



Theorem 14 NSPACE(logn)™ = LOG((DSPAC’E(logn)A) @> for every oracle set
A.

Essentially, the same holds true for the operation Again, we have to use the
RST-relativization, which in this case pertains also to the use of the push-down store.
(So, here RST and LL no longer coincide in the deterministic case.) We then have [31]

Theorem 15 NAuzPDA-TIME(pol)'" = LOG((DSPACE(log n)A)

for every oracle set A.

3.2 Between Determinism and Nondeterminism

The consideration of the relationship between determinism and nondeterminism led
to the investigation of intermediate concepts like symmetry or unambiguity. A non-
deterministic automaton is said to be unambiguous, if for any input there is at most
one accepting computation. Obviously, every deterministic automaton is unambiguous.
While in a usual definition of a language accepted by some automaton the reflexive and
transitive closure of some one-step transition relation is used, a symmetric computation
is based on the symmetric, reflexive, and transitive closure of that relation. Since the
configuration graph of a deterministic automaton is a tree, the language accepted by
a deterministic automaton coincides with its symmetric language, i.e.: the set of all
words accepted by symmetric computations. Thus both concepts are located between
determinism and nondeterminism.

3.2.1 Unambiguity

The concept of Unambiguity is well known from the theory of automata and formal
languages. An automaton is unambiguous if there exists at most one accepting compu-
tation for every input. Correspondingly, a grammar is unambiguous if there exist no two
different derivations producing the same word. Thus, if there exists an accepting compu-
tation or a derivation for some input, it is unique. On the formal language side, this leads
to the families UCFL of unambiguous context-free languages and ULIN of unambiguous
linear context-free languages, which coincide with the families of languages accepted by
unambiguous push-down and one-turn push-down automata. On the complexity theo-
retical side, we get classes like UP, USPACE(logn), and UAuzPDA-TIME(pol).

This feature has to be distinguished from the concept of Uniqueness. While an un-
ambiguous automaton allows for at most one accepting computation, a unique machine
simply rejects all words having more than one accepting computations. Thus unam-
biguity means using the unique existence of accepting computations as a restriction,
whereas uniqueness is using this as a tool. Hence unambiguity is a concept located
between determinism and nondeterminism. On the other hand uniqueness seem to be
more powerful than nondeterminism. The class US of unique polynomial time intro-
duced in [7] contains Co-NP and is conjectured to be different from it. Unique space
classes coincide with their nondeterministic counterparts, because of the complement
closure of nondeterministic space classes.

While uniqueness is a constructive concept and classes defined by uniqueness possess
complete sets, unambiguity is a nonconstructive concept. Complexity classes defined
by unambiguity don’t seem to be recursively representable or to possess complete sets.
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Neither they seem to be €-canonical: it is not known, whether the families UCFL and
ULIN are complete for UAuzPDA-TIME(pol) and USPACE(logn). The correspond-
ing construction in [70] preserves determinism, but not unambiguity. We only have
LOG(UCFL) C UAuzPDA-TIME(pol) and LOG(ULIN) C USPACE(logn).

There are two possibilities to define unambiguity. Apart from the weak version
of looking only at accepting computations or whole derivations, we could be more
restrictive and require that for no pairs of configurations there are two or more different
computations leading from the first configuration to the second one. For grammars
this would mean that for no pair of sentential forms there are two or more different
derivations deriving one out of the other. For time classes these concepts do not differ,
since we have enough space to keep track of the whole history of a computation. In this
way no configuration has more than one predecessor. For space bounded classes and
machines augmented with a space bounded working tape this method does not work and
we get additional classes corresponding to strong unambiguity: StUAuxzPDA-TIME(pol)
and StUSPACE(logn). (In fact there are many more variants, see e.g. [12].)

These two concepts coincide on the formal language side, since we can get rid of
both the unproductive and the unreachable nonterminals of a grammar. With this it
is possible to show the inclusion of formal languages even in the corresponding strong
unambiguous classes (see [47, 12]):

Proposition 16 LOG(UCFL) C StUAuzPDA-TIME(pol) C UAuxzPDA-TIME(pol)
and
Proposition 17 LOG(ULIN) C StUSPACE(logn) C USPACE(logn).

Allthough we know DCFL C UCFL C CFL and DLIN C ULIN C LIN, the precise
relationship of unambiguous complexity classes to deterministic and nondeterministic
ones is open. There are some indications that unambiguity is a proper restriction of
nondeterminism. An example for this are parity and mod classes; A language L. C X*
is in @ SPACE(logn) (Parity Logspace) iff there is a nondeterministic logarithmically
space bounded Turing machine, which has an odd number of accepting computations
for each element of L and an even number number on each input from X*\ L. Counting
modulo an arbitrary positive integer instead of counting modulo two leads from parity
classes to mod classes [11]. By defintion of unambiguity we have:

Proposition 18 a) USPACE(logn) C ® SPACE(logn) and
b) UAuzPDA-TIME(pol) C ® AuzPDA-TIME(pol).

These inclusions are not known to be true for NSPACE(logn) and NAuzPDA-TIME(pol).
The parity concept can also be defined for formal languages and leads to the canonical
equations:

Theorem 19 ([57]) a) LOG(®CFL) = @ AurtPDA-TIME(pol) and
b) LOG(®LIN) = @ SPACE(logn).

A further hint that unambiguity might be less powerful than nondeterminism and be
rather close to determinism is given in [12] by:

Theorem 20 StUSPACE(logn) C DAuzPDA-TIME(pol).
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As a consequence, StUSPACE(logn) and hence ULIN is a subset of D TISP(pol, log" n)
= SC?. The corresponding relationship for nondeterminism: NSPACE(logn) C SC? is
not known to be true and generally conjectured to be wrong.

The idea underlying the inclusion of StUSPACE(logn) in DAuzPDA-TIME(pol) is
to prune the reachability subtree of the reachability graph of a strongly unambiguous
machine. The proof can be extended to some slightly larger classes, but not (yet)
to the class USPACE(logn) (see [12]). With the same idea it can be shown that
StUSPACE(logn) is closed under complement and even coincides with its alternating
version.

One consequence of this inclusion is, that we now can relate the families ULIN and
DCFL. As families of formal languages they are incomparable: the Dyck languages are
not linear context-free and the Mirror Language {ww | w € {a,b}*} is not deterministic
context-free. But if we look at them from the complexity theoretical side, we now have

LOG(ULIN) C DAuzPDA-TIME(pol) = LOG(DCFL).

But it seems appropriate to give a caveat: In the same way CFL and EDTOL
are incomparable as families of formal languages. If we now look at the generated
complexity classes, we get

LOG(EDTOL) = NSPACE(logn) C LOG(CFL).

But things turn over, if we look at the AFLs generated by CFL and by EDTOL,
which in this case means to allow for inverse homomorphisms. Observe that inverse
homomorphisms are very harmless from the complexity theoretical point of view in
that very low classes like NC! are closed under inverse homomorphisms. But while
AFL(CFL)=CFLstays in NAuzPDA-TIME(pol), the AFL generated by COPY contains
NP-complete languages (see [22]).

3.2.2 Symmetry

The concept of a symmetry was introduced in [49]. In a symmetric computation one
is allowed to go computational steps both backward and forward. As unambiguity,
symmetry is intermediate in computational power between determinism and nondeter-
minism. But in contrast to unambiguity, symmetry is of a more constructable nature,
since it is defined in terms of locally checkable properties. Thus, symmetric classes
possess complete problems.

Structural Relations: At the expense of space it is possible to make arbitrary non-
deterministic computations symmetric by keeping track of the whole history of a com-
putation. This is the reason for the equivalence of symmetric time and nondetermin-
istic time. Much more interesting is the case of symmetric space classes. They re-
semble certain similarities with unambiguous space classes concerning their structural
behaviour. As StUSPACE(logn), also SSPACE(logn) is contained in both SC? and
®SPACE(logn):

Theorem 21 a) SSPACE(logn) C SC? [55], and
b) SSPACE(logn) C ® SPACE(logn)[39, 11].

But it should be mentioned that the proofs on the symmetric side are much more
involved than those on the unambiguous one. But there are also certain differences.
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On the one hand, it was observed in [49] that all problems in NSPACE(logn) can be
recognized by symmetric machines, which are simultaneously bounded by polynomial
time and O(log” n) space:

Theorem 22 NSPACE(logn) C STISP(pol,log” n).

Here STISP(f,g) denotes the class of all problemes recognizable by symmetric Turing
machines bounded in time by f and simultaneously in space by g. An unambiguous
version of this containment is not known to be true. On the other hand, it was recently
shown in [56] that SSPACE(logn) is contained in DSPACE(log'®n). Again, it is an
open problem whether the corresponding inclusions hold for the classes USPACE(logn)
or StUSPACE(logn).

Complete Operations The known complete sets for SSPACE(logn) are undirected
variants of NSPACE(logn)-complete problems. But there is up to now no family of
formal languages which could play for SSPACE(logn) the role, LIN and DLIN played
for NSPACE(logn) and DSPACE(logn). This seems to be connected with the problem
of defining the concept of symmetry for automata with a one-way access to the input.

In the following we will describe an operation SYM-* on formal languages which
is SSPACE(logn)-complete. To define SYM-* which will be a symmetric version of
the *-operation we need the following notation: If w = ajas...a, is a word of length
n, we select subwords of w for 0 < ¢ < j < n by setting ;w; := a;41...a;. Then
w is an element of L* for some language L iff there exists an integer k and indices
0 =iy < ip < ... < i := n such that for all 1 < p < k iy Wi, is in L. We
extend now the ;w;-notation to “negative” subwords by letting ;w; be the reversal of
jwi, 1.e. a;a;_1...a541, if j < i. We then define w to be an element of LSYM-" iff there
exist an integer k and indices iy := 0,4y, 19, ...,7; := n such that for all 1 < p < k
i, Wi, is an element of L. Observe, that now the sequence of the i, no longer has
to be increasing. As for * and NSPACE(logn), there exist a simple set Ly such that

LOSYM'* is SSPACE(logn)-complete. (In fact we can take the same set Ly, for which
L} is NSPACE(log n)-complete; compare to Theorem 9.)

Theorem 23 ([31]) a) SSPACE(logn) = LOG(DSPAC’E(logn)SYM'*) and
b) SSPACE(logn)>Y™" C SSPACE(logn).

An interesting question is now, whether the SYM-*-operation can be characterized
as the iteration of a more simple operation, just as the *-operation is iterated con-
catenation, @1 is iterated monadic insertion, and ®)is iterated binary insertion. This
question seems to be closely related to the problem of properly defining symmetry for
one-way devices.

Relativization: We finally remark, that as in subsection 3.1.2 it is possible to
relativize Theorem 23 when using an appropriate relativization of symmetric pace [31].

Some of the connections between unambiguous and symmetric complexity classes
and families of formal languages are indicated in Figure 2.

4 Parallel Complexity

There are several different models used in parallel complexity theory, the most basics
being parallel random access machines, Boolean circuits, alternating automata, and in
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DSPACE(log® n) P

DSPACE(log!* n) ®SPACE(log n) sc? NSPACE(log n) = LOG(LIN)

SSPACE(log n) StUSPACE(log n)

LOG (ULIN)

DSPACE((log n) = LOG(DLIN)
Figure 2: Unambiguous and symmetrical aspects of formal languages

some sense auxiliary push-down automata. In the following, we will mainly deal with
PRAMs and circuits.

All these devices lead to the same class NC' of languages, which are efficiently
parallelizable. Dealing with PRAMs, this leads to the class of problems, solvable si-
multaneously with small (i.e.: polylogarithmic) time and moderate (i.e.: polynomial)
number of processors. For circuits it would mean small depth and moderate size, for
alternating machines small depth and logarithmic space, and for auxiliary push-down
automata time O(2P°%!°9) and logarithmic size of the auxiliary working tape ([62] con-
tains a nice unification of several approaches). Parallel complexity theory now contrasts
membership in NC' as meaning efficiently parallelizable with P-completeness meaning
inherently sequential. On the one hand, this leads to a beautiful theory, on the other
hand, it is not clear how to relate these results to existing parallel machines.

The following explanations are centered around CFL and its subfamilies. We start
with a treatment of the most important model of parallel complexity theory, the PRAM.
LOG(DCFL) coincides with a parallel complexity class. Then we review some results
on complexity classes repreented by boolean circuits. In this context LOG(CFL) will be
exhibited as a parallel complexity class, as well. In a third subsection on unambiguity
we present, some of the surprisingly close relationships between concepts of automata
theory like nondeterminism, unambiguity, and determinism and concepts of accessing
a shared memory like concurrent write, exclusive write, and owner write.
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4.1 Parallel Random Access Machines

The concept of a PRAM goes back to [23, 27]. A PRAM is a set of Random Access
Machines, called processors, communicating via a global memory. The processors work
in a synchronous way, i.e.: each step takes one time unit regardless whether it performs
a local or a global (i.e.. remote) operation. The number of processors is variable,
depending in the size of the input. Unless stated otherwise, we have a polynomial
bound on the number of processors. An essential restriction we put on this machine,
is the assumption, that the length off all register cells, being either global or local, is
bounded logarithmically in the length of the input. Thus all address and data stored
in a memory cell is polynomially bounded.

There are several types of PRAMs classified according to their ability to access
simultaneously a cell of global memory when reading or writing. We will consider
three versions concerning the write access: a machine with Concurrent Write access
allows the simultaneous write access of several processors to the same memory cell at
one moment. There are several conventions how to solve this conflict, i.e.: how to
determine what will be the new value of the referenced cell. In our context, all these
methods are equivalent. A machine with Ezclusive Write access forbids simultaneous
writes and requires that in each step at most one processor may change the content of
a global memory cell. A machine with Owner Write access is even more restricted by
assigning to each cell of global memory a processor, called the Write-Owner, which is
the only one to have write access to this memory cell (see [19]). Correspondingly, we get
three ways to manage read access to the global memory: Concurrent Read, Exclusive
Read, and Owner Read. In this way we get nine versions of PRAMs, denoted as XRY W-
PRAMs with X,Y € {O, E,C}, where XR specifies the type of read access and YW
that of the write access and where the access types are designated by their initials.
For historical reasons, the commonly used models are CRCW-, CREW-, and EREW-
PRAMs. By XRYW-TIME(f(n)) we denote the class of all languages recognizable in
time f by XRYW-PRAMSs with a polynomial number of processors. By definition we
know that XRYW-TIME(f) C X’RY'W-TIME(f) for X,X'.Y,Y’ € {O,E,C}if X <X’
and Y <Y’ where we set O < E < (.

In the most powerful of these models, the CRCW-PRAM, the global memory looks
like a shared memory, since each processor can access each cell of global memory. In the
most restricted model, the OROW-PRAM, however, the global memory is deteriorated
to a set of one-directional channels between pairs of processors. Thus an OROW-PRAM
is something like a completely connected synchronous network. Although this machine
seems to be much more restricted, the relations to other parallel classes listed in the
next paragraphs indicate that it is a model as “parallel” as a CRCW-PRAM.

Relations to Context-free Languages The context-free languages are well-known
to be contained in NC'. In fact, Ruzzo showed in [61]:

Theorem 24 CFL C CRCW-TIME(O (logn)).

This algorithm makes essential use of the concurrent write feature and it is open
whether context-free languages could be recognized in logarithmic time by CREW or
CROW-PRAMs. The largest subfamily of C’F'L known to be recognizable in logarithmic
time without concurrent write, are the unambiguous context-free languages since Rytter
showed in [64]:

Theorem 25 UCFL C CREW-TIME(O (logn)).
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Again it is open, whether this could be done without exclusive write access. The
largest subfamily of UCFL known to be recognizable in logarithmic time with owner
write access, are the deterministic context-free languages, as Dymond and Ruzzo showed
in [19]:

Theorem 26 DCFL C CROW-TIME(O (logn)).

The first of these three inclusions implies that NSPACE(logn) and NAuzPDA-
TIME(pol) are subclasses of CRCW-TIME(O (logn)). The second inclusion im-
plies that LOG(UCFL) is contained CREW-TIME(O (logn)), but says nothing
concerning StUAuzPDA-TIME(pol) or UAuzPDA-TIME(pol). Using the circuit
model, it is possible to include StUAuzPDA-TIME(pol) and StUSPACE(logn) in
CREW-TIME(O (logn)), as will be shown below. Also, we will give some evi-
dence, that UAuzPDA-TIME(pol) and USPACE(logn) are probably not contained in
CREW-TIME(O (logn)). The third inclusion implies that DAuzPDA-TIME(pol) is a
subclass of CROW-TIME(O (logn)). Surprisingly, also the converse holds, as Dymond
and Ruzzo showed in [19]:

Theorem 27 DAuzPDA-TIME(pol) = CROW-TIME(O (log n)).

It should be remarked that this result implies the inclusion of DCFL in SC?, i.e.:
Theorem 3. All these algorithms make use of the concurrent read feature. Even for the
linear subfamilies LIN and ULIN there is up to now no logarithmically time bounded
algorithm known without using concurrent read. Only for the deterministic linear
context-free languages we know something better by Rossmanith (see [58]):

Theorem 28 DSPACE(logn) € OROW-TIME(O (logn)).

Since DLIN is contained in DSPACE(logn) [32], this yields an PRAM recognizing
deterministic linear languages in logarithmic time without the concurrent read feature.

Corollary 29 DLIN C OROW-TIME(O (logn))

4.2 Circuits

A very important parallel model within structural complexity theory are boolean cir-
cuits. Formally, a circuit is a directed acyclic graph C. The nodes, called gates, are
labelled by boolean functions such that the number of arguments of a function f cor-
responds to the number of ingoing arcs of each node v labelled by f. The nodes of
in-degree 0, which have to be labelled by boolean constants, are called Inputs. Nodes
of outdegree 0 are called Qutputs. By attaching boolean values to each node according
to the boolean functions passed at each node, going from the inputs into the direction
of the outputs a circuit C' computes a boolean function with domain {0, 1}" and range
{0,1}™, if C has n inputs and m outputs. If m = 1, C' might be regarded as a language
acceptor by setting L(C):= {w € {0,1}" | C on input w evaluates to 1}.

Throughout of this paper, we will work with disjunctions and conjunctions as labels,
only. Negation is avoided by the usual assumption, that the inputs are given pairwise,
i.e.: with each input z; also an input 7; is given, labelled with the negation of the label
of Z;.

Since a fixed circuit has always some finite domain {0, 1}", it is necessary to consider
circuit families C = (Cy,),>1, where C,, is a circuit with n inputs. To capture complexity
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classes, it is usual to assume Uniformity restrictions which make the structure of each
C, easily computable for given n and thus relate the elements of a circuit family with
each other (see [62]).

Complexity measures of a circuit are the size, which is the number of nodes of a
circuit, and the depth, which is the height, i.e.: the length of the longest path from
any input to any output. In the following we will be interested in circuit families
of polynomial size, i.e.: the size of C, is bounded by some polynomial p(n), and of
polylogarithmic depth, i.e.: the depth of C, is bounded by ¢log® n, for some ¢ and k&
independently of n.

Circuit families are classified according the fan-in, that is the in-degree of the nodes
of each circuit. A circuit family C is of bounded fan-in if there is a constant ¢, such
that the indegree of every node in every C), is not larger than c. C is of semi-unbounded
fan-in if all nodes, labelled by a conjunction, have an indegree bounded by some fixed c.
If the indegrees of neither the conjunctions nor the disjunctions are uniformly bounded,
C is said to be of unbounded fan-in. Let AC* be the class of all languages recognized
by uniform circuit families of polynomial size, depth O(log" n), and unbounded fan-in.
The corresponding classes for circuit families of semi-unbounded and bounded fan-in
are denoted by SAC* and NC*.

By definition, we have

Proposition 30 NC* C SAC* C AC* for each positive integer k.

Since a node of large indegree ¢ labelled by a disjunction (resp. conjunction) may
be replaced by a tree of disjunctions (resp. conjunctions) of height log ¢, we have

Proposition 31 AC* C NC**! for each k > 1.

4.2.1 Structural Relations

Stockmeyer and Vishkin proved in [66]:

Theorem 32 CRCW- TIME(O (logk n)) = AC* for each positive integer k.

This result implies a “log-length” normal form for CRCW-PRAMs: each CRCW-
PRAM A with polynomially many processors working in time O(f) can be simulated
by a CRCW-PRAM B with polynomially processors working in time O(f) such that
in B all values stored in global or local memory cells are polynomially bounded and
thus can be stored in O(logn) bits. This kind of normal form is not known to exist
for exclusive write or owner write PRAMs. Hence we had to add this restriction as a
property of PRAMs as they were described in the previous subsection.

By [58] we have

Theorem 33 NC* C OROW-TIME(O (log" n)) for each k > 1.

Since OROW—TIME(O (loglC n)) is a subset of DAuxPDA—TIME<2O(1°gk n)> (for

this inclusion we need the restriction that PRAMs have a logarithmically bounded
word length), this result implies the following inclusion of Ruzzo derived in [62]:

Theorem 34 NC* C DAuxPDA-TIME<2O(1°g’“”)> for k> 1.

For k = 1 it is possible to show ([10, 72]):
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Proposition 35 NC' C DSPACE(logn) C SAC'.

None of these inclusions is known, but all are conjectured, to be proper.
A rather surprising relation, motivating the notion of semi-unbounded fan-in, is the
equation

Theorem 36 SAC* = NAua:PDA—T]ME(ZO(lng n)> for every k >1

by Venkatesvaran in [72]. In particular, this gives a new complexity theoretical
characterization of the context-free languages:

Corollary 37 LOG(CFL) = SAC"

Thus, in view of Theorem 24 circuits give a very informative characterizations of
the relations between CRCW-PRAMs and NAuxPDAs in terms of the concepts of
unbounded and semi-unbounded fan-in.

4.2.2 Low circuit classes

In this part the very close connections between low circuit classes and subfamilies of
regular languages are shortly indicated.

The lowest circuit classes and sequential complexity classes are related by the in-
clusions

AC" C NC' C DSPACE(logn) C NSPACE(logn) C AC".

When dealing with complexity classes below DSPACE(logn) it is necessary to use re-
ducibility notions which are finer than the usual logspace or polynomial time reductions.
This leads to many-one reducibilities based on functions computable by AC® or NC*
circuits or even to DLOGTIME reductions and projections [36]. We don’t go into the
details here, but only mention that the following relations of this subsection hold for
DLOGTIME reductions. Let DLOGTIME(A) be the class of all problems many-one
reducible to some element of A by a DLOGTIME computable function.

The precise relation between NC' and DSPACE(logn) is unknown. The general
conjecture assumes these classes to be different. There is a characterization of this
relation in terms of formal languages. Let LINyr) and LINp gy denote the set of all
languages generated by linear context-free grammars subject to a LL(1) respectively
LR(1) condition. We then have 1-DPDA;_yn = LINp g1y [32]. This is the reason why
LIN g1y and not the proper subset LINy 11y should be called DLIN, the family of deter-
ministic linear context-free languages. The relation between NC' and DSPACE(logn)
is now characterized by:

Theorem 38 a) DLOGTIME(LINg 1)) = NC' [35] and
b) DLOGTIME(LINyr(1)) = DSPACE(logn) [32]

Thus we see that deterministic one-turn push down automata are €-canonical.
On the other hand AC° is known to be a proper subset of NC' [24]. Again there
is a characterization of this relation in terms of formal languages:

Theorem 39 a) DLOGTIME(REG) = NC' [}] and
b) DLOGTIME(REG, j..) = AC® [5]
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Here REG, _ fyc. denotes the family of star-free reqular sets. It coincides with the family
of those regular sets, in which the transformation monoid of the minimal automaton
doesn’t contain any nontrivial group. If solvable groups are allowed, this corresponds
to ACP circuits enriched by mod gates [5]. If the transformation monoid contains a
nonsolvable group, the accepted language is NC'-complete [4].

It is remarkable, that EDOL is of an even lower complexity:

Theorem 40 ([16, 17]) DLOGTIME(EDOL) is a proper subset of AC°.

4.3 Unambiguity

We will now deal with unambiguity in parallel models. As suggested by Rytter’s in-
clusion UCFL C CREW-TIME(O (logn)), the concept of exclusive access to a global
memory turns out to be very closely related to unambiguity. The way to show this is
by introducing unambiguity for circuits.

The notion of an unambiguous circuit is introduced in [46]. It might be explained
by the intuitive notion of a vulnerable gate: In contrast to a normal robust O R-gate, a
vulnerable O R-gate or vulnerable disjunction is a partially defined O R-function which
works correctly on inputs containing at most one bit equal to 1. On inputs containing
more than 1, the output is undefined and the gate is assumed to be destroyed. We
assume that the value undefined as input of a vulnerable gate implies the output of
that gate to be undefined, too. On the other hand, undefined as an input to a robust
gate behaves like a value “0.5”.

Unambiguous circuits consist in two types of gates:

e Small robust AND and OR-gates of bounded fan-in and
e Large vulnerable AND and OR-gates of unbounded fan-in.

According to the two types of weak and strong unambiguity for sequential machines,
there are two types of unambiguous circuits:

In order to characterize CREW-PRAMs by circuits, the following notion has been
introduced in [46]: A circuit is called unambiguous, iff for all combinations of the input
bits no vulnerable gate receives an input containing more than one 1.

In [47] an notion corresponding to the usual version of unambiguity has been in-
vestigated: A circuit is called weakly unambiguous, iff for all combinations of the input
bits the result of no destroyed vulnerable gate affects the output bit of the circuit.

That is, in a weakly unambiguous circuit we allow some vulnerable gate to be
destroyed, but require that the output of every destroyed gate on its way to the output
of the whole circuit is later either robustly conjoined with a 0 or robustly disjoined with
al.

In correspondence to AC*, we get the unambiguous classes UAC* and WUAC*. 1t
was shown in [46] that

Theorem 41 CREW-TIME(O (logn)) = UAC* for each k> 1.

When looking for unambiguous circuit classes corresponding to SAC*, two possibil-
ities may be considered:

e A more powerful one using large vulnerable disjunctions, small robust disjunc-
tions, and small robust conjunctions or

19



e A more restricted one without the use of any robust disjunction.

In [43], the original version of [46], the first class was named USAC, and the second one
URAC. But the properties of these two classes strongly suggest to choose the second
possibility to be the unambiguous version of SAC circuits.®> Thus, in the following
USAC* and WUSAC* denote language classes corresponding to unambiguous circuits
using vulnerable disjunctions and small robust conjunctions.

That these are the correct choice as unambiguous versions of SAC¥ is illustrated by
the two equations from [47]:

Theorem 42 a) USAC! = StUAuzPDA-TIME(pol) and
b) WUSAC"' = UAuzPDA-TIME(pol).

It is remarkable how the structural properties of unambiguity (and the exclusive
write feature) resemble the nondeterministic case (and the concurrent write feature).

In [46] the inclusion NC* C USAC* was shown for all k> 1. For the case k = 1,
the more refined inclusion structure is:

NC' C DSPACE(logn) C OROW-TIME(O (log n))

C LOG(DCFL) C LOG(UCFL) C USAC".

These relations are summarized in Figure 3.
We mention in passing, that there is also a circuit characterization of exclusive read
(see [54]).

Discussion and Open Questions

One aim of this paper was to illustrate the very many and very deep connections
between complexity classes and families of formal languages. One striking example
for this is the close correspondence of the following pairs: determinism versus owner
access, unambiguity versus exclusive access, and nondeterminism versus concurrent, ac-
cess. For historical reasons, exclusive write and read are very commonly used models.
The connection to unambiguity explains the many nonconstructive aspects of this con-
cept, e.g. the apparent nonexistence of complete problems. Even worse, for polynomial
size, i.e.: for logarithmically space bounded Turing machines or auxiliary push-down
automata, there is no single problem known, being a member of some unambiguous
class, which is suspect of being not an element of the corresponding deterministic class.
Relations like that are only known for families; e.g.: UCFL, which is known to be in
UAuzPDA-TIME(pol), is conjectured not to be in DAuzPDA-TIME(pol). Thus the use
of PRAMs of exclusive access type to solve a single problem should be regarded as
a bit lazy. It might be probable, that all existing XREW-PRAM algorithms solving
specific problems could be converted into XROW-algorithms. It would be very inter-
esting to single out a specific problem resisting this approach, since this would be a
candidate of a single problem known to be unambiguously solvable, but apparently not
deterministically in polynomial size.
We close with a list of open questions:

3Some new results concerning the classes built according to the first possibility may be found in
[52].
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Figure 3: The NC-Structure between NC' and AC!

1. Are there families of formal languages which are complete for SSPACE(logn)? In
particular, is there a reasonable definition of a symmetric (one-turn) push down
automaton which would be €-canonical?

2. Under which conditions storage types are €-canonical or fully canonical? (See
[20, 18] for ()-canonical storage types.)

3. Are there families of formal languages complete for AC*, k> 1, or for NC¥, k> 2?

4. Is every family of formal languages which is effectively closed under the AFL
operations and which has a decidable emptiness problem contained in NP?

5. Sequential and parallel models provide a unifying framework to structure families
of formal languages. In particular, this is true for boolean circuits. It would
be interesting to find a circuit feature representing determinism as a subcase of
nondeterminism. In particular this would mean to characterize DSPACE(logn),
LOG(DCFL), or P by circuits of logarithmic depth.

6. Are there versions of PRAMs or circuits which correspond to symmetric complex-
ity classes?
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