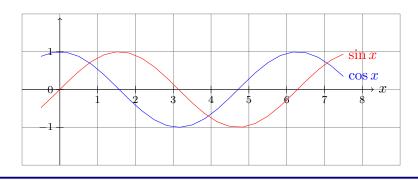


1.3 Trigonometrische Gleichungen

Trigonometrische Gleichungen sind Gleichungen, in welchen die gesuchte Variable x in z. B. $\sin(x)$, $\cos(x)$ oder $\tan(x)$ vorkommt.

Reminder

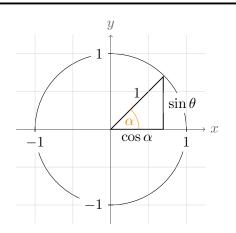
Zeichne die Graphen von $\sin(x)$ und $\cos(x)$ im Intervall von 0 bis 2π in das Koordinatensystem.



Umrechnung Bogenmaß-Gradmaß

Je nach Aufgabe ist es geschickter Winkel im Grad- oder im Bogenmaß anzugeben. Wenn α ein Winkel im Bogenmaß ist und x denselben Winkel im Bogenmaß bezeichent, hängen die beiden folgendermaßen zusammen: $\frac{\alpha}{360^{\circ}} = \frac{x}{2\pi}$. Nach Kürzen erhalten wir:

$$x = \frac{\pi}{180^{\circ}} \cdot \alpha$$



Aus dem Mindestanforderungskatalog (Nr. 55)

Ergänze die Tabelle.

Bogenmaß	π		$\frac{\pi}{4}$			1
Gradmaß		90°		270°	18°	

Reminder

Gegeben sei eine Funktion f(x). Welche Infos stecken in a, b, c und d?

$$f(x) = a \cdot \sin(b \cdot (x+c)) + d \tag{I}$$

Tipp: Gleiches gilt, wenn du den Sinus in (I) durch einen Kosinus ersetzt.

Merke

Lösen trigonometrischer Gleichungen

Gesucht ist die Lösung der Gleichung $2 \cdot \sin(x) - 2 = 0$ im Intervall $[0, 2\pi]$.

1. Umformen der Gleichung nach sin(x) (bzw. cos(x)):

$$2 \cdot \sin(x) - 2 = 0$$
$$2 \cdot \sin(x) = 2$$
$$\sin(x) = 1$$
$$(x = \sin^{-1}(1))$$

2. Intervall berücksichtigen:

Die trigonometrischen Funktionen sind periodisch. Deshalb ist es wichtig das Intervall zu beachten. Im Intervall $[0, 2\pi]$ hat die Gleichung nur die Lösung $x = \frac{\pi}{2}$, somit gilt für die Lösungsmenge $\mathbb{L} = \{\frac{\pi}{2}\}$.

Für manche Gleichungen finden wir mehrere Lösungen innerhalb einer Periode. Als Beispiel betrachten wir $\sin(x) = \frac{1}{2}$ im Intervall $[0, 2\pi]$.

Wir finden die Lösungen $x_1 = \frac{\pi}{6}$ (30°) und $x_2 = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$ (150°). Durch die Symmetrie von Sinus und Kosinus können wir eine zweite Lösung x_2 finden:

- Sinus: $x_2 = \frac{T}{2} x_1$, z. B. $x_2 = \pi x_1$ für $\sin(x)$
- Kosinus: $x_2 = -x_1$

Die trigonometrischen Funktionen sind periodisch, d. h. wir finden eine Zahl T, sodass gilt $\sin(x) = \sin(x+T)$ und $\cos(x) = \cos(x+T)$. Das kleinste solche T ist die *Periode*. Mit Hilfe der Periode können wir weitere Lösungen bestimmen.

Merke

Lösen trigonometrischer Gleichungen II

Ist x_1 eine Lösung der trigonometrischen Gleichung, dann ist auch $x_1 + T$ eine Lösung (wenn diese im gefragten Intervall liegt).

Allgemeiner: Ist x eine Lösung, dann auch $x + k \cdot T$ für k = ...-1,0,1,... (wenn diese im genannten Intervall liegen).

Beispiel: Gesucht ist die Lösung der Gleichung $2\sin(x) = 2$ im Intervall $[0, 4\pi]$.

1. Umformen nach sin(x) bzw. cos(x)

$$2\sin(x) = 2$$
$$\sin(x) = 1$$

2. Finden einer Lösung x_1 . Wir kennen bereits die Lösung $x_1 = \frac{\pi}{2}$ von oben.

- 3. Weitere Lösung durch Symmetrie (hier nicht benötigt)
- 4. Periode T. $T = \frac{2\pi}{|b|} = \frac{2\pi}{1} = 2\pi$
- 5. Weitere Lösungen finden. $x_1 = \frac{\pi}{2}, \ x_2 = \frac{\pi}{2} + 2\pi = \frac{5\pi}{2}, \ x_3 = \frac{\pi}{2} + 2 \cdot 2\pi = \frac{9\pi}{2}, \dots$
- 6. Intervall berücksichtigen: x_3 liegt nicht mehr im Intervall $[0, 4\pi]$. \Rightarrow Lösungsmenge $\mathbb{L} = \{\frac{\pi}{2}, \frac{5\pi}{2}\}$.

Aufgabe 1.0

Bestimme die Lösungsmenge der Gleichungen im Intervall I

(a)
$$\sin(x) = -1$$
,

$$I = \mathbb{R}$$

(b)
$$\frac{1}{3}\cos(x) + 1 = 0$$

$$I = [-\frac{\pi}{2}, \frac{7\pi}{2}]$$

$$\begin{array}{ll} \text{(a)} & \sin(x) = -1, & \text{I} = \mathbb{R} \\ \text{(b)} & \frac{1}{3}\cos(x) + 1 = 0 & \text{I} = [-\frac{\pi}{2}, \frac{7\pi}{2}] \\ \text{(c)} & \cos^2(x) - \cos(x) = 0, & \text{I} = [0, 2\pi] \end{array}$$

$$(d) \sin(2x) = 1,$$

$$I = \mathbb{R}$$

1.4 Wurzelgleichungen

Was bisher geschah...

Bei Gleichungsumformungen durch Addition/Subtraktion oder Multiplikation/-Division handelt es sich um Äquivalenzumformungen. Diese erzeugen eine zur Ursprungsgleichung äquivalente Gleichung, das bedeutet sie besitzen die selbe Lösungsmenge.

Teilen wir die gegebene Gleichung (I) auf beiden Seiten durch 4 erhalten wir eine äquivalente Gleichung (II). Beide Gleichungen besitzen die Lösungsmenge {1}.

$$4x = 4 \mid \frac{1}{4} \quad \text{(II)}$$

$$\iff x = 1$$
 (III)

Merke

Wir können aus 4x = 4 folgern, dass x = 1 gelten muss, indem wir durch 4 teilen. Bei dieser Umformung handelt es sich um eine Implikation: "aus (I) folgt (II)", wofür wir schreiben:

$$4x = 4 \Longrightarrow x = 1.$$

Umgekehrt können wir aus x=1 durch Multiplikation mit 4 folgern, dass 4x=4

gelten muss. Es gilt also:

$$x = 1 \Longrightarrow 4x = 4$$
.

Wenn aus einer Gleichung eine andere folgt und umgekehrt, die beiden sich also gegenseitig *implizieren*, so spricht man von einer **Äquivalenz** und schreibt dafür:

$$4x = 4 \iff x = 1.$$

Wie es jetzt weiter geht...

Aus der Gleichung x=2 folgt durch Quadrieren auf beiden Seiten: $x^2=2^2=4$, wir erhalten die *Implikation*:

$$x = 2 \Longrightarrow x^2 = 4$$
.

Aus $x^2 = 4$ folgt jedoch **nicht** x = 2, denn auch x = -2 löst diese Gleichung. Es gilt:

$$x^2 = 4 \implies x = 2$$
,

und damit:

$$x^2 = 4 \iff x = 2.$$

Gib für folgende Gleichungen jeweils die Lösungsmenge $\mathbb L$ vor und nach quadrieren an.

- (i) x = -2
- (ii) $\sqrt{x} = -2$
- $(iii) \quad \sqrt{x+2} = x$

Merke

Eine Gleichung auf beiden Seiten zu quadrieren ist keine Äquivalenzumformung. Denn eine Gleichung kann nach dem Quadrieren mehr Lösungen besitzen als zuvor.

Merke

Eine Wurzelgleichung wie zum Beispiel $10\cdot \sqrt{-4+2\cdot x}+8=28$ lösen wir durch folgendes Vorgehen:

(i) Die Gleichung so umformen, dass der Wurzelausdruck allein auf einer Seite steht:

$$10 \cdot \sqrt{-4 + 2 \cdot x} + 8 = 28 \iff 10 \cdot \sqrt{-4 + 2 \cdot x} = 20 \iff \sqrt{-4 + 2 \cdot x} = 2$$

(ii) Beide Seite quadrieren und nach x auflösen:

$$\sqrt{-4+2\cdot x}=2 \implies -4+2\cdot x=4 \iff -4+2\cdot x=4 \iff x=4$$

(iii) Lösungskandidaten in die Gleichung einsetzen.

$$10 \cdot \sqrt{-4 + 2 \cdot 4} + 8 \stackrel{?}{=} 20$$

Mit diesem Schritt überprüfen wir, ob unsere Lösung die ursprüngliche Gleichung tatsächlich erfüllt. Erhalten wir einen unmöglichen Ausdruck (z.B.: 1=5) oder einen nicht definierten Wurzelausdruck (z.B.: $\sqrt{-2}$) so handelt es sich beim eingesetzten Lösungskandidanten um eine **Scheinlösung**. Erhalten wir nach dem Einsetzen auf beiden Seiten das selbe Ergebnis (z.B.: 0=0) so haben wir eine tatsächlich Lösung der Gleichung bestimmt.

Übrigens...

Wir können die Wurzel auch als Potenz schreiben:

$$\sqrt{x} = x^{\frac{1}{2}}.$$

Erläutere mit Hilfe der Potenzdarstellung der Wurzel weshalb $\sqrt{x^2}=x$ gilt.

Aufgabe 1.1

Überprüfe, ob die Gleichungen äquivalent sind, gib ihre Lösungsmenge an und vergleiche diese. Kannst du die Gleichungen durch Äquivalenzumformungen ineinander umformen?

(i)
$$x^2 + 4 = 13$$
 und $3\sqrt{2(x^2 + 4) - 1} = 15$

(ii)
$$x^2 + 10 = 8$$
 und $x = 4$

(iii)
$$(x+2)(x-2)(x+1) = 0$$
 und $2x = 2\sqrt{4x+4-x^3}$

Aufgabe 1.2 (Mindestanforderungskatalog Aufgaben 40 und 42)

(i) Für welche
$$x \in \mathbb{R}$$
 gilt $\sqrt{8-2x} = 1 + \sqrt{5-x}$?

(ii) Löse die folgenden Ausdrücke nach x auf:

(a)
$$\sqrt{x} \cdot u = \frac{v}{x^2}$$

(b)
$$x^{\frac{3}{4}} \cdot t^2 = x^{-4} \cdot y$$

Aufgabe 1.3*

Löse die Wurzelgleichungen über der Grundmenge $\mathbb R.$

(i)
$$7 \cdot \sqrt{42 - x} = 42$$

(ii)
$$\frac{-2\cdot\sqrt{6+2\cdot x}}{3} = 4$$

(iii)
$$\sqrt{x^2 - 6 \cdot x + 24} + 2 \cdot x = 12$$

(iv)
$$5 \cdot \sqrt{3 \cdot x + 10} = 2 \cdot \sqrt{17 - 4 \cdot x}$$

(v)
$$\sqrt{5-x} + \sqrt{x} - \sqrt{5+x} = 0$$

(vi)
$$\sqrt{5+x^2}-2=\sqrt{x^2-3\cdot x+3}$$

Hinweis: Hier wirst du eine der binomischen Formeln verwenden müssen, versuche die drei Formeln aus dem Kopf herzuleiten.

1.5 Exponential- und Logarithmusgleichungen

Reminder

Potenzgesetze I

$$a^{-x} = \frac{1}{a^x}$$
$$(a \cdot b)^x = a^x \cdot b^x$$
$$\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$$

Der Logarithmus

$$a^x = b \quad \Leftrightarrow \quad \log_a b = x$$

Potenzgesetze I

$$a^{-x} = \frac{1}{a^x}$$
$$(a \cdot b)^x = a^x \cdot b^x$$
$$\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$$
$$a^0 = 1$$

Die Eulersche Zahl

$$e = 2,718281...$$

Logarithmusgesetze

$$\log_a(b \cdot c) = \log_a(b) + \log_a(c)$$
$$\log(b \cdot c) = \log\left(\frac{b}{c}\right) = \log_a(b) - \log_a(c)$$
$$\log_a(b^c) = c \cdot \log_a(b)$$
$$\log_a(\sqrt[c]{b}) = \log_a(b^{\frac{1}{c}}) = \frac{1}{c}\log_a(b)$$
$$\log_a(b) = \frac{\log_c(b)}{\log_c(a)}$$

Der natürliche Logarithmus ist:

$$\log_e(x) = \ln(x).$$

Es gibt verschiedene Strategien, um Exponentialgleichungen lösen zu können, diese wollen wir hier gemeinsam knacken!

Ausklammern und Satz vom Nullprodukt

Aufgabe 1.4

Löse die Gleichung $3e^{2x} - e^x = 0$ über der Grundmenge \mathbb{R} .

Aufgabe 1.5

Löse die Gleichung $2e^{2x} - \frac{1}{2}e^{-x} = 0$ über der Grundmenge \mathbb{R} .

Substitution

Aufgabe 1.6

Löse die Gleichung $3e^{2x} - e^x - 2 = 0$ über der Grundmenge \mathbb{R} .

Aufgabe 1.7 (Mindestanforderungskatalog Aufgabe 41)

Für welche $x \in \mathbb{R}$ sind die folgenden Gleichungen erfüllt?

(i)
$$2e^{-2x} - 5e^{-x} = 0$$

(ii)
$$3 + 2e^{-2x} - 5e^{-x} = 0$$

Reminder

Warum gilt eigentlich $ln(e^x) = x$?

Betrachten wir den natürlichen Logarithmus als Funktion f mit

$$f(x) = \ln(x), \quad x \in \mathbb{R}_{>0}.$$

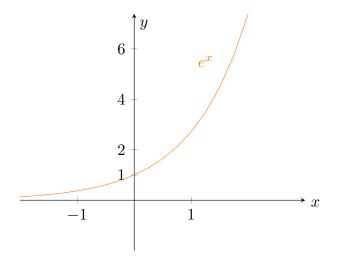
Sie ist die Umkehrfunktion der Exponentialfunktion g mit

$$g(x) = e^x, \quad x \in \mathbb{R}_{>0}.$$

Das bedeutet für reelle Zahlen a > 0; b:

$$\ln(a) = b \iff a = e^b$$
.

Der Funktionsgraph von e^x verläuft nur oberhalb der x-Achse, daran erkennen wir, dass die Funktion $g(x) = e^x$ nur positive Werte annimmt. Aus diesem Grund gilt die oben genannte Äquivalenz nur für a > 0.



Zeichne im Schaubild folgende Zusammenhänge ein:

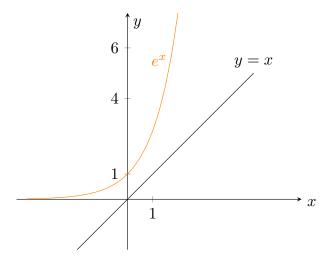
$$e^0 = 1$$
, $e^1 = e$, $e^b = a$.

Überlege dir anhand der Winkelhalbierenden worauf eine Zahl a von der Umkehrfunktion von $g(x) = e^x$ abgebildet werden muss.

Wie kannst du den Umstand

$$g(b) = a$$
 und $f(a) = b$

im Koordinatensystem markieren? Zeichne damit den Graphen von $f(x) = \ln(x)$.



Hier erkennen wir für $f(x) = \ln(x)$ und $g(x) = \exp(x)$ den Zusammenhang $e^b = a$ und $\ln(a) = b$. Die grafische Konstruktion von Umkehrfunktionen über die Winkelhalbierende verwenden wir, um folgende Regel herzuleiten:

$$a = e^{\ln(a)}, \qquad b = \ln(e^b).$$

Wir sagen, dass $\ln(a)$ für a>0 genau die Zahl ist die Gleichung $e^x=a$ löst. Dementsprechend ist e^b genau die Zahl die $\ln(x)=b$ löst.

Aufgabe 1.8

Löse die Gleichung $\ln(\frac{1}{2}x) = 5$.

Aufgabe 1.9

Löse die Gleichung $\ln(3x) = \ln(x+3)$.

Aufgabe 1.10

Löse die Gleichungen.

(i)
$$4^x = 9$$

$$(ii) \quad 4 \cdot 2^{2x-1} - 1 = 31$$

(*iii*)
$$8^{x^2-4x+7} = 512$$

$$(iv) \quad \frac{5 + \log_5(3x + 83)}{4} = 2$$

$$(v) \quad \log_{10}(5x^2 + 5x) = 1$$

$$(vi) \quad \frac{3}{\ln(4x-7)} = -6$$