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Disclosure Risk From Interactions and

Saturated Models in Remote Access

GERD RONNING1

(This version: June 20, 2011

Abstract

Empirical research using micro data via remote access has been ad-
vocated in recent time by statistical offices since confidentiality is easier
warranted for this approach. However, disclosure of single values and
units cannot be completely avoided. Binary regressors (dummy vari-
ables) bear a high risk of disclosure, especially if their interactions are
considered as it is done by definition in saturated models. However,
contrary to views expressed in earlier publications the risk is only ex-
isting if besides parameter estimates also predicted values are reported
to the researcher. The paper considers saturated specifications of the
most popular linear and nonlinear microeconometric models and shows
that in all cases the disclosure risk is high if some design points are
represented by a (very) small number of observations. For two of the
models not belonging to the exponential family (probit model and nega-
tive binomial regression model) we show that the same estimates of the
conditional expectations arise here although the parameter estimates
are defined by a modified equation. In the last section we draw at-
tention to the fact that interaction of binary regressors can be used to
construct ”strategic dummy variables”which lead to hight disclosure risk
as shown, for example, in Bleninger et al. (2010) for the linear model.
In this paper we extend the analysis to the set of established nonlinear
models, in particular logit, probit and count data models.

Keywords: logit model , probit model , poisson regression , negative
binomial regression model , strategic dummy variable , tabular data.
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1 Introduction

Many national official statistical agencies nowadays consider remote access
to micro data as the best compromise in balancing needs for confidentiality
against the users’ demand for original data. The fact that there is also a
disclosure risk from this way of providing the data, has been pointed out by
many authors. See, for example, Gomatam et al. (2005) and O’Keefe and
Good (2009) who consider various scenarios where the output sent back to
the user may contain confidential details. By far the best known example
is the simultaneous release of predicted values and residuals from which the
values of the dependent variable can be obtained by mere addition. Another
example is the exploitation of the knowledge regarding a single observational
unit from which the value of any other variable for this unit can be obtained
by a ”strategic dummy variable” or an ”artificial outlier”. See Gomatam et al.
(2005) and also Bleninger et al. (2011).

Reznek (2003) seems to be the first who draw attention to the disclosure risk of
including interactions of binary variable into the set of explanatory variables.
He also pointed out that even without interactions a disclosure risk exists if for
some binary explanatory variable the number of cases is small for one or both
categories since the regression coefficients provide the conditional arithmetic
means of the dependent variable: The estimate of the corresponding effect
equals the value of the dependent variable if this estimate is based on a single
observation. Therefore O’Keefe and Good (2009), p. 1178 suggest with regard
to output control under the heading ’Restricted Access’: ” Do not return any
results if the model has: (a) An explanatory factor variable with a level with
few values. (b) Interactions between factors with few values in their levels.”
Furthermore under the heading ’Restricted Analyses’ they postulate that ”
at most two-way interactions between variables can be included. (a) Factor
interactions with a small number of values in any cell are not permitted.”

Reznek (2003), pp. 3446 - 3448, has also considered ”models involving binary
dependent variables”, e.g. logit and probit models, and showed by means of
numerical examples that the same kind of disclosure risk may exist in case
of binary regressors (dummy variables). He also points out that the probit
model seems to behave differently with regard to the ”recovery of frequency
cross-classifications” ( Reznek (2003), p. 3446) . Without making an explicit
statement, by this remark he has drawn attention to the fact that binary
regressors may also imply a disclosure risk for confidential tables. Ronning et
al. (2010), section 3.4 have given a formal analysis for both linear and nonlinear
models which will be generalized in this paper.

The use of interactions is well motivated from a statistical point of view; a
separate interpretation of main effects when interaction effects are significant
is meaningless . See, for example, Fahrmeir et al. (1996), chapter 5.1 . There-
fore, the general exclusion of interactions in statistical models would not be
acceptable for users of micro data. On the other hand, the recommendations
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cited above draw attention to interactions of order greater than two and point
in particular to cases where such interactions identify single observations. In
fact, already interactions of low order may lead to single observations espe-
cially for small sample size. The corresponding column in the regressor matrix
has only a single ”1” and zeroes elsewhere.

Since the user is not allowed to see the micro data, disclosure risk only arises if
”the intruder” starts to look for such information.2 The natural way would be
to check the residuals of the regression for zeroes. However, residuals usually
are not reported in remote access. Alternatively, he could check the mean of the
generated dummy variable which should be 1/n in case of unique identification.
If the agency decides to suppress means for binary variables with few positive
(or negative) outcomes, the intruder could compute the variance of the dummy
variable. Given a unique identification it should be equal to 1/n, too.3

In this paper we want to show that interactions allow the retrieval of tabular
information if predicted values are provided by the server and certain manip-
ulations are not suppressed. This would be of special concern if some cell
contains only a single observation. By doing so we also want to make clear
that the specification of interactions per se is not a disclosure risk.

In the next section we present an empirical example which will be used to illus-
trate the theoretical results. Section 3 contains the formal results restricting
however the analysis to the case of only two binary regressors. Modifications
for the general case of an arbitrary number of binary regressors and the con-
struction of ”strategic dummy variables” from their interactions are discussed
in section 4. A short summary is given in section 5.

2 An example

Let us assume that the statistical office has micro data for n = 10 enter-
prises. For each enterprise the variables sales (million Euro) (SAL), employ-
ment (EMP) and the existence/nonexistence of a works council (WOC) are
available from the data set. Moreover, regional information (”north (N)” or
”south (S)”) and the retail status (”retailer (R)”or ”wholesaler (W)”) are given.
The matrix of micro data may be as follows:

2For the following see Bleninger et al. (2011).
3This result assumes that the empirical variance is computed from s2 = 1

n−1

∑
i(xi−x)2 .

Otherwise we obtain n−1
n · 1

n = n−1
n2 .
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A =




SAL EMP WOC retail status region
W R N S

1 31 0 1 0 1 0
2 22 1 1 0 1 0
3 73 1 0 1 1 0
4 24 0 0 1 1 0
17 17 0 1 0 0 1
5 35 0 1 0 0 1
8 18 1 1 0 0 1
7 97 0 0 1 0 1
12 124 1 0 1 0 1
6 67 0 1 0 0 1




For example, the first observation refers to an wholesale enterprise with head-
quarters in the north. Its sales amount to 1 million Euro; it has 31 employees
and there is no works council in this enterprise.

Table 2.1: Number of enterprises by region and retail status

W R
∑

N 2 2 4
S 4 2 6∑

6 4 10

From this matrix we obtain the frequencies of enterprises in a certain cell.
See table 2.1. For example, there are 2 wholesale enterprises in the northern
region. Please note that all cells contain more than one observation.

Table 2.2: Sales by region and retail status

W R
∑

N 3 7 10
S 36 19 55∑

39 26 65

If we cross-classify the three other variables sales, employment and existence of
works council by region and retail status, we obtain tables which we now will
describe in detail. Consider first Table 2.2 which is called ”magnitude table”.
It reports aggregated sales by region and retail status. In section 3.2.2 we will
show that such table can be estimated by means of a saturated linear model
(analysis of variance).

Table 2.3 considers the discrete variable employment which is cross-classified
by region and retail status. Note that in this table we consider count data
which later on are analyzed by count data models. Such models can be used
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Table 2.3: Employment by region and retail status

W R
∑

N 53 137 190
S 73 185 258∑

126 322 448

to estimate the entries of this table when the binary regressors region and retail
status are used. See sections 3.2.3 and 3.3.2 below.

Table 2.4: Existence of works council by region and retail status

W R
∑

N 1 (2) 1 (2) 2 (4)
S 1 (4) 1 (2) 2 (6)∑

2 (6) 2 (4) 4 (10)

Number of enterprises in parentheses.
See table 2.1.

Finally, from table 2.4 one can obtain the information regarding the binary
variable ’existence of works council’. Each cell reports the frequency of enter-
prises where a council has been established. This is a frequency table which is
based on a binary variable.4 In sections 3.2.4 and 3.3.3 below we will use logit
and probit models to estimate the entries of this table.

3 Models with two binary regressors

In the first subsection we consider a simple example which uses the data from
subsection 2 above and then give a general formulation of the the result in the
subsections to follow.

3.1 Notation and terminology

In this section we consider the effect of the two binary regressors ’retail status’
(denoted by d1) and ’region’ (denoted by d2) on the three variables (sales,
employment and existence of works council) which will be denoted in all three
cases by y. In case of the continuous variable sales we use the analysis of
variance, in case of the discrete variable employment count data models are

4In practice relative frequencies will be preferred which could be deduced from the figures
in parentheses.
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appropriate and in case of the binary variable existence of works council we
consider logit and probit models.

Of course, we could add another binary regressor by defining the interaction
term

d12,i = d1i · d2i .

For the case of two binary regressors this would imply the specification of a
saturated model.5 The resulting regressor matrix X is given by

X =




const d1 = W d2 = N d12 = d1 · d2

1 1 1 1
1 1 1 1
1 0 1 0
1 0 1 0
1 1 0 0
1 1 0 0
1 1 0 0
1 0 0 0
1 0 0 0
1 1 0 0




.

Please note that the columns of this matrix act as summation operators. For
example, in case of the vector of sales from the data matrix A (see section 2)

y′ =
(

1 2 3 4 17 5 8 7 12 6
)

we obtain

X′y =




1 + 2 + 3 + 4 + 17 + 5 + 8 + 7 + 12 + 6
1 + 2 + 17 + 5 + +8 + 6

1 + 2 + 3 + 4
1 + 2


 =




65
39
10
3




=




∑n
i=1 yi∑
iεW yi∑
iεN yi∑
iε yi


 =




total sales
sales in wholesale sector
sales in northern region

sales of wholesale sector in northern region


 .

If we compare this vector with table 2.2, we see that the four figures are
sufficient to reproduce this table! Clearly the last column of X representing
the interaction term is responsible for identifying not only the margins but
also the four inner cells. Corresponding statements apply to the other two
data vectors concerning employment and existence of works councils.

We definine the conditional expectation of y by

θi ≡ E[yi |xi,βββ] (3-1)

5For a more general definition see section 4.1.
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for observation i where xi is the i-th row from the matrix X and βββ denotes
the vector of coefficients. In the following we consider an estimate of θi which
we denote by

θ̂i = E[yi |xi,βββ = β̂ββ] .

In case of linear models we usually write ŷi for this estimate; however in order
to include also the case of discrete or binary y’s we prefer the more general
notation of (3-1).

3.2 Models satisfying X′θ̂θθ = X′y

We now consider models for which manipulation of predicted values of the
kind X′θ̂θθ leads to disclosure risk since entries of the table can be read from
this expression.

3.2.1 A general remark

Let us first consider implications of this result. Please note that in case of
our simple example with regressor matrix X from section 3.1 the (set of)
equation(s)

X′θ̂θθ = X′y (3-2)

can be written as follows:
∑

iεW∩N

yi +
∑

iεW∩N

yi +
∑

iεW∩N

yi +
∑

iεW∩N

yi =
∑

iεW∩N

θ̂i +
∑

iεW∩N

θ̂i +
∑

iεW∩N

θ̂i +
∑

iεW∩N

θ̂i

∑
iεW∩N

yi +
∑

iεW∩N

yi =
∑

iεW∩N

θ̂i +
∑

iεW∩N

θ̂i

∑
iεW∩N

yi +
∑

iεW∩N

yi =
∑

iεW∩N

θ̂i +
∑

iεW∩N

θ̂i

∑
iεW∩N

yi =
∑

iεW∩N

θ̂i (3-3)

As we see later on more clearly, estimate θ̂i for a certain cell is a constant so
that, for example,

θ̂i = θ̂W∩N , ∀i ε W ∩N .

for the cell containing all wholesale firm from the northern region. Therefore
the last equation from (3-3) can be written as

nW∩N θ̂W∩N =
∑

iεW∩N

yi ,

where nW∩N is the number of observations in cell W∩N . In other words, the es-
timate of this conditional expectation is given by the corresponding conditional
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arithmetic mean. With the help of the last equation we find corresponding es-
timates for the remaining three cells from the first three equations of (3-3).
Summarizing this, we write

θ̂i =





1

nW∩N

∑
iεW∩N

yi , i ε W ∩N

1

nW ∩N

∑

iεW∩N

yi , i ε W ∩N

1

nW∩N

∑

iεW∩N

yi , i ε W ∩N

1

nW∩N

∑

iεW∩N

yi , i ε W ∩N

. (3-4)

3.2.2 Analysis of variance

If we would employ an ANOVA to estimate the effect of retail status and region
on sales, we would obtain the vector of predicted values ŷ or θ̂θθ given by

θ̂θθ = X (X′X)
−1

X′y

and applying the regressor matrix to this vector we obtain

X′θ̂θθ = X′X (X′X)
−1

X′y = X′y .

Note that this equation has the structure of (3-2). Therefore manipulation of
predicted values θ̂i in the described manner leads to disclosure risk and should
be interdicted if some figures in the table are confidential. This is of special
concern if some cell contains information for a single enterprise: Then the sales
figure of this enterprise would be revealed.

Please note that already the vector θ̂θθ could be seen as a disclosure risk since
each θ̂i equals the empirical mean for one of the four cells in one of the empirical
tables given above. For the sales example of table 2.2 the vector of predicted
values is given by

θ̂θθ
′
=

(
1.5 1.5 3.5 3.5 9.0 9.0 9.0 9.5 9.5 9.0

)

or more generally by

θ̂θθ
′
=

(
yW∩N yW∩N yW∩N yW∩N yW∩N yW∩N yW∩N yW∩N yW∩N yW∩N

)
.

For example, the first two elements of the vector each display the mean of
the two wholesale enterprises in the northern region. Therefore total sales for
this cell (W ∩ N) would be determinded from multyplying this mean by the
corresponding frequency: nW∩N = 2 (see table 2.1). Usually the number of
firms will not be revealed; however as in the above example frequencies may
be determined from counting the number of times a certain value appears. See
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the above example where ”1.5” appears twice. Therefore, it may be wise (and
in case of single observations absolutely essential) not to disclose the predicted
values towards the user in any case!

On the other hand this would imply that even the estimated coefficients can-
not be provided since from these estimates the predicted values can be easily
determined. In case of the ANOVA the model is given by

yi = µ + β1 d1i + β2 d2i + β3 d12i + εijk

so that for example expected value for wholesale (d1 = 1) in northern region
(d2 = 1) is given by

E[y|d1 = 1, d2 = 1] = µ + β1 + β2 + β3 ,

whereas in case of wholesale in the south the expected value is given by

E[y|d1 = 1, d2 = 0] = µ + β1 .

For the sales example above the vector of estimated coefficients is given by



µ̂

β̂1

β̂2

β̂3


 =




9.5
−0.5
−6.0
−1.5




so that
E[y|d1 = 1, d2 = 1] = 9.5− 0.5− 6.0− 1.5 = 1.5

and
E[y|d1 = 1, d2 = 0] = 9.5− 0.5 = 9.0 .

This shows that a saturated version of an analysis of variance bears a general
disclosure risk even if predicted values are not provided since they can be
determined from the estimated coefficients. However, there is one important
difference: The frequency of the several means is not accessible (since the
regressor matrix is not known to the user!) and therefore the entries of the table
cannot be reconstructed! The argument of Reznek (2003) that the estimated
coefficients bear a risk, therefore is only valid if already the means bear a
disclosure risk! This usually would not be the case if the number of observations
for each cell are large enough, at least greater than 2. However, in section 4.2
we consider interactions of higher order which are constructed with the aim to
identify single observations.

3.2.3 Poisson regression model

For the Poisson regression model with two interacting binary regressor the
conditional expectation is given by

θ(d1, d2) = exp(µ + β1 d1 + β2 d2 + β3 d12) ,
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and the first order condition of ML estimation of the coefficients leads to6

X′y = X′




θ̂(x1; β̂ββ)

θ̂(x2; β̂ββ)
...

θ̂(xn; β̂ββ)


 ,

where xi denotes the i-th row of the regressor matrix X. Note that this equa-
tion has the structure of (3-2) and therefore tells us that if we estimate the
effect of retail status and region on employment, premultiplication of the vec-
tor of predicted values by the regressor matrix X would reveal the complete
information from table 2.3. This corresponds to the results for the sales exam-
ple in case of the ANOVA. And of course the remarks concerning disclosure
risk of the vector of predicted values itself apply here, too. In particular, again
predicted values are given by the appropriate arithmetic means. In case of the
employment example above we obtain

θ̂θθ =
(

26.5 26.5 48.5 48.5 34.25 34.25 34.25 110.5 110.5 34.25
)

or more generally

θ̂θθ
′
=

(
yW∩N yW∩N yW∩N yW∩N yW∩N yW∩N yW∩N yW∩N yW∩N yW∩N

)

where y now denotes employment. So clearly again the predicted values would
identify observations from a single enterprise if some cell contains only infor-
mation from this particular unit. And again predicted values for the different
”design points” can be determined from the parameter estimates but not their
frequencies from which the tabular entries could be inferred.

3.2.4 The logit model

Both (binary) logit and probit in case of two interaction binary regressors
consider the conditional probabilities

P (Yi = 1|d1, d2) = F (µ + β1 d1 + β2 d2 + β3 d12) ,

which equal the corresponding conditional expectations θi. In this subsection
we concentrate on the logit case for which first order conditions of ML estima-
tion results in7

X′y = X′




θ̂(x1; β̂ββ)

θ̂(x2; β̂ββ)
...

θ̂(xn; β̂ββ)


 (3-5)

6See, for example, Greene(2000), chapter 19.9.
7See, for example, Greene(2000), chapter 19.4 .
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with

θ̂(xi; β̂ββ) =
1

1 + exp
{
x′i β̂ββ

} .

Therefore remarks concerning the disclosure risk of predicted values , in this
case predicted probabilities, apply here, too! For completeness we report the
results of estimating the effect of retail status and region on the existence of
works councils for the above example. We obtain the vector8

θ̂ =
(

0.5 0.5 0.5 0.5 0.25 0.25 0.25 0.5 0.5 0.25
)

For example, the first two elements of the vector are given by the mean of the
two elements of the cell ”W ∩ N” , that is (0 + 1)/2 = 0.5, and the number
of works councils therefore is nW∩N · yW∩N = 2 · 0.5 = 1. And for the four
elements of the cell ”W ∩N” we obtain nW∩N · yW∩N = 4 · 0.25 = 1.

We would like to add that in case of the multinomial logit model the same
remarks apply, i.e. predicted probabilities can be used to retrieve tabular
information since first order conditions for this model have the same structure
as in (3-5) for each of the categories of the polytomous dependent variable
except for the reference category.

3.3 Models satisfying X′Dθ̂ = X′Dy

We now turn to two other important microeconometric models for which es-
timates are defined by a more general equation (as given in the title of this
subsection). This will be discussed further below in subsections 3.3.2 for the
negative binomial regression model and in 3.3.3 for the probit model. How-
ever, we first want to show that the estimated vector θ̂ defined by the (set of)
equation(s)

X′Dθ̂ = X′Dy (3-6)

satisfies also the equation X′θ̂ = X′y in (3-2) so that the same disclosure risk
exists as in case of the models discussed above.

3.3.1 Proof that both equations hold

We start by writing the (n× r) regressor matrix as

X =




x′1
x′2
...

x′n−1

x′n




8The small sample size of 10 does not allow much variation of predicted values. For three
out of four cells the mean is 0.5.
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so that each r-dimensional vector x′i , i = 1, . . . , n, denotes a certain row of
this matrix. Furthermore the Matrix D in (3-6) is diagonal and each element
di depends on row i of the regressor matrix X:

D =




d1(x1)
d2(x2)

. . .

dn−1(xn−1)
dn(xn)




.

In case of two binary regressors with interaction we have four distinct rows
of X with multiplicity equalling the number of observations for this cell i.e.
design point. Therefore the regressor matrix can - after reordering of rows -
be written as

X =




ιW∩N ⊗ x′W∩N

ιW∩N ⊗ x′
W∩N

ιW∩N ⊗ x′
W∩N

ιW∩N ⊗ x′
W∩N




where ⊗ denotes the Kronecker product and ιW∩N, for example, is a vector of
ones of dimensionality nW∩N . Compare the matrix X in section 3.1. Moreover,
the matrix D then may be written as

D =




dW∩N ⊗ IW∩N

dW∩N ⊗ IW∩N

dW∩N ⊗ IW∩N

dW∩N ⊗ IW∩N


 .

If we now proceed as in section 3.2.1, we can write (3-6) as follows:
∑

iεW∩N

diyi +
∑

iεW∩N

diyi +
∑

iεW∩N

diyi +
∑

iεW∩N

diyi =
∑

iεW∩N

diθ̂i +
∑

iεW∩N

diθ̂i +
∑

iεW∩N

diθ̂i +
∑

iεW∩N

diθ̂i

∑

iεW∩N

diyi +
∑

iεW∩N

diyi =
∑

iεW∩N

diθ̂i +
∑

iεW∩N

diθ̂i

∑

iεW∩N

diyi +
∑

iεW∩N

diyi =
∑

iεW∩N

diθ̂i +
∑

iεW∩N

diθ̂i

∑

iεW∩N

diyi =
∑

iεW∩N

diθ̂i (3-7)

Again we make use of the fact that the estimate θ̂i for a certain cell is a constant
so that, for example,

θ̂i = θ̂W∩N , i ε W ∩N .

Additionally we know from the matrix D above that di for a certain cell is a
constant, too:

di = dW∩N , i ε W ∩N .

Therefore the last equation from (3-3) can be written as

nW∩N dW∩N θ̂W∩N = dW∩N

∑
iεW∩N

yi .
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Since dW∩N cancels out, we arrive at the same result as for the last equation
from (3-6). The same is true for the three other equations above so that the
estimated conditional expectations again equal the corresponding arithmetic
means! In other words, the result (3-4) also applies here!

3.3.2 The NEGBIN model

Let us assume that the Poisson Parameter λ is a random variable satisfying

λ = λ̄ ε

where λ̄ denotes some ”average’ which is deterministic and ε is a nonnegative
random variable with expectation 1 so that

E (λ) = λ̄ .

One calls ε the heterogeneity component. If we insert the above specification
into the Poisson distribution , we get the conditional distribution

P (Y = y| ε) =
exp(−λ̄ ε) (λ̄ ε)y

y !
.

We now assume that ε follows a gamma distribution with E (ε) = 1 or formally

f (ε) =
κκ

Γ (κ)
εκ−1 exp(−κ ε) .

We derive the unconditional distribution of Y by ”integrating out” the hetero-
geneity component:9

P (Y = y) =
∫∞

0
exp(−λ̄ ε) (λ̄ ε)y

y !
κκ

Γ (κ)
εκ−1 exp(−κ ε) d ε

= Γ (κ+y)
Γ (κ) y !

(
κ

λ̄+κ

)κ (
λ̄

λ̄+κ

)y

.

Comparing this result with the general formula of the negative binomial dis-
tribution10 we see that

E[Y ] = λ̄

and

V [Y ] = λ̄

(
1 +

λ̄

κ

)
> E[Y ]

the latter result indicating ”overdispersion”. If we now set

λ̄ = λ̄(x) = exp(xβββ) (3-8)

we arrive at the likelihood function

L(βββ, κ|y,X) =
n∏

i=1

Γ (κ + yi)

Γ (κ) yi !

κκ exp (xiβββ)yi

[κ + exp (xiβββ)]κ+yi

9See, e.g., Ronning (1991), section 4.2.4.
10See, e.g., Ronning (1991), appendix A11 .
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which has to be maximized with respect to βββ and κ.

We consider first partial derivatives of the log-likelihood function

L(βββ, κ|y,X) =
n∑

i=1

{log(Γ (κ + yi)) − log(Γ (κ)) − log(yi !)

+ κ log(κ) + yi xiβββ − (κ + yi) log([κ + exp (xiβββ)])}
from which the first order conditions are given by

∂

∂βββ
L =

n∑
i=1

{
yi xi − (κ + yi) exp (xiβββ)

κ + exp (xiβββ)
xi

}
= 0 (3-9)

and

∂

∂κ
L

=
n∑

i=1

{
ψ(κ + yi) − ψ(κ) + (log(κ) + 1) − yi log([κ + exp(xiβββ)]) − κ + yi

κ + exp(xiβββ)

}

= 0 .
(3-10)

For the first equation we may also write

∂

∂βββ
L =

n∑
i=1

{
1

1 + κ−1 exp(xiβββ)
(yi − exp(xiβββ))xi

}
= 0

which equals results given, for example , by Winkelmann(2008), section 4.2.2.

Using the (n× n) diagonal matrix

Dθ̂ =




1

1+κ̂−1 exp(x1β̂ββ)
1

1+κ̂−1 exp(x2β̂ββ)

. . .
1

1+κ̂−1 exp(xn−1β̂ββ)
1

1+κ̂−1 exp(xnβ̂ββ)




equation (3-9) may be written in the form

X′ D̂ y = X′ D̂




λ̄(x1; β̂ββ)

λ̄(x2; β̂ββ)
...

λ̄(xn−1; β̂ββ)

λ̄(xn; β̂ββ)




(3-11)

with λ̄ from (3-8). This equation has the structure of (3-6). Please note that
additionally the condition (3-10) must be satisfied.
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3.3.3 Probit model

Maximum likelihood estimation of the binary probit model leads to 11:

∂ L

∂ βββ
=

n∑
t=1

φt

Φt(1− Φt)
(yt − Φt) xt = 0 . (3-12)

where

Φt = Φ(xtβββ)

and

φt = φ(xtβββ)

denote the cdf and density, respectively, of the standard normal distribution.
Using the (n× n) diagonal matrix

D =




φ1

Φ1(1−Φ1)
φ2

Φ2(1−Φ2)

. . .
φn−1

Φn−1(1−Φn−1)
φn

Φn(1−Φn)




the first order conditions (3-12) can also be written as

X′ D̂ y = X′ D̂




Φ̂1

Φ̂2
...

Φ̂n−1

Φ̂n




(3-13)

which has the structure of (3-6).

4 Additional remarks

4.1 Arbitrary number of binary regressors

So far we have considered the special case of just two binary regressors. For the
generalization to the case of an arbitrary number of binary variables we refer
the reader to any textbook on experimental design. See, for example, Hocking
(2003). For p = 2 we have two main effects and one interaction, i.e. two
regressors plus the constant term so that r = 4. In case of p = 3 we have
three main effects, three interaction of first order and one interaction of second

11See, for example, Ronning (1991), section 2.2.1
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order, plus constant term so that r = 8. More generally, for p different binary
variables the number r of regressors equals

r =

p∑
j=0

(
p
j

)
= 2p .

From the exposition given for the case of q = 2 binary regressors in section 3 it
is clear that for all models considered there which satisfy either (3-2) or (3-6)
the estimated conditional expectations are given by

θ̂i =
1

n(Aj)

∑
iεAj

yi , i εAj , (4-1)

where Aj , j = 1, . . . , r, defines the r sets of n(Aj) identical rows from X.

Of course, interactions of order higher than two will not be considered very
often in applications. However, in the next subsection we present a situation
where such interactions play an important rule with regard to disclosure risk
although they need not to arise in (fully) saturated models.

4.2 Interactions and strategic dummy variables

Bleninger et al. (2010) consider disclosure risk of so-called ”strategic”dummies.
These are specified in such a way that exact exact knowledge of a variable for
some observational unit will identify it in the data set. For example, if an
intruder knows the exact employment of some enterprise, he could specify a
dummy variable

=x=xm =

{
1 if x = x̂m

0 else
(4-2)

where x̂m is the guessed employment figure. Assuming only approximate
knowledge one would rather use

=x'xm =

{
1 if x− γ < x̂m < x + γ
0 else

(4-3)

The authors show that if a single unit is identified by one of these this dummy,
then the the estimated value of y, denoted here by θ̂m will equal ym. So by this
procedure any sensitive variable such as sales or investment for enterprise m
could be revealed if predicted values are reported to the user of remote access.

The situation with only a single observational unit may not happen frequently,
especially if x is a categorical variable, and even for continuous variables es-
pecially in case of (4-3) many units may report the same value because of
rounding. Still, with the dummy variable approach the constructed dummy
can easily be based on more than one variable exploiting all the information the
intruder has about the survey respondent. In our business survey example this
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could mean that the intruder also uses information concerning industry classi-
fication and the region. In this case one could define an indicator dummy for
each variable for which the intruder has background information. Let x1, ..., xq

be the variables for which background information is available and let =1, ...=q

be the q indicators defined as in (4-2) . The strategic dummy variable is then
defined as the interaction of all these indicators:

= =

{
1 if =1 = 1 ∧ =2 = 1 ∧ · · · ∧ =p = 1
0 else

. (4-4)

If such interaction leads to a single observation in the corresponding cell, then it
is clear from the discussion in sections 3.2.1 and 3.3 above that the correspond-
ing predicted value θ̂m will equal ym, the value of the dependent variable for
enterprise m. Bleninger et al. (2011), table 2 report results based on the Ger-
man IAB Establishment Panel: They considered the interaction of a dummy
for a certain employment interval with information on the site (federal state),
legal form of enterprise and industry classification: For larger firms more than
90 % of enterprises were uniquely identified by such an interaction term.

The important thing to note is that in Bleninger et al. (2011) a linear regression
model was assumed with a strategic dummy included in the set of regressors
(binary and/or continuous). In their paper it is proved that ŷm = ym if a
single unit is uniquely identified by the strategic dummy. On the other hand,
in our paper we assume that for a set of q binary regressors a saturated model
is specified. This means that if we would consider an analysis of variance with
a dummy of the type (4-2) or (4-3) together with binary regressors for site,
legal status, region and industry and specify interactions of all orders for these
q = 5 effects, then in case of a single observation i identified by the interaction
of order 5 would imply θ̂i = yi for this observation. But in this case the result
holds not only for the linear regression model, but also for all nonlinear models
(count data models and choice models) which we discussed in section 3.

Let us shortly consider the case that any continuous regressor x is added to
the saturated specification. In case of q = 2 binary regressors for the Poisson
regression model or the logit model we would obtain from (3-2) the set of
equations given by (3-3) supplemented by a fifth equation:
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∑
iεW∩N yi +

∑
iεW∩N yi +

∑
iεW∩N yi +

∑
iεW∩N yi

=
∑

iεW∩N θ̂i +
∑

iεW∩N θ̂i +
∑

iεW∩N θ̂i +
∑

iεW∩N θ̂i

∑
iεW∩N yi +

∑
iεW∩N yi =

∑
iεW∩N θ̂i +

∑
iεW∩N θ̂i

∑
iεW∩N yi +

∑
iεW∩N yi =

∑
iεW∩N θ̂i +

∑
iεW∩N θ̂i

∑
iεW∩N yi =

∑
iεW∩N θ̂i

∑
iεW∩N xiyi +

∑
iεW∩N xiyi +

∑
iεW∩N xiyi +

∑
iεW∩N xiyi

=
∑

iεW∩N xiθ̂i +
∑

iεW∩N xiθ̂i +
∑

iεW∩N xiθ̂i +
∑

iεW∩N xiθ̂i

It is obvious that from the fourth equation for nW∩N = 1 we would obtain
θ̂W∩N = yW∩N . Therefore the result still holds if continuous regressors are
added, and of course it is not necessary that the main effects are specified. It
is only necessary that the interaction is included.

However we still have to check whether for the NEGBIN model and for the
probit model which satisfy the more general equation (3-6) the same result is
true. In this case from adding a continuous regressor we obtain

∑

iεW∩N

diyi +
∑

iεW∩N

diyi +
∑

iεW∩N

diyi +
∑

iεW∩N

diyi

=
∑

iεW∩N

diθ̂i +
∑

iεW∩N

diθ̂i +
∑

iεW∩N

diθ̂i +
∑

iεW∩N

diθ̂i

∑

iεW∩N

diyi +
∑

iεW∩N

diyi =
∑

iεW∩N

diθ̂i +
∑

iεW∩N

diθ̂i

∑

iεW∩N

diyi +
∑

iεW∩N

diyi =
∑

iεW∩N

diθ̂i +
∑

iεW∩N

diθ̂i

∑

iεW∩N

diyi =
∑

iεW∩N

diθ̂i

∑

iεW∩N

dixiyi +
∑

iεW∩N

dixiyi +
∑

iεW∩N

dixiyi +
∑

iεW∩N

didixiyi

=
∑

iεW∩N

dixiθ̂i +
∑

iεW∩N

dixiθ̂i +
∑

iεW∩N

dixiθ̂i +
∑

iεW∩N

dixiθ̂i

where the fifth equation has been added. Although di now varies also with the
continuous regressor x, in case of nW∩N = 1 we would obtain from the fourth
equation dW∩N θ̂W∩N = dW∩N yW∩N or θ̂W∩N = yW∩N as above. Therefore
the result also holds for NEGBIN and probit. And of course it is not necessary
that the main effects are specified. It is only necessary that the interaction is
included which identifies a single unit.
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5 Résumé

We show in this paper that predicted values, i.e. estimated conditional expec-
tations, in saturated models bear high disclosure risk if they are based on few
observations only. In case of single observations the corresponding estimate
is identical to the corresponding value of the dependent variable. This is not
only true for the linear model. We show in detail that this pertains also all im-
portant nonlinear microeconometric models: Poisson and NEGBIN regression
models as well as logit and probit models. In the last section we draw attention
to the fact that not the main effects but the interactions are of special con-
cern since they can be used as ”strategic dummy variables” exploiting external
knowledge regarding a set of variables of some observational units. Therefore
interactions should be checked carefully with regard to disclosure risk. On
the other hand, principally interdicting any interactions cannot be accepted
from a statistical point of view since interaction terms may be important in
interpreting estimated main effects in saturated models.
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