
On Distinguishing NC1 and NL

Andreas Krebs, Klaus-Jörn Lange, and Michael Ludwig

WSI - University of Tübingen, Germany, Sand 13, 72076 Tübingen, Germany.
{krebs, lange, ludwigm}@informatik.uni-tuebingen.de

Abstract. We obtain results within the area of dense completeness,
which describes a close relation between families of formal languages
and complexity classes. Previously we were able show that this relation
exists between counter languages and NL but not between the regular
languages and NC1.
We narrow the gap between the regular languages and the counter lan-
guages by considering visibly counter languages. It turns out that they
are not densely complete for NC1. At the same time we found a restricted
counter automaton model which is densely complete for NL.
Besides counter automata we show more positive examples in terms of
L-systems.

1 Introduction

Turing machines are the key model for computation and the most general as
well. A consequence however is for example the undecidability of the word prob-
lem. Two of the major areas of theory can be understood as different branches
originating from the concept of the Turing machine. One branch limits Turing
machines in terms of resources like space and time which led to what we know as
complexity theory, the study of complexity classes. In the other branch we are in
a way limiting the functionality of Turing machines resulting e.g. in pushdown
or finite automata. We want to name the objects of the second branch families
of formal languages. It turned out that complexity classes and families of formal
languages have very different properties but they are also connected in many
ways. The present work is a contribution to understanding the relationship be-
tween complexity classes and families of formal languages. We hope that this
leads to new insights to complexity as it is much harder to analyze compared to
families of formal languages.

The term complexity class is clear, the term family of formal languages how-
ever needs clarification. Certainly one can interpret formal language in a way,
that every subset of Σ∗ is a formal language but we understand it, as outlined
above, as languages which are accepted or generated by certain objects like au-
tomata or grammars. Finding a final definition of what we want to consider a
family of formal languages is part of our ongoing work.

The regular languages represent a very basic example of a large abundance of
families of formal languages, coined by pumping theorems and built on that de-
cision properties, which distinguish them from complexity classes. Nevertheless,
most of them exhibit very close relationships to complexity classes.

General algorithms in terms of Turing machines or circuit families are im-
mune to a combinatorial or algebraic analysis. This makes families of formal
languages interesting as they contain problems complete for complexity classes
and thus in their word problems exhibit close connections to complexity theory.
At the same time they are restricted in a way which makes them open for a
combinatorial and even algebraic analysis.

It indeed is often the case that a family of formal languages F is complete
for a complexity class C in the sense that F is contained in C, and F contains a
C-complete problem. Examples for this situation abound in circuit complexity,
e.g., with the regular languages and NC1, or the context-free languages and
SAC1. Strengthening this link, the notion of dense completeness [KL12] further
requires that each C ∈ C corresponds to a formal language F ∈ F of the same
complexity, i.e. such that C and F are reducible to each other.

While it is usual to have a complete family of formal languages corresponding
to some complexity class, the picture is different for dense completeness. Up to
now we only found dense completeness in non-deterministic classes. Also the
proofs heavily rely on non-determinism. Our working hypothesis is that only
non-deterministic classes have a densely complete family of formal languages.
The first examples established in [KL12] are the following:

– The index languages are densely complete for NP.

– The context-free languages are densely complete for SAC1.

– The nondeterministic one-counter languages are densely complete for NL.

– The regular languages are not densely complete for NC1.

We are especially interested in non-denseness results. In the instance of the
regular languages the proof relies on the gap result of [BCST92]. In [KLL15] we
were able to derive a corresponding gap result for the family of visibly counter
languages, which we will use in this paper to show unconditionally that even the
visibly counter languages are not densely complete in NC1.

Our results lead to an interesting situation: We have a counter-based family
which is densely complete for NL and one which is not densely complete for
NC1. The next logical step of course would be to find out whether the deter-
ministic one-counter languages are densely complete for L.

A different direction is to look at the visibly pushdown languages which
are also NC1 complete [Dym88]. We cannot rule out the possibility that NC1

contains indeed a dense family of formal languages. However it seems easier to
show non-denseness for NC1. On the other hand it seems easy to show denseness
results for non-deterministic classes. We present examples of families of formal
languages which are densely complete for certain complexity classes in terms of
L-systems. This underlines our assumption that dense completeness captures an
inherent and important property.

Due to space restriction, we omit some of the proofs.

We thank the anonymous referees.

2 Families of Formal Languages

In this section we recollect some notions and results of classes which we will
call families of formal languages. They have in commen that the complexities
of their word problems typically range between AC0 and NP. In contrast to
complexity classes they exhibit pumping or iteration properties which lead to
the decidability of emptiness and finiteness of their members, but typically not
to that of equivalence or universality.

At present, we have no finished definition of a family F to be a family of
formal languages. What we assume as minimum requirements are:

Recursive presentability: There is recursively enumerable set R ⊆ Σ∗ and a
mapping φ from R into the powerset of Σ∗. Each x ∈ R represents a language
generating device, e.g.: a grammar or an automaton, which generates the
language φ(x) and we have F = {φ(x)|x ∈ R}.

Decidabilities: The emptiness and the finiteness of elements of F , i.e. the sets
{x ∈ R|φ(x) 6= ∅} and {x ∈ R|φ(x) is finite}, are decidable.

Closure properties: F is constructively closed under intersection with regular
sets and under inverse morphisms. These closures are constructively in the
sense, that from x ∈ R, morphism h, or given finite automaton A a y ∈ R is
computable, such that φ(y) = φ(x) ∩ L(A) resp. h−1(φ(x)).

Unfortunately, we can construct language families, which we do not regard as
family of formal languages, but which in fact fulfill these properties. Thus we
go by well-known examples like the family of regular set, that of context-free
languages and some of their various subfamilies, and some families of context-
free Lindenmayer languages, which all fulfill the requirements mentioned above.

Notation. We fix a finite alphabet Σ. By Σ∗ we denote the set of words
over Σ. A language over Σ is a subset of Σ∗. For w ∈ L ⊆ Σ∗, by |w| we denote
the length of w and ε is the word of length 0. For A ⊆ Σ we denote by |w|A
the number positions in w having a letter in A. For a word, wi is the letter in
position i.

Regular languages. The regular languages are a prime example for a family
of formal languages and indeed fulfill all the requirements we proposed for some-
thing being called a family of formal languages. They can be defined in terms
of finite automata (DFA and NFA), logic (MSO), and algebra (finite syntactic
monoid).

Context-free languages. Context-free languages (CFL) correspond to those
accepted by pushdown automata (PDA). The deterministic variant is strictly
weaker. The same goes for counter languages. Here only one stack symbol may
be pushed by the accepting automaton. We write NOCA for non-deterministic
one-counter automata and DOCA for the deterministic variant.

Visibly pushdown languages.
Context-free languages are accepted by pushdown automata. A way to re-

strict pushdown automata has received much attention in the last ten years. The
visibility restriction for pushdown automata leads to the class of visibly push-
down languages (a.k.a. input-driven pushdown languages), short: Vpl. Here,

the input symbol determines the stack operation, i.e. if a symbol is pushed or
popped. This leads to a partition of Σ into call, return and internal letters:
Σ = Σcall ∪Σret ∪Σint. Then Σ̂ = (Σcall, Σret, Σint) is a visibly alphabet. In the
rest of the paper we always assume that there is a visibly alphabet for Σ if we
speak about Vpl.

We define a function ∆ : Σ∗ → Z which gives us the height of a word by
∆(w) = |w|Σcall

−|w|Σret
. Each word w over a visibly alphabet can be assigned its

height profile w∆, which is a map {0, . . . , |w|} → Z with w∆(i) = ∆(w1 · · ·wi).
Mehlhorn [Meh80] and independently also Alur and Madhusudan [AM04] intro-
duced input-driven or visibly pushdown automata (VPDA). In these automata
the input letter determines the kind of stack operation. We omit a formal defi-
nition for VPDA here, as we are actually interested in a more restricted model.

The family of languages which are accepted by some VPDA is called Vpl.
This family enjoys many constructive closure and decision properties.

In [BLS06], a reasonable restriction of VPDA was introduced by visibly
counter automata (VCA). That is a counter automaton which obeys the vis-
ibly restriction. In [BLS06] this model was used as a tool for showing a certain
problem concerning Vpl to be decidable. In particular they showed that given
a VPDA, it is decidable if the language is accepted by some VCA. The follow-
ing definition exhibits a natural m which we will call threshold. It allows the
automaton to have a limited access to the current stack height.

Definition 1 (m-VCA). An m-VCA A over Σ̂ = (Σcall, Σret, Σint) is a tuple
A = (Q, q0, F, Σ̂, δ0, . . . , δm), where m ≥ 0 is the threshold, Q is the set of states,
q0 the initial state, F the set of final states, and δi : Q×Σ → Q are the transition
functions.

A configuration is an element of Q×N. Note that m-VCAs, similar to VPDAs,
can only recognize words where the height profile is non-negative. All other words
are rejected. An m-VCA A performs the following transition when a letter σ ∈ Σ
is read: (q, k)

σ→ (δmin(m,k)(q, σ), k+∆(σ)). Then w ∈ L(A) iff (q0, 0)
w→ (f, δ(w))

for f ∈ F .
The class of the visibly counter languages (Vcl) contains the languages rec-

ognized by an m-VCA for some m.
As previously argued, Vpl has many nice properties and is still expressible

enough for many applications. The class Vcl is even simpler and can function
as an intermediate step if we want to extend results form the regular domain to,
say, Vpl.

Lindenmayer systems. The models we looked at so far are automata-
based. Lindenmayer introduced a formal rewriting system similar to grammars
whose purpose was to model growth of plants. The main difference is that each
leaf in the derivation tree of L-Systems has to have the same depth in contrast
to ordinary grammars. One can see the resulting objects as fractals. Besides
describing biological processes, L-systems have gotten applied in other fields like
computer graphics. L-systems have also found their way in the theory of formal
languages. Refer e.g. Rozenberg and Salomaa [RS80].

We call a map h : Σ → 2Σ
∗

a substitution if h(ε) = ε and h(uv) = h(u)h(v).

Definition 2. The following are L-systems:

– An 0L system is a tuple G = (Σ, h,w) where Σ is the alphabet, h : Σ → 2Σ
∗

a substitution and w ∈ Σ∗ is a word we call axiom. The language of G is
L(G) =

⋃
k h

k(w).
– An E0L system is a tuple G = (Σ, h,w,∆) where (Σ, h,w) is a 0L system

and ∆ ⊆ Σ is a set of terminals. The language of G is L(G) =
⋃
k h

k(w)∩∆∗.
– An ET0L system is a tuple G = (Σ,H,w,∆), where H is a finite set of

substitutions and for every h ∈ H, (Σ, h,w) is a 0L system. The language
of G is L(G) = {x∆∗ | ∃k ∈ N∃h1, . . . , hk ∈ H : x ∈ h1(h2(. . . hk(w) . . .))}.

– An ET0L system G = (Σ,H,w,∆) is an EDT0L system if for all h ∈ H
and for all a ∈ Σ holds that |h(a)| = 1, i.e. h is an endomorphism.

– An EDT0L system G = (Σ,H,w,∆) is an ED0L system, if |H| = 1.

3 Complexity Classes

In complexity theory we are interested in the amount of resources needed for
solving the word problem. Turing machines are the standard model resulting in
the resource measures time, space and (non-)determinism.

Using the logarithmic space bound, we get the nondeterministic class NL
and using polynomial time bound, we get NP.

Circuits. When considering very low complexity classes, other models of
computations are needed. A circuit is a directed acyclic graph where the nodes
are labeled with Boolean functions unless it is an input node. A word over {0, 1}
is accepted by the circuit if the output gate results to 1, whereas the result is
computed in the obvious way. We only consider {0, 1} as an input alphabet;
other alphabets can be simulated. If we want to accept languages we naturally
want to accept words ob arbitrary length. To achieve this we speak of families of
circuits (Cn)n∈N. Here there is one circuit of each input length. If there is some
resource-bounded machine computing (Cn)n∈N, we speak of uniformity. If we do
not require such a machine, we say, that the circuit family is non-uniform. If not
stated otherwise, circuit families are assumed to be non-uniform

Typical complexity measures in circuits are size, depth, fan-in of the gates,
type of the gates and uniformity. We get for example the following classes:

– ACi: circuits of polynomial size, depth in O(logi(n)), unbounded fan-in and
Boolean gates.

– ACCi: circuits of polynomial size, depth in O(logi(n)), unbounded fan-in
and Boolean and modulo gates. If we want to emphasize the modulus k, we
denote this by using the notation ACCi

k.
– TCi: circuits of polynomial size, depth in O(logi(n)), unbounded fan-in and

threshold gates.
– NCi: circuits of polynomial size, depth in O(logi(n)), bounded fan-in and

Boolean gates.
– SACi: circuits of polynomial size, depth in O(logi(n)), semi-unbounded fan-

in and Boolean gates.

In particular we are interested in the following classes: AC0 ⊂ ACC0 ⊆ TC0 ⊆
NC1 ⊆ L ⊆ NL ⊆ SAC1 ⊆ P. Note that the classes AC0 and ACC0 are
seperated. All other inclusions are unknown whether they are strict. Refer e.g.
to [Vol99].

Complexities of families of formal languages. The various families men-
tioned so far, have the following connections to complexity classes in terms of
completeness results. When we say that a family F is complete for C, we mean
that both F ⊂ C and that F contains a C-complete problem.

– The ETOL-languages are NP-complete.
– Both the context-free languages and the EOL-languages are SAC1-complete.
– Both the nondeterministic counter languages and the EDTOL-languages are

NL-complete.
– the regular languages, the visibly counter languages, and the visibly push-

down languages are NC1-complete.
– The EDOL-languages are AC0-complete (which is rather the case because

of the AC0 reductions we chose).

Dense completeness. Finally we state the definition of dense completeness
as it is introduced in [KL12]. In our setting we use many-one-reductions. If a
language A is reducible to B we write A ≤ B. If A ≤ B and B ≤ A we write
A ≈m B and say A and B are many-one-equivalent. The reductions we use are
all DLOGTIME-uniform AC0 reductions, so we write e.g. A ≈AC0

m B.

Definition 3. Let F and C be sets of languages. We say F is densely complete
in C if

– F ⊆ C and
– for all C ∈ C there exists a language F ∈ F such that C ≈AC0

m F .

The gist of the definition is that we can say that a family of formal languages
is densely complete in some complexity class. However in the definition we do
not require F and C to be restricted in any way. Like that we get transitivity of
the dense completeness property which is desirable.

4 Negative Instances for NC1

As all the examples we know, where a densely complete family of formal lan-
guages exists correspond to a (more or less) non-deterministic complexity class,
it is rather interesting to consider deterministic classes. For its closeness to L we
consider NC1 as a deterministic class, and hence would like to show that there
is no densely complete family of formal languages in it.

Our approach to prove that a family of formal languages is not densely com-
plete will show that the class is too sparse inside of NC1. We have shown this
before for the regular languages using finite monoids, and it was not clear this
approach would ever work for any family of formal languages outside the regular
languages. Using a result from a recent paper [KLL15] we are now able to break

this barrier and show a family of formal languages outside the regular language
that is not densely complete in NC1. In this section we will show that Vcl is
not densely complete in NC1. This also narrows the gap between the counter
languages which are densely complete in a complexity class and the regular lan-
guages which are not densely complete in a complexity class to counter languages
vs. visibly counter languages.

Theorem 4. The visibly counter languages are not densely complete in NC1.

Proof. We show the statement by contradiction. The contradiction will be achieved
by using two facts:

– Ladner’s theorem in the generalized version by Vollmer [Vol90] shows us how
to get arbitrarily long lists of languages Li for which Li ≤ Lj iff i ≤ j. That
means that complexity classes in a way have infinitely many ascending levels
of complexity inside.

– Visibly counter languages (and regular languages as well) exhibit a kind
of dichotomy [KLL15] when it comes to the membership of a language to
AC0. Either a visibly counter language is in AC0 or it is hard for a proper
superclass of AC0.

So it seems likely that those to facts contradict each other and this is what we
will prove.

Assume Vcl to be densely complete in NC1. Then for all languages L
in NC1 there exists a language V in Vcl such that L and V are many-one-
equivalent under AC0-reductions.

The language PARITY= {w ∈ {0, 1} | |w| ≡ 0 (mod 2)} is not in AC0 but
ACC0

2-complete [FSS84]. Using Ladner’s theorem we choose L to be a language
whose complexity lies strictly between AC0 and ACC0

2, i.e. L ≤ PARITY,
PARITY 6≤ L and L 6∈ AC0 [H̊as86]. The construction for L basically takes a
subset of PARITY by only allowing certain word lengths.

Having L we look at V , which must be many-one-equivalent to L:

– If V is in AC0 then we have a contradiction, since L is not in AC0.
– If V is not in AC0 then according to [KLL15], we have to consider again two

cases for the two different reasons a visibly counter languages can be outside
AC0. One reason is that the height behavior is too complex, resulting in V
being TC0-hard. The other reason concerns the regular part of the language
and is related to the case for regular languages, resulting in V being ACC0

k-
hard for some k. So in both cases, V is hard for a proper superclass.
• V is hard for TC0. This is a contradiction, since L is not ACC0

2-hard.
• V is hard for ACC0

k-hard. If k is even then again we have the con-
tradiction because L is not ACC0

2-hard. If k is odd then this implied
ACC0

k ⊆ ACC0
2. Due to [Smo87] we know that this is contradictory

also. �

Since the regular languages are visibly counter languages and NC1-complete,
we get the following.

Corollary 5. The regular languages are not densely complete in NC1.

This completes a proof from the previous paper on dense completeness [KL12].
The statement for the non-denseness of the regular languages was true, but the
proof was incomplete by not considering the case that the syntactic monoid of
a regular language in AC0 might contain in fact a nontrivial group.

As we saw in the proof, we used Ladner’s theorem on the one hand and some
kind of dichotomy on the other. Up to now we do not know any other proof
strategy for showing that a formal language class is not densely complete in
some complexity class.

5 Positive Instances for NL

We introduce a restricted counter-based automaton model being densely com-
plete in NL. It can then be used to demonstrate that a certain type of L-system
is also densely complete in NL.

The automaton model we introduce is a non-deterministic counter automaton
with the restriction that once the automaton performs a pop action on the
stack, it has to pop until it is empty. See figure 1. We call it a sweeping counter
automaton (SCA) and the corresponding family of formal languages we call Scl.

Definition 6. A nondeterministic sweeping counter automaton (SCA) is a tuple

A = (Q↑, Q↓, Σ, q0, F, δ, δ0), where Q = Q↑
·
∪ Q↓ and Q↑ is a set of push-states,

Q↓ a set of pop-states, q0 ∈ Q↑ is the initial state, F ⊆ Q↓ a set of final states and
δ ⊆ (Q↑×Σ×Q)∪ (Q↓×Σ×Q↓) and δ0 ⊆ Q↓×Σ×Q are transition functions.
The transition δ0 is applied if the counter is 0 and δ is applied otherwise.

A configuration of a SCA A is an element of Q×N. The transition relations
δ and δ0 take an input word and define a run through configurations. The initial

configuration is (q0, 0). Further if q ∈ Q↑ and k > 0 then (q, k)
a∈Σ→ (δ(q, a), k+1)

and (q, k)
a∈Σ→ (δ(q, a), k − 1) in the case of q ∈ Q↓. If k = 0 then (q, k)

a∈Σ→
(δ0(q, a), k′) where k′=0 iff δ0(q, a) ∈ Q↓; otherwise k′ = 1. Then: L(A) = {w ∈
Σ∗ | (q0, 0)

w→ (f, 0), f ∈ F}. Note that there are some similar ways to define a
SCA but the present definition serves our purpose.

Scl is closed under union, intersection, Kleene star and inverse homomor-
phisms but not under complement. The regular languages are contained in Scl.
Further the decidabilities of NOCA translate to Scl. SCA cannot be deter-
minized.

Theorem 7. Scl is densely complete for NL.

We can use this result to prove denseness of the L-system EDT0L. It is
sufficient to show that a densely complete family is a subset of EDT0L and that
EDT0L lies within NL. The latter is known to be true [RS80].

Lemma 8. Scl ⊆ EDT0L

stack height

w ∈ Σ∗

Fig. 1. Characterizing stack height behavior for an SCA.

Proof. We are given an SCA A = (Q↑, Q↓, Σ, q0, F, δ, δ0) and construct an
EDT0L system G = (ΣG, H,w,∆) with ∆ = Σ. For convenience we assume
ε 6∈ L(A). We set ΣG = {(q1, q2) | q1, q2 ∈ Q↓} ∪ {(q, ∗) | q ∈ Q↓} ∪∆.

The idea is to let G generate a letter for each push-pop-cycle of the SCA and
then extend each of those letters to the actual word the automaton reads. Hence
we set w = (q0, ∗). We need a first set of substitutions for extending one more
push-pop-cycle. Hence

hq1((q′, ∗)) = (q′, q)(q, ∗)

for all q′ ∈ Q↓. In general for all substitutions: On letters not specified the map
is the identity. For the final state we need the following variant:

h′
q
1((q′, ∗)) = (q′, q)

for all q ∈ F . Next we have to build the word as the counter in- and decreases.

ha,b2 ((q, q′)) = a(q′′, q′′′)b

if q ∈ Q, q′, q′′′ ∈ Q↓, q′′ ∈ Q↑ and q′ ∈ δ(q′′′, b). Further if q ∈ Q↓ it must hold
that q′′ ∈ δ0(q, a) and q′′ ∈ δ(q, a) else. Finally if the final stack height is reached
we have to terminate: h3((q, q)) = ε. Now H is the set of all substitutions we
just described.

We verify that the construction is correct. Each word w = w(1) . . . w(k) is
accepted by A where every w(i) corresponds to one push-pop-cycle of the au-
tomaton. If A is in q after w(1) then we use the derivation (q0, ∗)→ (q0, q)(q, ∗).
If w(1) = aw′b, then we can apply ha,b2 and so on. It is easy to see that we
can derivate as such: (q0, ∗) → (q0, q)(q, ∗) → · · · → w(1)(q, ∗). After that we
can proceed with w(2) etc. until the whole word is derivated. Conversely ev-
ery word we get by the grammar is also a word accepted by the automaton.
The only thing we have to note is that if we derivate like this (q0, ∗) → · · · →
(q0, q)(q, q

′)(q′, q′′)(q′′, ∗) instead of building the word for each cycle first, we just
get additional ways to derivate words. �

In conclusion we get the result:

Theorem 9. EDT0L is densely complete for NL.

6 More densely complete L-systems

An easy case is ED0L, which is densely complete for AC0 because of the reduc-
tions. Further since CFL ⊆ E0L ⊆ SAC1, we get that E0L is densely complete
for SAC1.

In the previous section we showed that EDT0L is densely complete for NL.
It is natural to ask whether e.g. the NP-complete L-system ET0L is in fact
densely complete for NP. Using the so-called checking-stack pushdown automata
characterization of ET0L [vL76], we can translate proofs from [KL12] to this case.
There we showed that PDA are densely complete for SAC1.

Checking-stack pushdown automata (CS-PDA) are a well researched model
[vL76,RS80] in the context of L-systems. A CS-PDA is basically a PDA equipped
with a checking stack. This additional stack is nondeterministically filled with
some word and after that the checking stack is read only. Further the head
for the checking stack is synchronized with the normal stack. This enables the
automaton to perform tasks, a usual pushdown automaton cannot do. The check-
ing stack can be used for synchronization of different parts of the computation.
E.g. the language {ww | w ∈ Σ∗} is an easy example which is accepted by an
CS-PDA, but by no PDA.

For PDA we have the two-way-variant 2-PDA and also we can use k input
heads, which is denoted by 2 − PDA(k). We always restrict such automata to
polynomial time and write 2−PDA(k)poly-time. Using the same notation we get
the corresponding CS-PDA models.

Theorem 10 ([vL76]). ET0L equals CS-PDA and is NP-complete.

Also by [vL75] it is easy to see that:

Lemma 11. 2-CS-PDA(k) equals NP.

The proof strategy is very similar to the case of PDA and SAC1. We first
show that going from two-way to one-way preserves denseness and then that the
number of heads can be reduced without losing denseness. In conclusion we get:

Theorem 12. ET0L is densely complete for NP.

7 Discussion

In this paper we primarily inspected aspects of the relationship between NC1

and NL, using the notion of dense completeness. We developed further the the-
ory of dense completeness and gathered evidence that strengthens our confidence
that dense completeness capturs an essential property of nondeterministic com-
plexity.

Dense completeness might offer new angles to separate complexity classes.
For instance if NC1 has no densely complete family of formal languages, we
know the class to be strictly contained in NL. We could also try to show that
every complete family of formal languages in NL is already densely complete.

We conjecture that dense completeness is a feature of nondeterministic classes.
Of course this should be hard to show since such a result would separate de-
terminism from nondeterminism. To obtain such arguments we need a formal
definition of what a family of formal languages should be. In the present work
we exhibited one possibility, which is our first contribution.

Our second contribution is showing concrete denseness and non-denseness
results. We want to narrow the gap between NC1 and NL. Hence we want to
find large families in NC1 and show that they are not densely complete. In NL
we want to achieve the opposite and find small families being densely complete.
For the NC1 case we performed this with Vcl. In the NL case we proposed (to
our best knowledge) new variant of counter languages, namely sweeping counter
languages. As a byproduct we could show the L-system of EDT0L to be densely
complete in NL and ET0L to be densely complete in NP. Also E0L is densely
complete for SAC1 and E0L for AC0.

There are some interesting questions arising from this work which we will
pursue. One of them: Can we show that the deterministic counter languages
are not densely complete in L? We are also interested in showing non-denseness
of the visibly pushdown languages for NC1. This would relate rather to the
context-free languages which are densely complete for SAC1.

The only way we know to show non-denseness is using some kind of dichotomy
of the family of formal languages regarding AC0. The regular languages for
instance are either in AC0 or hard for ACCk

0 . Not having this dichotomy is
actually a weaker property than dense completeness. It is worth investigating
how denseness is related to this dichotomy.

The dichotomy for Vcl relies on two properties: The regular part must be
quasi-aperiodic and the height behavior of the language must be simple. The
second one is interesting if we compare this to our new found SCA. In the visibly
case, the property of being sweeping would be sufficient for the language to have
simple stack behavior. So in the case of visibly sweeping automata, only the
regular part determines whether the language is in AC0. Hence we will continue
investigating height behavior properties of counter languages.

References

[AM04] Rajeev Alur and P. Madhusudan. Visibly pushdown languages. In László
Babai, editor, Proceedings of the 36th Annual ACM Symposium on Theory
of Computing, Chicago, IL, USA, June 13-16, 2004, pages 202–211. ACM,
2004.

[BCST92] David A. Mix Barrington, Kevin J. Compton, Howard Straubing, and Denis
Thérien. Regular Languages in NC1. J. Comput. Syst. Sci., 44(3):478–499,
1992.

[BLS06] Vince Bárány, Christof Löding, and Olivier Serre. Regularity Problems for
Visibly Pushdown Languages. In Bruno Durand and Wolfgang Thomas,
editors, STACS 2006, 23rd Annual Symposium on Theoretical Aspects of
Computer Science, Marseille, France, February 23-25, 2006, Proceedings,
volume 3884 of Lecture Notes in Computer Science, pages 420–431. Springer,
2006.

[Dym88] Patrick W. Dymond. Input-Driven Languages are in log n Depth. Inf.
Process. Lett., 26(5):247–250, 1988.

[FSS84] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, Circuits, and
the Polynomial-Time Hierarchy. Mathematical Systems Theory, 17(1):13–27,
1984.

[H̊as86] Johan H̊astad. Almost Optimal Lower Bounds for Small Depth Circuits. In
Juris Hartmanis, editor, Proceedings of the 18th Annual ACM Symposium on
Theory of Computing, May 28-30, 1986, Berkeley, California, USA, pages
6–20. ACM, 1986.

[KL12] Andreas Krebs and Klaus-Jörn Lange. Dense Completeness. In Hsu-Chun
Yen and Oscar H. Ibarra, editors, Developments in Language Theory - 16th
International Conference, DLT 2012, Taipei, Taiwan, August 14-17, 2012.
Proceedings, volume 7410 of Lecture Notes in Computer Science, pages 178–
189. Springer, 2012.

[KLL15] Andreas Krebs, Klaus-Jörn Lange, and Michael Ludwig. Visibly counter lan-
guages and constant depth circuits. In Ernst W. Mayr and Nicolas Ollinger,
editors, 32nd International Symposium on Theoretical Aspects of Computer
Science, STACS 2015, March 4-7, 2015, Garching, Germany, volume 30 of
LIPIcs, pages 594–607. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2015.

[Meh80] Kurt Mehlhorn. Pebbling Moutain Ranges and its Application of DCFL-
Recognition. In J. W. de Bakker and Jan van Leeuwen, editors, Au-
tomata, Languages and Programming, 7th Colloquium, Noordweijkerhout,
The Netherland, July 14-18, 1980, Proceedings, volume 85 of Lecture Notes
in Computer Science, pages 422–435. Springer, 1980.

[RS80] Grzegorz Rozenberg and Arto Salomaa. Mathematical Theory of L Systems.
Academic Press, Inc., Orlando, FL, USA, 1980.

[Smo87] Roman Smolensky. Algebraic Methods in the Theory of Lower Bounds for
Boolean Circuit Complexity. In Alfred V. Aho, editor, Proceedings of the
19th Annual ACM Symposium on Theory of Computing, 1987, New York,
New York, USA, pages 77–82. ACM, 1987.

[vL75] Jan van Leeuwen. The Membership Question for ET0L-Languages is Poly-
nomially Complete. Inf. Process. Lett., 3(5):138–143, 1975.

[vL76] Jan van Leeuwen. Variations of a New Machine Model. In 17th Annual
Symposium on Foundations of Computer Science, Houston, Texas, USA,
25-27 October 1976, pages 228–235. IEEE Computer Society, 1976.

[Vol90] Heribert Vollmer. The Gap-Language-Technique Revisited. In Egon Börger,
Hans Kleine Büning, Michael M. Richter, and Wolfgang Schönfeld, editors,
Computer Science Logic, 4th Workshop, CSL ’90, Heidelberg, Germany, Oc-
tober 1-5, 1990, Proceedings, volume 533 of Lecture Notes in Computer Sci-
ence, pages 389–399. Springer, 1990.

[Vol99] Heribert Vollmer. Introduction to circuit complexity - a uniform approach.
Texts in theoretical computer science. Springer, 1999.

