

3.2 Zusammenhang zwischen dem Graphen einer Funktion und dem Graphen ihrer Ableitungsfunktion

Merke

Man kann den Graphen einer Ableitungsfunktion $G_{f'}$ zeichnen, ohne den Funktionsterm der Ableitung zu kennen. Dafür kann der wesentliche Verlauf der Funktion anhand folgender Kriterien betrachtet werden: das Monotonieverhalten, das Verhalten im Unendlichen und die Lage der Extrem- und Wendepunkte. Folgende Zusammenhänge gelten für charakteristische Punkte einer Funktion f mit ihren Ableitungsfunktionen f', f'' und f''':

G_f	$G_{f'}$	
Hochpunkt	Nullstelle $(f'(x) = 0)$ mit VZW von + nach - (d. h. $f''(x) < 0$)	
Tiefpunkt	Nullstelle $(f'(x) = 0)$ mit VZW von – nach + (d. h. $f''(x) > 0)$	
Sattelpunkt	Nullstelle $(f'(x) = 0)$ ohne VZW (d. h. $f''(x) = 0$),	
	(Extrempunkt auf der x-Achse)	
Wendepunkt	Extrempunkt $(f''(x) = 0 \text{ und } f'''(x) \neq 0)$	

Aufgabe 3.0*

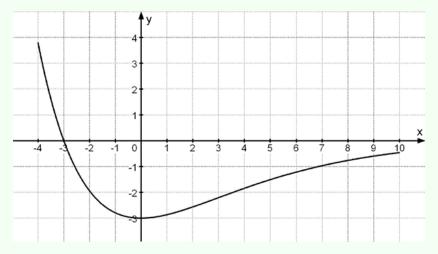
Die erste Ableitung einer Funktion f hat die Gleichung $f'(x) = (x+2) \cdot (x-1)^2 \cdot (x-4)$. Skizziere das Schaubild der Funktion f' und kreuze die richtigen Eigenschaften von f und f' an.

	f'	f
x < -2	$\square = 0 \square > 0 \square < 0$	
x = -2	$\square = 0 \square > 0 \square < 0$	☐ Hochpunkt ☐ Tiefpunkt ☐ Sattelpunkt
-2 < x < 1	$\square = 0 \square > 0 \square < 0$	
x = 1	$\square = 0 \square > 0 \square < 0$	☐ Hochpunkt ☐ Tiefpunkt ☐ Sattelpunkt
1 < x < 4	$\square = 0 \square > 0 \square < 0$	
x = 4	$\square = 0 \square > 0 \square < 0$	☐ Hochpunkt ☐ Tiefpunkt ☐ Sattelpunkt
x > 4	$\square = 0 \square > 0 \square < 0$	

Quelle: Wien Arbeitsblatt Kurvenuntersuchungen I

Aus dem Mindestanforderungskatalog (Aufgabe 72)

Die Abbildung zeigt für $-4 \le x \le 10$ den Graphen der Ableitungsfunktion h' einer Funktion h.

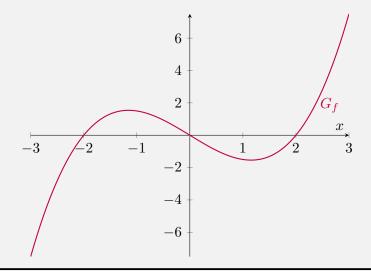


Entscheide und begründe, ob gilt:

- 1. Die Funktion h ist auf dem Intervall -3 < x < 10 streng monoton fallend.
- 2. Die Funktion h hat an der Stelle -3 ein Minimum.
- 3. x = 0 ist eine Wendestelle von h.

Aufgabe 3.1

Gegeben ist der Graph G_f einer Funktion f. Skizzieren Sie in dasselbe Koordinatensystem den Graphen $G_{f'}$ der Ableitungsfunktion f'.



${\rm Merke}$

Man kann mithilfe der zweiten Ableitungsfunktion f'' einer Funktion f Aussagen über die Krümmung von G_f treffen. Folgendes gilt:

- Ist f''(x) > 0, so ist G_f in x links-/positivgekrümmt (konvex).
- Ist f''(x) < 0, so ist G_f in x rechts-/negativgekrümmt (konkav).

Aufgabe 3.2*

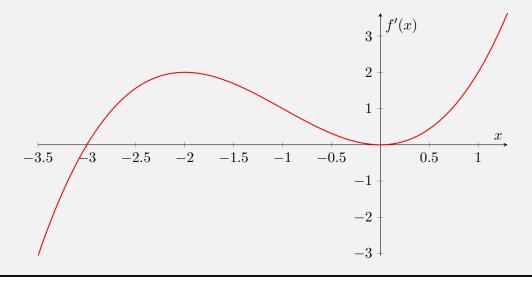
Die zweite Ableitung einer Funktion h hat die Gleichung $h''(x)=x^2\cdot(x-5)$. Kreuze die zutreffenden Eigenschaften von h'' und G_h an.

	h''	h
x < 0	$\square = 0 \square > 0 \square < 0$	
x = 0	$\square = 0 \square > 0 \square < 0$	☐ Wendepunkt ☐ kein Wendepunkt
0 < x < 5	$\square = 0 \square > 0 \square < 0$	
x = 5	$\square = 0 \square > 0 \square < 0$	☐ Wendepunkt ☐ kein Wendepunkt
x > 5	$\square = 0 \square > 0 \square < 0$	

Aufgabe 3.3 (aus Abitur Baden-Württemberg 2015)

Die Abbildung zeigt den Graphen der Ableitungsfunktion f' einer ganzrationalen Funktion f. Entscheide und begründe, ob die folgenden Aussagen wahr oder falsch sind.

- 1. Der Graph von f hat bei x = -3 einen Tiefpunkt.
- 2. f(-2) < f(-1)
- 3. f''(-2) + f'(-2) < 1
- 4. Der Grad der Funktion f ist mindestens vier.



3.3 Optimierung

Merke

Um eine Optimierungsaufgabe (auch als Extremwertproblem bezeichnet) lösen zu können, kann man nach folgendem Schema vorgehen:

- 1. Zunächst wird ein Term aufgestellt, der die Größe beinhaltet, die extremal werden soll. Dieser Term darf auch mehrere Variablen enthalten.
- 2. Anschließend werden die Nebenbedingungen formuliert. Diese beschreiben Abhängigkeiten der Variablen untereinander.
- 3. Dann wird mithilfe der Nebenbedingung die Zielfunktion bestimmt. Diese hängt dann nur noch von einer Variablen ab. Vergiss nicht, den Definitionsbereich mitanzugeben.
- 4. Als nächstes kann man die Zielfunktion durch Ableiten auf Extremwerte untersuchen, je nachdem, ob man etwas minimieren oder maximieren möchte.

Tipp: Beachte auch die Werte an den Rändern der Definitionsmenge!

5. Schließlich wird das Ergebnis formuliert.

Beispiel. Die Summe von zwei Zahlen x und y beträgt 16. Das Produkt der beiden Zahlen soll möglichst groß werden. Wie müssen die Zahlen x und y gewählt werden?

- 1. Betrachtet wird die Funktion P mit $P(x,y) = x \cdot y$.
- 2. Die Nebenbedingung lautet x + y = 16, das heißt y = 16 x.
- 3. Durch Einsetzen der Nebenbedingung in P(x,y) erhält man die Zielfunktion, die dann nur noch von einer Variablen abhängt: $P(x) = x \cdot (16 x) = 16x x2$.
- 4. Nun wird die Funktion P(x) auf Extremwerte untersucht. Da das Produkt maximal werden soll, ist ein Hochpunkt der Funktion gesucht. Rechne:

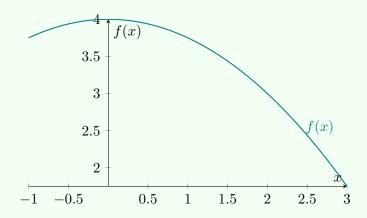
$$P'(x) = 16 - 2x = 0 \Longleftrightarrow 16 = 2x \Longleftrightarrow x = 8$$

$$P''(x) = -2 < 0 \Rightarrow P''(8) < 0$$
, d. h. an der Stelle $x = 8$ hat $P(x)$ ein Maximum.

5. Das Produkt $x \cdot y$ wird für x = 8 maximal. Für y gilt dann gemäß der Nebenbedingung y = 16 - x = 16 - 8 = 8. Das maximale Produkt beträgt also $8 \cdot 8 = 64$.

Aus dem Mindestanforderungskatalog (Aufgabe 78)

Zwei Seiten eines Rechtecks liegen auf den positiven Koordinatenachsen, ein Eckpunkt auf dem abgebildeten Stück der Parabel $f(x) = -0.25x^2 + 4$. Wie groß müssen die Seitenlängen dieses Rechtecks sein, damit sein Umfang maximal wird? Wie groß ist dann der Umfang?



Aufgabe 3.4**

Ein Verlag verlangt für die Lieferung einer Tageszeitung monatlich 25 Euro. Eine Umfrage hat ergeben, dass sich der durchschnittliche Absatz von bisher 50.000 Exemplaren bei einer Preissenkung von 1 Euro pro Monat jeweils um 3000 Exemplare erhöhen würde. Bei welchem Preis sind die monatlichen Einnahmen am größten?

Aufgabe 3.5**

Ein oben offener Regenwasserspeicher im Form eines Zylinders soll 1000 Liter fassen. Wie müssen Grundkreisradius und Höhe gewählt werden, wenn der Blechverbrauch möglichst klein sein soll?

Aufgabe 3.6**

In ein gleichseitiges Dreieck mit Seitenlänge l soll, anliegend an eine Seite, ein Rechteck mit möglichst großer Fläche platziert werden. Wie müssen die Rechteckseiten a und b gewählt werden?