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Workload Identities

► WIMSE WG is working on workload identities

► Goals of a workload identity

▪ Enable zero trust in backends

▪ Certify newly spawned workload instances

▪ Uniquely identify workload instances

▪ Point-to-point authentication of microservices

► Why stop at backends?

▪ Zero trust also needs user authentication!

► Goal: enable end-to-end authentication between 

users and workloads!
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Workload Identities

► WIMSE WG is working on workload identities

► Goals of a workload identity

▪ Enable zero trust in backends

▪ Certify newly spawned workload instances

▪ Uniquely identify workload instances

▪ Point-to-point authentication of microservices

► Why stop at backends?

▪ Zero trust also needs user authentication!

► Goal: enable end-to-end authentication between 

users and workloads!

► Advantages:

▪ Same API for users and workloads

▪ More security for users
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Terms

► Workload = Backend (Micro)service, e.g., VM, Container, Serverless Function, …

▪ Provides a network-faced interface, e.g., REST API, Web Socket, WebRTC, MQTT, 

Kafka, gRPC, …

► Workload Identity = Certificate for cryptographic authentication, e.g., X.509 cert, 

sender-constraint token, …

► User = Client, e.g., native app, web app, voice service, …

▪ Communicates to the network-faced interface of a workload, e.g., REST API, Web 

Socket, …

► User Identity = Client certificate of the user, e.g., X.509 cert, sender-constraint Access 

Token, …

► Service = Group of workloads
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Zero Trust with Clients?

► What is wrong with client-to-server authentication?

▪ We already have TLS, mutual TLS, HTTP 

Message Signatures, Bearer Tokens, sender-

constraint tokens, FIDO2 / Passkeys, etc. !

► Do we really need more?
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Zero Trust with Clients!

► What is wrong with client-to-server authentication?

▪ We already have TLS, mutual TLS, HTTP 

Message Signatures, Bearer Tokens, sender-

constraint tokens, FIDO2 / Passkeys, etc. !

► Do we really need more?

▪ Yes!

► (Reverse) Proxies terminate TLS

▪ Breaks client-to-server confidentiality

− Proxy provider sees clear-text credentials

▪ Breaks mutual TLS connections

− Workload must trust the reverse proxy

▪ Breaks some FIDO2 / Passkey features

− TLS Channel binding of WebAuthN not possible
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Zero Trust with Clients and Servers!

► What is wrong with client-to-server authentication?

▪ We already have TLS, mutual TLS, HTTP 

Message Signatures, Bearer Tokens, sender-

constraint tokens, FIDO2 / Passkeys, etc. !

► Do we really need more?

▪ Yes!

► Twice the effort for user and workload usage

▪ Users’ clients must be authenticated via OIDC or 

authorized via OAuth 2

− Client-to-server authentication via bearer or 

sender-constraint token

▪ Workloads must be certified by Attestation Server

− Workload identity as X.509 cert (mTLS) or bearer 

Token (JWT)
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Zero Trust with Clients and Servers!

► What is wrong with client-to-server authentication?

▪ We already have TLS, mutual TLS, HTTP 

Message Signatures, Bearer Tokens, sender-

constraint tokens, FIDO2 / Passkeys, etc. !

► Do we really need more?

▪ Yes!

► Twice the effort for user and workload usage

▪ Users’ clients must be authenticated via OIDC or 

authorized via OAuth 2

− Client-to-server authentication via bearer or 

sender-constraint token

▪ Workloads must be certified by Attestation Server

− Workload identity as X.509 cert (mTLS) or bearer 

Token (JWT)
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Identity Certification Token (ICT)

► Sender-constraint JWTs are the solution!

▪ JWT-equivalent for X.509 certificates on the 

application layer

− Works through (reverse) proxies!

▪ Standardized in RFC 7800

− Library and OpenID Provider implementations 

already exist!

▪ Flexible data structure (JSON) for payload

− “cnf” claim contains user’s / workload’s public 

key

− “iss” claim contains OpenID Provider’s / 

Attestation Server’s base URL

− “exp” contains expiration date

− Other standardized claims from OAuth 2, JWT, 

OIDC, etc. available!

► Certifies user / workload identity

▪ Called “Identity Certification Token (ICT)”

► Header:
{
"alg":"RS256",
"kid":"2C8ECC453BE4B0F5E4F58D9653E1E259",
"typ":"ict+jwt"

}

► Payload:

{
"iss": "https://issuer.example.com",
"aud": "https://workload.example.org",
"exp": 1361398824,
"cnf":{

"jwk":{
"kty": "EC",
"use": "sig",
"crv": "P-256",
"x": "18wHLeIgW9wVN6VD1Txgpqy2L…8njVAibvhM",
"y": "-V4dS4UaLMgP_4fY4j8ir7cgc…x535o7TkcSA"

}
}

}
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Certification

1. User’s client / workload generates asymmetric 

key pair 𝐾𝐴
±

▪ E.g., elliptic curve, RSA, …

2. User / workload authenticates themselves to the 

OpenID Provider

▪ User: login with credentials / Passkey / …

▪ Workload: remote attestation, API key, …

▪ Both: public key + proof of possession

3. OpenID Provider verifies credentials and proof 

of possession, and issues an Identity 

Certification Token (𝑰𝑪𝑻𝑨)

4. OpenID Provider issues 𝐼𝐶𝑇𝐴 to user / workload

▪ Contains public key as confirmation (cnf) claim

▪ Contains other claims about the user’s / 

workload’s identity
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Authentication

1. User’s client / workload adds 𝐼𝐶𝑇𝐴 to the 

request and signs it with its private key 𝐾𝐴
−

▪ ICT as sender-constraint in Authorization header 

(RFC 9449)

▪ HTTP Message Signatures (RFC 9421)

2. Service validates 𝐼𝐶𝑇𝐴 and signature

▪ 𝐼𝐶𝑇𝐴 issuer trusted?

▪ 𝐼𝐶𝑇𝐴 valid and user / workload authorized?

▪ HTTP Message Signature valid?

3. Service (= workload) adds its own 𝐼𝐶𝑇𝐵 to the 

response and signs it with its private key 𝐾𝐵
−

▪ 𝐼𝐶𝑇𝐵 in header

▪ HTTP Message Signatures (RFC 9421)

4. User / workload verifies service’s 𝐼𝐶𝑇𝐵 and 

response signature

▪ Requires trust in service’s OpenID Provider
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Encryption + Authentication

1. User’s client / workload adds 𝐼𝐶𝑇𝐴 and Diffie-

Hellman request parameters to the request 

and signs it with its private key

▪ Initializes a signed Diffie-Hellman key exchange

2. Service validates 𝐼𝐶𝑇𝐴 and signature and 

generates own Diffie-Hellman parameters

▪ Service can already compute shared secret

3. Service (= workload) adds its own 𝐼𝐶𝑇𝐵 and 

Diffie-Hellman parameters to the response, 

encrypts the payload with the shared secret

and signs it with its private key

4. User / workload verifies service’s 𝐼𝐶𝑇𝐵 and 

response signature, computes shared secret 

and decrypts payload
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Advanced Encryption

► Exchanged shared secrets can be reused when 

creating a session

▪ Only one initial key exchange required

▪ Allows encrypted requests

► Keys can be rotated

▪ Timed, e.g., every 10 minutes

▪ In each request/response

− Implements a Diffie-Hellman ratchet, see Signal

► Works stateless with session tokens

▪ Session token is a JWT which contains the 

current state

▪ Session token is symmetrically encrypted, MAC-

ed, and issued by the service

▪ Prevents synchronization errors in parallel 

requests
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Further Steps

► We call the underlaying technology Open Identity Certification with OpenID Connect (OIDC²)

▪ Peer-reviewed paper available on IEEE OJCOMS: https://doi.org/10.1109/OJCOMS.2024.3376193

► Demo available on GitHub: https://github.com/JonasPrimbs/oidc2-demo

▪ Also contains demo for email with Google Mail, instant messaging with Matrix (soon), and video 

conferencing with WebRTC (soon)

► Questions, suggestions, cooperation requests?

▪ Email to jonas.primbs@uni-tuebingen.de

▪ LinkedIn: https://www.linkedin.com/in/jonasprimbs/

▪ X: https://x.com/JonasPrimbs
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