
Communication Networks

http://kn.inf.uni-tuebingen.de

End-to-End Identities for Humans and Machines

By Jonas Primbs M.Sc., Chair of Communication Networks, University of Tübingen, Germany

Workload Identities

► WIMSE WG is working on workload identities

► Goals of a workload identity

▪ Enable zero trust in backends

▪ Certify newly spawned workload instances

▪ Uniquely identify workload instances

▪ Point-to-point authentication of microservices

► Why stop at backends?

▪ Zero trust also needs user authentication!

► Goal: enable end-to-end authentication between

users and workloads!

Jonas Primbs - End-to-End Identities for Humans and Machines 2

Backend Service

zero trust

certify

zero trust

zero trust ?

User

Workload A Workload B Workload C

Attestation Server

Workload Identities

► WIMSE WG is working on workload identities

► Goals of a workload identity

▪ Enable zero trust in backends

▪ Certify newly spawned workload instances

▪ Uniquely identify workload instances

▪ Point-to-point authentication of microservices

► Why stop at backends?

▪ Zero trust also needs user authentication!

► Goal: enable end-to-end authentication between

users and workloads!

► Advantages:

▪ Same API for users and workloads

▪ More security for users

Jonas Primbs - End-to-End Identities for Humans and Machines 3

Backend Service

certifyzero trust

User

Workload A Workload B Workload C

Attestation ServerWorkload D

/

zero trust zero trust

Terms

► Workload = Backend (Micro)service, e.g., VM, Container, Serverless Function, …

▪ Provides a network-faced interface, e.g., REST API, Web Socket, WebRTC, MQTT,

Kafka, gRPC, …

► Workload Identity = Certificate for cryptographic authentication, e.g., X.509 cert,

sender-constraint token, …

► User = Client, e.g., native app, web app, voice service, …

▪ Communicates to the network-faced interface of a workload, e.g., REST API, Web

Socket, …

► User Identity = Client certificate of the user, e.g., X.509 cert, sender-constraint Access

Token, …

► Service = Group of workloads

Jonas Primbs - End-to-End Identities for Humans and Machines 4

User

Workload

Zero Trust with Clients?

► What is wrong with client-to-server authentication?

▪ We already have TLS, mutual TLS, HTTP

Message Signatures, Bearer Tokens, sender-

constraint tokens, FIDO2 / Passkeys, etc. !

► Do we really need more?

Jonas Primbs - End-to-End Identities for Humans and Machines 5

Backend Service

certifyzero trust

Workload A Workload B Workload C

Attestation ServerUser

zero trust zero trust

Zero Trust with Clients!

► What is wrong with client-to-server authentication?

▪ We already have TLS, mutual TLS, HTTP

Message Signatures, Bearer Tokens, sender-

constraint tokens, FIDO2 / Passkeys, etc. !

► Do we really need more?

▪ Yes!

► (Reverse) Proxies terminate TLS

▪ Breaks client-to-server confidentiality

− Proxy provider sees clear-text credentials

▪ Breaks mutual TLS connections

− Workload must trust the reverse proxy

▪ Breaks some FIDO2 / Passkey features

− TLS Channel binding of WebAuthN not possible

Jonas Primbs - End-to-End Identities for Humans and Machines 6

no trust

User

Proxy

Backend Service

certify

Workload A Workload B Workload C

Attestation Server

zero trust zero trust

no trust

Zero Trust with Clients and Servers!

► What is wrong with client-to-server authentication?

▪ We already have TLS, mutual TLS, HTTP

Message Signatures, Bearer Tokens, sender-

constraint tokens, FIDO2 / Passkeys, etc. !

► Do we really need more?

▪ Yes!

► Twice the effort for user and workload usage

▪ Users’ clients must be authenticated via OIDC or

authorized via OAuth 2

− Client-to-server authentication via bearer or

sender-constraint token

▪ Workloads must be certified by Attestation Server

− Workload identity as X.509 cert (mTLS) or bearer

Token (JWT)

Jonas Primbs - End-to-End Identities for Humans and Machines 7

zero trust**

Workload D

/
User OpenID Provider

authenticate

zero trust*

* only with sender-constraint tokens

Backend Service

certify

Workload A Workload B Workload C

Attestation Server

zero trust zero trust

** only with mTLS

Zero Trust with Clients and Servers!

► What is wrong with client-to-server authentication?

▪ We already have TLS, mutual TLS, HTTP

Message Signatures, Bearer Tokens, sender-

constraint tokens, FIDO2 / Passkeys, etc. !

► Do we really need more?

▪ Yes!

► Twice the effort for user and workload usage

▪ Users’ clients must be authenticated via OIDC or

authorized via OAuth 2

− Client-to-server authentication via bearer or

sender-constraint token

▪ Workloads must be certified by Attestation Server

− Workload identity as X.509 cert (mTLS) or bearer

Token (JWT)

Jonas Primbs - End-to-End Identities for Humans and Machines 8

zero trust

Workload D

/
User

OpenID Provider

authenticate

zero trust

Backend Service

certify

Workload A Workload B Workload C
zero trust zero trustsender-

constraint

Simple

Identity Certification Token (ICT)

► Sender-constraint JWTs are the solution!

▪ JWT-equivalent for X.509 certificates on the

application layer

− Works through (reverse) proxies!

▪ Standardized in RFC 7800

− Library and OpenID Provider implementations

already exist!

▪ Flexible data structure (JSON) for payload

− “cnf” claim contains user’s / workload’s public

key

− “iss” claim contains OpenID Provider’s /

Attestation Server’s base URL

− “exp” contains expiration date

− Other standardized claims from OAuth 2, JWT,

OIDC, etc. available!

► Certifies user / workload identity

▪ Called “Identity Certification Token (ICT)”

► Header:
{
"alg":"RS256",
"kid":"2C8ECC453BE4B0F5E4F58D9653E1E259",
"typ":"ict+jwt"

}

► Payload:

{
"iss": "https://issuer.example.com",
"aud": "https://workload.example.org",
"exp": 1361398824,
"cnf":{

"jwk":{
"kty": "EC",
"use": "sig",
"crv": "P-256",
"x": "18wHLeIgW9wVN6VD1Txgpqy2L…8njVAibvhM",
"y": "-V4dS4UaLMgP_4fY4j8ir7cgc…x535o7TkcSA"

}
}

}

Jonas Primbs - End-to-End Identities for Humans and Machines 9

Certification

1. User’s client / workload generates asymmetric

key pair 𝐾𝐴
±

▪ E.g., elliptic curve, RSA, …

2. User / workload authenticates themselves to the

OpenID Provider

▪ User: login with credentials / Passkey / …

▪ Workload: remote attestation, API key, …

▪ Both: public key + proof of possession

3. OpenID Provider verifies credentials and proof

of possession, and issues an Identity

Certification Token (𝑰𝑪𝑻𝑨)

4. OpenID Provider issues 𝐼𝐶𝑇𝐴 to user / workload

▪ Contains public key as confirmation (cnf) claim

▪ Contains other claims about the user’s /

workload’s identity

Jonas Primbs - End-to-End Identities for Humans and Machines 10

Workload

/
User OpenID Provider A

authentication

certification

𝐼𝐶𝑇𝐴 𝐼𝐶𝑇𝐴

𝐾𝐴
±

𝐾𝐴
+

𝐾𝑂𝑃𝐴
±

Authentication

1. User’s client / workload adds 𝐼𝐶𝑇𝐴 to the

request and signs it with its private key 𝐾𝐴
−

▪ ICT as sender-constraint in Authorization header

(RFC 9449)

▪ HTTP Message Signatures (RFC 9421)

2. Service validates 𝐼𝐶𝑇𝐴 and signature

▪ 𝐼𝐶𝑇𝐴 issuer trusted?

▪ 𝐼𝐶𝑇𝐴 valid and user / workload authorized?

▪ HTTP Message Signature valid?

3. Service (= workload) adds its own 𝐼𝐶𝑇𝐵 to the

response and signs it with its private key 𝐾𝐵
−

▪ 𝐼𝐶𝑇𝐵 in header

▪ HTTP Message Signatures (RFC 9421)

4. User / workload verifies service’s 𝐼𝐶𝑇𝐵 and

response signature

▪ Requires trust in service’s OpenID Provider

Jonas Primbs - End-to-End Identities for Humans and Machines 11

Workload

/
User OpenID Provider A

Service

𝐼𝐶𝑇𝐴

signed

request

signed

response

𝐼𝐶𝑇𝐵

𝐼𝐶𝑇𝐵𝐼𝐶𝑇𝐴

trust

trust

OpenID Provider B

𝐾𝑂𝑃𝐴
±

𝐾𝐴
±

𝐾𝐵
±

𝐾𝑂𝑃𝐵
±

Encryption + Authentication

1. User’s client / workload adds 𝐼𝐶𝑇𝐴 and Diffie-

Hellman request parameters to the request

and signs it with its private key

▪ Initializes a signed Diffie-Hellman key exchange

2. Service validates 𝐼𝐶𝑇𝐴 and signature and

generates own Diffie-Hellman parameters

▪ Service can already compute shared secret

3. Service (= workload) adds its own 𝐼𝐶𝑇𝐵 and

Diffie-Hellman parameters to the response,

encrypts the payload with the shared secret

and signs it with its private key

4. User / workload verifies service’s 𝐼𝐶𝑇𝐵 and

response signature, computes shared secret

and decrypts payload

Jonas Primbs - End-to-End Identities for Humans and Machines 12

Workload

/
User OpenID Provider A

Service

𝐼𝐶𝑇𝐴

signed

request

trust

𝐼𝐶𝑇𝐵

𝐼𝐶𝑇𝐵𝐼𝐶𝑇𝐴

encrypted +

signed

response

OpenID Provider B

trust 𝐾𝑂𝑃𝐴
±

𝐾𝑂𝑃𝐵
±

Advanced Encryption

► Exchanged shared secrets can be reused when

creating a session

▪ Only one initial key exchange required

▪ Allows encrypted requests

► Keys can be rotated

▪ Timed, e.g., every 10 minutes

▪ In each request/response

− Implements a Diffie-Hellman ratchet, see Signal

► Works stateless with session tokens

▪ Session token is a JWT which contains the

current state

▪ Session token is symmetrically encrypted, MAC-

ed, and issued by the service

▪ Prevents synchronization errors in parallel

requests

Jonas Primbs - End-to-End Identities for Humans and Machines 13

Workload

/
User OpenID Provider A

Service

𝐼𝐶𝑇𝐴

encrypted

+ signed

request

trust

𝐼𝐶𝑇𝐵

𝐼𝐶𝑇𝐵𝐼𝐶𝑇𝐴

encrypted +

signed

response

OpenID Provider B

trust 𝐾𝑂𝑃𝐴
±

𝐾𝑂𝑃𝐵
±

Further Steps

► We call the underlaying technology Open Identity Certification with OpenID Connect (OIDC²)

▪ Peer-reviewed paper available on IEEE OJCOMS: https://doi.org/10.1109/OJCOMS.2024.3376193

► Demo available on GitHub: https://github.com/JonasPrimbs/oidc2-demo

▪ Also contains demo for email with Google Mail, instant messaging with Matrix (soon), and video

conferencing with WebRTC (soon)

► Questions, suggestions, cooperation requests?

▪ Email to jonas.primbs@uni-tuebingen.de

▪ LinkedIn: https://www.linkedin.com/in/jonasprimbs/

▪ X: https://x.com/JonasPrimbs

Jonas Primbs - End-to-End Identities for Humans and Machines 14

https://doi.org/10.1109/OJCOMS.2024.3376193
https://github.com/JonasPrimbs/oidc2-demo
mailto:jonas.primbs@uni-tuebingen.de
https://www.linkedin.com/in/jonasprimbs/
https://x.com/JonasPrimbs

	Intro
	Folie 1: End-to-End Identities for Humans and Machines
	Folie 2: Workload Identities
	Folie 3: Workload Identities

	Foundations
	Folie 4: Terms
	Folie 5: Zero Trust with Clients?
	Folie 6: Zero Trust with Clients!
	Folie 7: Zero Trust with Clients and Servers!
	Folie 8: Zero Trust with Clients and Servers!

	Technology
	Folie 9: Identity Certification Token (ICT)
	Folie 10: Certification
	Folie 11: Authentication
	Folie 12: Encryption + Authentication
	Folie 13: Advanced Encryption

	Outro
	Folie 14: Further Steps

