
FO[<]-Uniformity

Christoph Behle Klaus-Jörn Lange

18th March 2006

{behlec,lange}@informatik.uni-tuebingen.de
WSI, Sand 13, D-72076 Tübingen

Abstract

Uniformity notions more restrictive than the usual FO[+∗]-uniformity
= FO[<, Bit]-uniformity are introduced. It is shown that the general
framework exhibited by Barrington et al. still holds if the fan-in of the
gates in the corresponding circuits is considered.

1 Introduction

Barrington et al. showed that the uniform version of well-known complexity
classes like AC0, ACC0, or TC0 can be characterized in terms of languages
described by logical formulae using the Bit-predicate. In this work we show
that their framework essentially remains true when we restrict the uniformity
formulae just to use the < predicate.

One motivation for this investigation is to investigate classes like L(FO[+])
or L(FO+Mod[+]) where it is possible to find lower bounds ([2, 6]). We are
able to provide the first characterizations in terms circuits for these classes
answering a question posed by Roy et al..

Going down to FO[<]-uniformity we can show that the resulting AC0

and ACC0-circuits can describe only regular languages.
Finally, we consider circuits built of majority gates where we can show

that FO[<]- and FO[+]-uniformity coincide giving a first circuit character-
ization of the class L(Maj[<]) ([4, 3]).

A main ingredient of our techniques is to shuffle vectors of numbers
represented in unary coding. To handle majority quantifiers and gates the
definability of counting quantifiers in Maj[<] is an essential building block.
As a result we can express the qualitative difference between L(Maj[<])

1

and L(Maj[+, ∗]) by the quantitative difference of allowing only linear or
superlinear fan-in in TC0-circuits.

2 Preliminaries

We will use essentially the logical notation as it is presented in the paper of
Barrington, Immerman, and Straubing [1]. In the following we denote by N

the positive integers and for a sequence ~α ∈ N
d we define l(~α) := d.

2.1 Logic formulae over words

Throughout this paper we consider languages defined by logical formulae.
In general, i, j, k, n will denote positive integers, while x, y, z will denote
position variables with positive integer values. Thus, variables will range
over {1, 2, . . . , |w|}. The predicate Ca(x) expresses that the position of a
variable x is pointing to contains the symbol a.

As usual, a formula φ with set V of free variables is interpreted over
words as structures w = (a1,V1)(a2,V2) · · · (an,Vn) such that V is the union
of the Vi and that the Vi are pairwise disjoint. Words of this kind are called
V-structures. A letter (a, ∅) is simply denoted by a. We denote the set of
all V-structures over Σ by Σ∗ ⊗ V whereas (Σ × 2V)∗ contains also words
with multiple occurrences of a variable. The set of V-structures modeling φ
is denoted by Lφ,V . If φ is a sentence, then Lφ = Lφ,∅ = {w ∈ Σ∗ | w |= φ}.
We call this the set of words defined by φ.

If w = (a1,V1)(a2,V2) · · · (an,Vn) ∈ Σ∗⊗V and x 6∈ V then wx=i denotes
(a1,V1) · · · (ai−1,Vi−1)(ai,Vi ∪{x})(ai+1,Vi+1) · · · (an,Vn) ∈ Σ∗⊗ (V ∪{x}).
As abbreviation for wx=i |= φ we often write w |= φ(x = i), or, if x is
understood, w |= φ(i).

All quantifiers in this paper like ∃, ∀ are also allowed to be quantified over
tuples of variables which is indicated by a subscript, i.e. ∃2 for existential
quantification over pairs or ∀3 for universal quantification over triplets of
vaiables. . Let Q be a set of quantifier types (e.g. first-order) and X a set of
numerical predicates (not necessarily containing the order predicate <). We
denote by Q[X] the set of all formulae built over the elements of X ∪Ca(·) as
atomic formulae by conjunction, negation and quantification using quantifier
types from Q. By L(Q[X]) we denote the class of all languages definable by
Q[X] formulae. If the quantors in Q are allowed to quantifiy over tuples of
variables we denote this by the subscript tuple, i.e.: using Qtuple.

Formulae not using the Ca(·) predicates are numerical or built-in predi-

cates. In the presence of the order predicate first-order quantifiers can define

2

addition and multiplication by use of the BIT predicate and vice versa. A
very comprehensive treatment of related results is given by Schweikardt [7].

Modr(k) x denotes the modular counting quantifier which evaulates to
true if the number satisfying positions of the input word is equal to r mod k
for 0 ≤ r < k.

We will use Maj x to denote the majority quantifier (over single vari-
ables). w |= Maj xφ is fulfilled iff the number of all 1 ≤ i ≤ |w| such that
wx=i |= φ is larger than |w|/2. The majority quantifier rejects in case of a
draw. If M̃aj denotes the weak majority quantifier which accepts in case
of a draw we have the deMorgan-like relation M̃ajxΦ = ¬Majx¬Φ. The
quantifier Maj x has to be distinguished from the majority quantifier over
pairs Maj2 x ([1]).

The (unary) counting quantifier is denoted by ∃=yx, thus wy=j |= ∃=y x φ
is fulfilled iff there are exactly j positions 1 ≤ i ≤ |w| such that wx=i,y=j |= φ
where j is the numerical value of variable y. The counting quantifier can take
values in the range {0, 1, . . . , n} which is one more than there are positions
available in inputs of size n. If we take care of the case y = 0 by the formula
∀x¬φ and only treat the case y ≥ 1 it is possible to show:

Lemma 2.1 ([4]). First order quantifiers, addition, and the counting quan-

tifier are definable in Maj[<].

For the ease of handling we will use the counting quantifier without this
restriction and note that more formally in all formulae using the counting
quantifier the exception handling of the case y = 0 should be added.

Barrington et al. exhibited the power of the majority quantifier over
pairs and showed that in addition to lemma 2.1:

Lemma 2.2 ([1]). Multiplication and the Bit-predicate are definable in

Maj2[<].

Combining these abilities it is easily seen that the counting quantifier
over tuples of variables is definable in Maj2[<], as well.

2.2 Circuits

The reader is assumed to be acquainted with language classes defined by
uniform circuits as they are presented by Barrington et al.. In particular we
will use the relations ([1] [Theorem 10.2 and Lemma 10.3]):

TC0 = L(FO + Maj[<, +, ∗]) = L(FO + Maj2[<]).

3

Here TC0 refers to its FO[<, Bit]-uniform (or equivalently FO[+, ∗]-uniform)
version.

If the fan-ins of all gates occurring in a circuit are bounded by the input
size we denote this by the subscript LIN . We will use the circuit classes
AC0

LIN , ACC0
LIN or TC0

LIN .

3 Expressing Uniformity by FO[<]

In this section we exhibit a more restrictive formalism expressing uniformity
which will allow for a reasonable notion of FO[<]-uniformity, i.e.: without
using the Bit predicate, multiplication or anything else outside of Presburger
Arithmetic.

In a circuit Cn of polynomial size nk with n inputs names of gates will
be given as k-dimensional vectors over {1, · · · , n}. In order to make those
vectors addressable by FO[<]-formulae and hence by finite automata we
encode a number 1 ≤ i ≤ n by the word aibn−i and shuffle k-dimensional
vectors of such words into one word of length n over the base alphabet
Γk := {a, b}k. To help addressing the elements of a word V ∈ Γk we define
refinements of the Ca(x) predicates as follows: we say that vx=j |= Ca(i.x)
iff the i.− th component of the j.− th symbol of v is an a. Otherwise Cb(i.x)
holds. That is Ca(i.x) is an abbreviation for

∨

c∈{a,b}i−1a{a.b}n−i Cc(x).
We define the mapping PACKn,k :

⋃

1≤d≤k{1, · · · , n} −→ Γn
k for 1 ≤ k ≤ n

by letting PACKn,k(~α) be that unique word v ∈ Γn
k such that vx = j |= Ca(i.x)

iff i ≤ l(~α) and j ≤ αi.
By convention the output gates in our circuits will always be numbered

by the empty vector ~0 of length 0. Hence this gate in a circuit with nk gates
will be encoded by the all-b-word (bk)n.

In order to make the first-order description of the connectivity language
easier we split the description of the circuit into sublanguages. An essen-
tial point in our construction is that in the list of all predecessors ~β of a
gate ~α these predecessors are additionally numbered. Since this number
might be superlinear (also still polynomial) we use a vector ~γ to number
the predecessors. Hence, the set describing the connectivity will consists in
triplets (~α, ~β,~γ) such that the gate named ~β is the j. − th predecessor of a
gate named ~α where j is the numerical value of the vector ~γ. To encode
this in words we use the function PACK3

n,k :
⋃

1≤d≤k{1, · · · , n}3 −→ Γn
3k to

be defined in following way: PACKn,k(~α, ~β,~γ) is that word v that fulfills

vx=j |= Ca(i.x) iff (i ≤ l(~α) ∧ αi ≤ j), (k < i ≤ k + l(~β) ∧ βi ≤ j), or

(2k < i ≤ 2k + l(~γ) ∧ γi ≤ j). That is, PACK3
n,k(~α, ~β,~γ) is the “vertical”

4

composition of PACKn,k(~α), PACKn,k(~β), and PACKn,k(~γ).
Finally, for each possible type τ ∈ GT of a gate there will be correspond-

ing language Lτ (C). Here GT := QT ∪{∧,∨, true, false}∪Σ where QT :=

{∀, ∀2, · · · , ∃, ∃2, · · · , Maj, Maj2, · · · , M̃aj, M̃aj2, · · · , Modr(p), Mod
r(p)
2 , · · · }

denotes the set of all possible quantifier type. We explicitly include the weak
majority quantifier M̃aj since we will deal with formulae in prenex normal
form for which we need also the negated form of the majority quantifier.

Thus, the connectivity information of a circuit family C = (Cn)n≥1 of
size nk consists in the following languages:

Lpred(C) ⊂ Γ∗
3k, and Lτ (C) ⊂ Γ∗

k for τ ∈ GT.

We say that a circuit family C = (Cn)n∈N is FO[<,X]-uniform if the uni-
formity languages Lpred(C) and Lτ (C) are in L(FO[<,X]) for each τ ∈ GT .
For a family Q of gate types and their corresponding quantifier types we
let FO[<,X] − QC0 be the class of all languages accepted by FO[<,X]-
uniform circuits of polynomial size and constant depth using Q-gates. If
the fan-in of all gates is bounded by the input size we get the classes
FO[<,X] −QC0

LIN .

4 Main Theorem

In the following let X denote a set of negation closed numerical predicates
and Q a set of deMorgan closed1 quantifier types containing the first-order
quantifiers. We need that each quantifier in Q is monoidal (e.g. has an
“identity element” in the sense of [1][page 294]). In addition we allow Q to
contain the majority quantifier.

Theorem 4.1.

FO[<,X] −QC0
LIN = L(Q[<,X]) and FO[<,X] −QC0 = L(Qtuple[<,X])

The proof of theorem 4.1 is given in the following two sections.

5 From Logic to Circuits

The following construction will only work for sufficiently long input words,
i.e.: |w| ≥ max{k, m, m′} k, m, m′ dependent of the formulae. By reformu-
lating the construction using more variables and expressing the and and or

1This means that with Qx φ also ¬Q x¬φ is a quantifier in Q.

5

of the formulae through ands and ors with fan in 2 this could be improved
to the (usual) requirement |w| ≥ 2. In order to make the construction more
readable, we skip this point.

We first indicate the construction for quantors quantifying over single
variables resulting in circuits with gates of linear fan-in. The extension to
treat the general case is skethced at the end of this section.

5.1 Quantification over a single variable

For each Q[<,X] formula Ψ(x1, · · · , xk) recognizing a language L ∈ Σ∗ we
want to construct a FO[<,X]-uniform QC0 circuit family CΨ accepting L.
Since X is negation closed and Q is deMorgan closed we can demand Ψ to
be given in normal form Q1x1 . . . Qkxk

∨m
i=1

∧m′

j=1 Aij where Qi is in Q and
Aij is either a built-in predicate in X ∪{<,≥} or of the type Ca(xi) for some
a ∈ Σ. (We don’t need negations of the Ca(x) since they are euqivalent to
the disjuntion of the Cb(X) over all b 6= a.)

As usual, when going from logical formulae to circuits, we build the
circuit recursivly top down corresponding to the construction of the formula
by adding new levels each of the same type of gates for each quantifier and
∧ or ∨ in the formula Ψ. Level 1 contains only the output gate which
corresponds to Q1, which as mentioned above is named by the empty vector
~0 of lenght 0. Now we start recursivly: For each gate g in level i, where
i ≥ 1, we add n gates in level i+1 corresponding to the Quantifier Qi+1 and
connect them with g. We name the gates by the following rule: if the name
of gate g is ~α of length i − 1, then the j-th successor gate g′ of g has the
name ~β where l(~β) = l(~α) + 1 = i, βj = αj for 1 ≤ j ≤ i − 1 , and βi = j.
This we do until level k. After that there are two levels corresponding to
propositional gates of fan-in m resp. m′.

That means that the connection language Lpred(CΨ) consists of four sets,
describing the predecessors of Q-gates,

{PACK3
n,k+2(~α, ~β,~γ) | n ≥ k + 3, l(~α) + 1 = l(~β) < k, l(~γ) = 1, αi = βi

for 1 ≤ i ≤ l(~α), β
l(~β)

= γ1} (1)

of disjunctions at level k + 1

{PACK3
n,k+2(~α, ~β,~γ) | n ≥ k + 2, l(~α) + 1 = l(~β) = k + 1, l(~γ) = 1,

αi = βi for 1 ≤ i ≤ k, βk+1 = γ1 ≤ m} (2)

of conjunctions at level k + 2

{PACK3
n,k+2(~α, ~β,~γ) | n ≥ 2, l(~α) + 1 = l(~β) = k + 2, l(~γ) = 1,

6

αi = βi for 1 ≤ i ≤ k + 1, αk+1 ≤ m,
βk1

= γ1 ≤ m′} (3)

and of Inputs

{PACK3
n,k+2(~α, ~β,~γ) | n ≥ k + 2, l(~α) = k + 2, l(~β) = l(~γ) = 1,

(αk+1, αk+2) ∈ Ja, β1 = ρ(αk+1, αk+2),
γ1 = 1}. (4)

Here Ja is the set of all (i.j), i ≤ m, j ≤ m′ such that Ai,j is a Ca(xt)
predicate, where we write t = ρ(i, j) as a function of i and j.

Since k, m, m′, Ja and the mapping ρ are constant the resulting set Lpred

is easily seen to be a member of L(FO[<,X]).
The type languages are easy to describe as well. For τ ∈ Q let Jτ be

the set {1 ≤ i ≤ k | Qi is of type τ}. Then Lτ (CΨ) = {PACKn,k+2(~α) |
l(~α) + 1 ∈ Jτ}. Further on we have

L∨(CΨ) = {PACKn,k+2(~α) | n ≥ k + 2, l(~α) = k},

L∧(CΨ) = {PACKn,k+2(~α) | n ≥ k + 2, l(~α) = k + 1, αk+1 ≤ m}, and

LIa
(CΨ) = {PACKn,k+2(~α) | n ≥ k + 2, l(~α) = k + 2, (αk+1, αk+2) ∈ Ja}

All these languages are obviously definable in FO[<,X]. To compute Ltrue(CΨ)
and Lfalse(CΨ) let JP be the set of all (i, j) with i ≤ m, j ≤ m′ such that
Ai,j is a numerical predicate in X using some of the variable in {x1, · · · , xk}.
Then for each vector α ∈ {1, · · · , n}k the relation w~x=~α |= Ai,j is definable
in FO[<,X] for arbitrary w ∈ Σ∗ such that |w| ≥ k + 2.. Hence we have

Ltrue(CΨ) = {PACKn,k+2(~α) | n ≥ k + 2, l(~α) = k + 2,
(αk+1, αk+2) ∈ JP , w~x=~α |= Ai,j} and

Lfalse(CΨ) = {PACKn,k+2(~α) | n ≥ k + 2, l(~α) = k + 2,
(αk+1, αk+2) ∈ JP , w~x=~α 6|= Ai,j} (5)

Also these two sets are obviously member of L(FO[<,X]).

Observations

The depth of the circuit Cn is constant and only depending on the number
of quantifiers in the formula Ψ. The type of a gate g depends only on its
level in the circuit except for the last level. The relations in X used in the
formula are carried out by the uniformity formula. To this point, we can
handle only gates that have constant or linear fan-in.

7

5.2 Quantification over tuples

Here we shortly indicate the modifications in our construction in order to
cope with quantification over tuples of variables. When dealing with such
quantifiers we use the following extension in our uniformity languages: In-
stead of spending one new entry in the naming vector of gate g, we add di

entries in the naming vector if we have to handle a quantifier Qi over a di

tuple of variables. Each new entry corresponds to a variable in the tuple.
Thus the simulating gate has nd predecessors in the circuit for inputs of
length n. In this way we have to add the number di where we added a 1 in
the type and in the predecessor language.

6 From Circuits to Logic

In this section we show how to simulate an FO[<,X]-uniform QC0 circuit
by a Q[<,X] formula. We are given languages Lpred(C) and Lτ (C) for
τ ∈ Q ∪ Σ ∪ {∧,∨, true, false} accepted by FO[<,X] formulae Ψpred and
Ψτ .

6.1 Translating connectivity languages into Σ∗ ⊗ V

As a first step we translate these uniformity relations given by words in Γ∗
3k

resp. Γ∗
k into formulae Φpred(~x, x′, ~y, y′, ~z, z′) = T (Ψpred) and Φτ (~x, x′) =

T (Ψτ). After the translation the connectivity is no longer stored in an
input word in Γn

k but instead in three k-dimensional vectors of variables
attached to an input word in Σn for the predecessor information. The type
information can be stored in one vector of length k. More formally, we
represent a vector ~α ∈ {1, · · · , n}d, 0 ≤ d ≤ k by the following variable
values: x1 = α1, · · · , xl(~α) = αl(~α), and the remaining xi, i > l(~α) arbitrary.
This makes it necessary to store the value of l(~α) in some variable x′. Since a
variable can only store values between 1 and n, we represent this by attaching
variable x′ at position l(~α)+1. (Thus we increase the lower bound assumed
to hold for the input words by one.) In the following translation we use
the fact that if a word v is accepted by Ψsomething , then v fulfilles in every
i. − th component row that there is an 1 ≤ j ≤ |v| such that Ca(i.y) for all
y ≤ j and Cb(i.y) for all y > j.

We now describe the translation T (·). Variables inside of Ψsomething are
denoted by capital letters, while x, y, z · · · stand for free variables, i.e.: pa-
rameters, of T (Ψsomething). The translation follows inductively the termstruc-
ture of Ψ:

8

1. T (Φ1 ∧ Ψ2) := T (Ψ1) ∧ T (Ψ2),

2. T (∃XΦ1) = ∃XT (Φ1),

3. T (X < Y) = X < Y,

4. T (Ca(i.X)) = X ≤ x.i ∧ X < x′ and

5. T (Cb(i.X)) = X > x.i ∨ X ≥ x′.

The essential translations of the Ca-predicates are due to the following ob-
servation: a vector ~α of length d ≤ k of numbers between 1 and n is coded
as a word v ∈ ({a, b}k)n such the i.− th row contains aαibn−αi for 1 ≤ i ≤ d
while the remaining k − d rows contain bn.

6.2 The construction for gates of linear fan-in

We are now ready to indicate our construction which follows the usual ap-
proach of defining the acceptance of a gate at depth i in terms of gates
describing the acceptance at depth i − 1 ([8]). Since ∃x1, · · · , xk is equiv-
alent to ∃x1 · · · ∃xk (and the same for universal quantifiers) we will use in
the following the first order quantification over tuples also in this linear case
to improve readability.

Let d be the depth of the FO[<,X] uniform circuit familiy C = (Cn)n∈N.
Further on let Φpred(~x, x′, ~y, y′, ~z, z′) and Φτ (~x, x′) for τ ∈ Q ∪ Σ ∪ {∧,∨,
true, false} be the FO[<,X] obtained after the translation described in the
previous subsection.

Again we start with the case of linear fan-in. In this case we can assume
to have Φpred the free variables ~x, x′, ~y, y′, z since the single variable z is now
enough to count through all predecessors.

For i = 0, 1, · · · , d we define now a formula ACCi(~x, x′) which is true if
the values of ~x, x′ refer to an accepting gate at depth i.

For i = 0 this means to ask wether ~x, x′ refers to an constant input true
or a positive input variable:

ACC0(~x, x′) = Φtrue(~x, x′) ∨

(

∨

a∈Σ

Φa(~x, x′) ∧ ∃y Φpred(~x, x′, y, 1) ∧ Ca(y)

)

Here ∃y Φpred(~x, x′, y, 1) is an abbreviation to existentially quantify over all
~y, y′, z such that Φpred(~x, x′, ~y, y′, z) holds and in addition z = 1, y′ = 1, and
we then ask for Ca(y1) instead of Ca(y).

9

The main part of the construction is now the the recursive definition of
ACCi(~x, x′). This is essentially a disjunction over all τ ∈ Q∪Σ∪{∧,∨}. The
cases ∧ and ∨ can be treated like first order quantifiers. For the quantifier
types we have three cases:

τ is a quantifier with false as identity: this covers for instance exis-
tential and modulo counting quantifiers. In this case ACCi(~x, x′) con-
tains disjuntively the clause:

Φτ (~x, x′) ∧ Qτ z ∃ ~y, y′
(

Φpred(~x, x′, ~y, y′, z) ∧ ACCi−1(~y, y′)
)

.

τ is a quantifier with true as identity: this covers for instance the uni-
versal quantifier. In this case ACCi(~x, x′) contains disjuntively the
clause:

Φτ (~x, x′) ∧ Qτ z ∀ ~y, y′
(

Φpred(~x, x′, ~y, y′, z) ⇒ ACCi−1(~y, y′)
)

.

τ is the majority quantifier: here we make use of the ability to define
the counting quantifier ∃=y x in Maj[<]2. In this case ACCi(~x, x′)
contains disjunctively the clause:

∃ y+ ∃ y− ((∃=y+ z ∃ ~y, y′ (Φpred(~x, x′, ~y, y′, z) ∧ ACCi−1(~y, y′)))
∧ (∃=y− z ∃ ~y, y′ (Φpred(~x, x′, ~y, y′, z) ∧ ¬ACCi−1(~y, y′))) ∧ (y+ > y−)).

That is we express by y+ and y− the number of positive and negative
predecessors and require that y+ > y−. The M̃aj quantifier would be
expressed by y+ ≥ y−.

Finally, we can express w ∈ L by w |= ∃~x,x′ ACCd(~x, x′) ∧ x′ = 1 since the

vector ~x, x′ with X ′ = 1 denotes the empty vector ~0 which is the name of
the output gate.

�

6.3 Handling gates of superlinear fan-in

Working with superlinear fan-in makes necessary to use connectivity formu-
lae Φpred with free variables ~x, x′, ~y, y′, ~z, z′. The quantifier Qτ simulating
a gate of type τ now quantifies over a tuple ~z, z′. In the case of majority
quantifiers we now count sums of fulfilling and of rejecting predecessors in
variable vectors ~y+ and ~y−. The rest of the construction goes through. It
could be remarked that we could handle a fan-in larger than the input size
as long as it is linear since we can add O(1) many number bounded by n in
Maj[<].

2Observe that the case “y = 0” needs some care.

10

7 Consequences

Concerning first order and modulo counting quantifiers we get that first or-
der uniformity is very weak since it only recognize regular languages, namely
the starfree regular sets and the solvable regular languages:

Corollary 7.1.

FO[<] − AC0 = L(FO[<]) and FO[<] − ACC0 = L(FO + Mod[<]).

Here we used the fact that first order and modular counting quantifiers
ranging over tuples of variables can be simulated by a vector or quantifiers
ranging over a single variable. If we allow addition in the uniformity descrip-
tion we come to circuit characterizations of classes of the form L(FO+Q[+])
answering a question of Roy and Straubing ([6]):

Corollary 7.2.

FO[+] − AC0 = L(FO[+]) and FO[+] − ACC0 = L(FO + Mod[+]).

When working with majority gates FO[<]-uniformity does not restrict
the resulting circut class:

Corollary 7.3.

FO[<] − TC0
LIN = L(Maj[<]) = FO[+] − TC0

LIN and

FO[<] − TC0 = L(Maj2[<]) = FO[+, ∗] − TC0
LIN = FO[+, ∗] − TC0.

These relations which give the first circuit characterization of the class
L(Maj[<]) are obtained by combining results in [1] and [4].

Discussion

Our results extending the results of Barrington et al. ([1]) leave open when
it is possible to remove the condition that Q contains first-order quantifiers.
It should be noted that the use of first order quantifiers is quite restrictied.
for instance the occurring existential quantifiers are unique, i.e.: could also
be replaced by Mod1(k) for k ≥ 2. It might be possible to get our results
also for CC0 circuits.

Another question is whether we need the condition that the quantifiers
in Q need an identity element. The treatment of the majority quantifier
indicates that a more general statement is possible.

11

Finally we mention that FO[<]-uniformity seems to be sufficient for
higher complexity classes. It is very easy to see that Ladners construction
of a polynomial size circuit simulation a polynomial time machine is FO[<]-
uniform. It is possible to show this for all NCk?

Acknowledgments

We thank Andreas Krebs and Stephanie Reifferscheid for very valuable dis-
cussions on this topic.

References

[1] D.A. Barrington, N. Immerman, and H. Straubing. On uniformity within
NC1. J. Comp. System Sci., 41:274–306, 1990.

[2] D. Barrington, N. Immerman, C. Lautemann, N. Schweickardt, and
D. Therien. The Crane Beach Conjecture. In Proc. of the 16th IEEE

Symposium On Logic in Computer Science, pages 187–196, 2001.

[3] A. Krebs, K.-J. Lange, and S. Reifferscheid. Characterizing TC0 in terms
of infinite groups. proc. of the 22nd STACS 2005, LNCS 3404, 496-507,
2005.

[4] K.-J. Lange. Some results on majority quantifiers over words. In Proc. of

the 19th IEEE Conference on Computational Complexity, pages 123–129,
2004.

[5] C. Lautemann, P. McKenzie, T. Schwentick, and H. Vollmer. The
descriptive complexity approach to LOGCFL. J. Comp. System Sci.,
62:629–652, 2001.

[6] A. Roy and H. Straubing. Definability of Languages by Generalized
First-Order Formulas over (N,+). In Proc. of the 23rd STACS 2006, to
appear.

[7] N. Schweikardt. On the Expressive Power of First-Order Logic with
Built-In Predicates. Dissertation, Universität Mainz, 2001.

[8] H. Straubing. Finite Automata, Formal Logic, and Circuit Complexity.
Birkhäuser, 1994.

12

