EBERHARD KARLS
UNIVERSITAT e
TUBINGEN

End-to-End Identities for Humans and Machines

By Jonas Primbs M.Sc., Chair of Communication Networks, University of Tubingen, Germany

http://kn.inf.uni-tuebingen.de

EBERHARD KARLS

UNIVERSITAT
TUBINGEN

Workload Identities

» WIMSE WG is working on workload identities

» Goals of a workload identity
= Enable zero trust in backends
= Certify newly spawned workload instances
= Uniquely identify workload instances
= Point-to-point authentication of microservices

» Why stop at backends?
= Zero trust also needs user authentication!

» Goal: enable end-to-end authentication between
users and workloads!

‘ i
P-4 IIII
User Attestation Server

l Zero trust ?

’ (-] > X
el “ el
===ps== zero trust === zero trust ==
Workload A Workload B Workload C

fil

Backend Service

Jonas Primbs - End-to-End Identities for Humans and Machines

EBERHARD KARLS

UNIVERSITAT
TUBINGEN

Workload Identities

» WIMSE WG is working on workload identities

» Goals of a workload identity
= Enable zero trust in backends
= Certify newly spawned workload instances
= Uniquely identify workload instances
= Point-to-point authentication of microservices

» Why stop at backends?
= Zero trust also needs user authentication!

» Goal: enable end-to-end authentication between
users and workloads!

» Advantages:
= Same API for users and workloads
= More security for users

O — -
-/ = -
User Workload D Attestation Server
l Zero trust
cs ., com ., o

o > oOEm —>
=="= zerotrust ==*= zero trust ==

Workload A Workload B

Workload C

Backend Service

Jonas Primbs - End-to-End Identities for Humans and Machines

EBERHARD KARLS

UNIVERSITAT

TUBINGEN Terms
» Workload = Backend (Micro)service, e.g., VM, Container, Serverless Function, ... =

= Provides a network-faced interface, e.g., REST API, Web Socket, WebRTC, MQTT, I

Kafka, gRPC, ... Workload

» Workload Identity = Certificate for cryptographic authentication, e.g., X.509 cert,

sender-constraint token, ...
» User = Client, e.g., native app, web app, voice service, ... ‘

= Communicates to the network-faced interface of a workload, e.g., REST API, Web U

ser

Socket, ...

» User Identity = Client certificate of the user, e.g., X.509 cert, sender-constraint Access
Token, ...

» Service = Group of workloads

Jonas Primbs - End-to-End Identities for Humans and Machines

EBERHARD KARLS

UNIVERSITAT
TUBINGEN

Zero Trust with Clients?

» What is wrong with client-to-server authentication?

= We already have TLS, mutual TLS, HTTP
Message Signatures, Bearer Tokens, sender-
constraint tokens, FIDO2 / Passkeys, etc. !

» Do we really need more?

‘ i
P-4 IIII
User Attestation Server

l zero trust

— = — =
- o, >

wemmme= zero trust === zero trust =—"—
Workload A Workload B Workload C

fil

Backend Service

Jonas Primbs - End-to-End Identities for Humans and Machines

EBERHARD KARLS

UNIVERSITAT
TUBINGEN

Zero Trust with Clients!

» What is wrong with client-to-server authentication?

= We already have TLS, mutual TLS, HTTP ®
Message Signatures, Bearer Tokens, sender- 0
constraint tokens, FIDO2 / Passkeys, etc. !

» Do we really need more?
= Yes!

User

Ino trust
» (Reverse) Proxies terminate TLS
= Breaks client-to-server confidentiality Proxy

-
1111}

Attestation Server

— Proxy provider sees clear-text credentials %
= Breaks mutual TLS connections 1no trust
— Workload must trust the reverse proxy
= Breaks some FIDO2 / Passkey features ——
— TLS Channel binding of WebAuthN not possible o
Workload A

> CECEN > EECE|
oo EEEE|
) .) E

Workload B Workload C

Backend Service

Jonas Primbs - End-to-End Identities for Humans and Machines

EBERHARD KARLS

UNIVERSITAT
TUBINGEN

Zero Trust with Clients and Servers!

» What is wrong with client-to-server authentication?

= We already have TLS, mutual TLS, HTTP
Message Signatures, Bearer Tokens, sender-
constraint tokens, FIDO2 / Passkeys, etc. !
» Do we really need more?

= Yes!

Fou_r"\'h \
» Lwieethe effort for user and workload usage

= Users’ clients must be authenticated via OIDC or
authorized via OAuth 2

— Client-to-server authentication via bearer or
sender-constrainttoken

= Workloads must be certified by Attestation Server

— Workload identity as X.509 cert (mTLS) or bearer
Token (JWT)

-

User Workload D

I
I
- —

-
IIIII

OpeniD Provider

X
-

m vz TWiCe |

Attestation Server

v
ey = = T &
m > ops «——> o

zero trust == zero tru

Workload A Workload B

St m———
Workload C

Backend Service

Jonas Primbs - End-to-End Identities for Humans and Machines

EBERHARD KARLS

UNIVERSITAT
TUBINGEN

Simple Zero Trust with Clients and Servers!

» What is wrong with client-to-server authentication?

= We already have TLS, mutual TLS, HTTP ® / ———
Message Signatures, Bearer Tokens, sender-) o=
constraint tokens, FIDO2 / Passkeys, etc. ! U 5
’ ’ ser Workload D
» Do we really need more? 4.4 I
" Yes! OpenID Provider
Once ! zero trust zero trust

» Lwieethe effort for user and workload usage

= Users’ clients must be authenticated via OIDC or
authorized via OAuth 2 &

— Client-to-server authentication via Peereset
sender-constraint token

= Workloads must be certified by Attestation Server

XN > XD > XN
XN XD XN

— Workload identity as>¢5689-eert-tm+=5-er-bearer s —> mEm —> s
Se"de"i Token (JWT) === zero trust === zero trust ===
constraint Workload A Workload B Workload C

Backend Service

Jonas Primbs - End-to-End Identities for Humans and Machines 8

EBERHARD KARLS

UNIVERSITAT
TUBINGEN

» Sender-constraint JWTs are the solution!
= JWT-equivalent for X.509 certificates on the
application layer
— Works through (reverse) proxies!
= Standardized in RFC 7800

— Library and OpenlD Provider implementations
already exist!

= Flexible data structure (JSON) for payload

— “cnf” claim contains user’s / workload’s public
key

— “Iss” claim contains OpenlD Provider’s /
Attestation Server’s base URL

— “exp” contains expiration date

— Other standardized claims from OAuth 2, JWT,
OIDC, etc. available!

» Certifies user / workload identity
= Called “Identity Certification Token (ICT)”

Identity Certification Token (ICT)

» Header:

{
"alg":"RS256",

"kid":"2C8ECCA53BE4BOF5E4F58D9653E1E259",
Iltypll : Ilict+jwtll

}
» Payload:
{
"iss": "https://issuer.example.com",

"aud": "https://workload.example.org",
"exp": 1361398824,

"enf" i {
"Jwk": {
"kty": "EC",
"use": "sig",

"crv": "P-256",
"x": "18wHLeIgWOwVN6VD1Txgpqy2L..8njVAibvhM",
"y": "-V4dS4UalLMgP 4fY4j8ir7cgc..x53507TkcSA"

}

Jonas Primbs - End-to-End Identities for Humans and Machines

EBERHARD KARLS

Rk Certification
1. User’s client / workload generates asymmetric Q’ ?? %
key pair K @ (i, com A i Kop,
= E.g., elliptic curve, RSA, ... i / o= I
2. User [/ workload authenticates themselves to the User Workload OpenlID Provider A
OpenlID Provider i ron
= User: login with credentials / Passkey / ... ICT, ICT,

= Workload: remote attestation, API key, ...
= Both: public key + proof of possession

3. OpenlD Provider verifies credentials and proof
of possession, and issues an ldentity
Certification Token (ICT,)

4. OpenlD Provider issues ICT, to user / workload
= Contains public key as confirmation (cnf) claim

= Contains other claims about the user’s /
workload’s identity

Jonas Primbs - End-to-End Identities for Humans and Machines 10

EBERHARD KARLS

UNIVERSITAT

Authentication

TUBINGEN
1. User’s client / workload adds ICT, to the Q’ %
request and signs it with its private key K, @ (i o - Kop,
= ICT as sender-constraint in Authorization header 0 / o= IIIIL
(RFC 9449) User Workload OpenlID Provider A
= HTTP Message Signatures (RFC 9421) uen) oren)
2. Service validates ICT, and signature ICT, | 4 ICTg
= |CT, issuer trusted?
= |CT, valid and user / workload authorized? _ _
= HTTP Message Signature valid? r;guneesi fg;iise
3. Service (= workload) adds its own ICTg to the
response and signs it with its private key Kz
= |CTg in header gevi g Q
= HTTP Message Signatures (RFC 9421) ICTAg 1CTs wil .
4. User [/ workload verifies service’s ICTy and o= &' IIII "o
response signature Service K3 OpenlID Provider B

= Requires trust in service’s OpenlD Provider

Jonas Primbs - End-to-End Identities for Humans and Machines 11

EBERHARD KARLS

Rk Encryption + Authentication
1. User’s client / workload adds ICT, and Diffie- %
Hellman request parameters to the request O o - Ko7,
and signs it with its private key n / o I
= |nitializes a signed Diffie-Hellman key exchange User Workload OpenID Provider A
2. Service validates ICT, and signature and Qren QTN
generates own Diffie-Hellman parameters ICT, | 4 ICTg
= Service can already compute shared secret
3. Service (= workload) adds its own ICTy and _ encrypted +
Diffie-Hellman parameters to the response, r;gu”ees‘i fégsr;i‘]r'lse
encrypts the payload with the shared secret
and signs it with its private key
4. User / workload verifies service’s ICTz and apVv!l ap w
response signature, computes shared secret oy R oy - .
and decrypts payload = IIIIT “oPs
Service OpenlID Provider B

Jonas Primbs - End-to-End Identities for Humans and Machines 12

EBERHARD KARLS

UNIVERSITAT

Advanced Encryption

TUBINGEN
» Exchanged shared secrets can be reused when s.
creating a session O o - Xop,
= Only one initial key exchange required . / o= 11114
" Allows encrypted requests User Workload OpenlD Provider A
X P
» Keys can be rotated ICTy | 4 1CTg
= Timed, e.g., every 10 minutes
+ In each request/response enerypted | | encrypied +
— Implements a Diffie-Hellman ratchet, see Signal request response
» Works stateless with session tokens apv | ap
= Session token is a JWT which contains the Q‘
current state " —— 1l m KL,
= Session token is symmetrically encrypted, MAC- o= ’
ed, and issued by the service Service OpenlID Provider B
= Prevents synchronization errors in parallel
requests

Jonas Primbs - End-to-End Identities for Humans and Machines 13

EBERHARD KARLS

UNIVERSITAT

TUBINGEN Further Steps

» We call the underlaying technology Open Identity Certification with OpenID Connect (OIDC?)
= Peer-reviewed paper available on IEEE OJCOMS: https://doi.org/10.1109/0JCOMS.2024.3376193

» Demo available on GitHub: https://github.com/JonasPrimbs/oidc2-demo

= Also contains demo for email with Google Mail, instant messaging with Matrix (soon), and video
conferencing with WebRTC (soon)

» Questions, suggestions, cooperation requests?
= Email to jonas.primbs@uni-tuebingen.de
= LinkedIn: https://www.linkedin.com/in/jonasprimbs/
= X: https://x.com/JonasPrimbs

Jonas Primbs - End-to-End Identities for Humans and Machines 14

https://doi.org/10.1109/OJCOMS.2024.3376193
https://github.com/JonasPrimbs/oidc2-demo
mailto:jonas.primbs@uni-tuebingen.de
https://www.linkedin.com/in/jonasprimbs/
https://x.com/JonasPrimbs

	Intro
	Folie 1: End-to-End Identities for Humans and Machines
	Folie 2: Workload Identities
	Folie 3: Workload Identities

	Foundations
	Folie 4: Terms
	Folie 5: Zero Trust with Clients?
	Folie 6: Zero Trust with Clients!
	Folie 7: Zero Trust with Clients and Servers!
	Folie 8: Zero Trust with Clients and Servers!

	Technology
	Folie 9: Identity Certification Token (ICT)
	Folie 10: Certification
	Folie 11: Authentication
	Folie 12: Encryption + Authentication
	Folie 13: Advanced Encryption

	Outro
	Folie 14: Further Steps

