Galactic compact objects with eRosita

Dmitry Klochkov IAA Tübingen

Total number of NSs in the Galaxy: $\sim 10^9$

- radio pulsars: $\sim 10^3$ (Manchester et al., 2005)
- X-ray binaries:~10² (Liu et al. 2006, 2007)

The vast majority of NSs is not observed!

Characterization of NS population:

- using radio pulsars → obs. biases due to unknown distribution of B-filed strength and geometry, uncertain emission mechanism
- using XRBs → obs. biases due to uncertain details of binary evolution scenario(s)

D. Klochkov, IAAT

Total number of NSs in the Galaxy: $\sim 10^9$

- radio pulsars: $\sim 10^3$ (Manchester et al., 2005)
- X-ray binaries:~10² (Liu et al. 2006, 2007)

The vast majority of NSs is not observed!

Characterization of NS population:

Isolated X-ray emitting neutron stars potentially provide an independent way to study the NS population of the Galaxy.

Not strongly affected by magnetic field or binary evolution.

- Isolated thermally emitting NSs ("Magnificent Seven"); F. Haberl, 2007
- Magnetars (AXP/SGR), 10+4; S. Mereghetti, 2008
- Compact Central Objects (CCO) in SNRs, 8;
 E.V. Gotthelf & J. P. Halpern, 2007

- Isolated thermally emitting NSs ("Magnificent **Seven**"); F. Haberl, 2007
- Magnetars (AXP/SGR), I0+4; S. Mereghetti, 2008
- Compact Central Objects (CCO) in SNRs, 8;
 E.V. Gotthelf & J. P. Halpern, 2007

Isolated thermally emitting neutron stars

X-ray emission is characterized by BB-continuum with little photo-electric absorption

Haberl, 2007:

Object	kT eV	Period s	Amplitude %	Optical mag	PM mas/year
RX J0420.0–5022 RX J0720.4–3125 RX J0806.4–4123	44 85-95 96	$3.45 \\ 8.39 \\ 11.37$	13 8-15 6	B = 26.6 B = 26.6 B > 24	97
RBS $1223^{(a)}$ RX J $1605.3+3249$ RX J $1856.5-3754$ RBS $1774^{(b)}$	86 96 62 102	10.31 6.88? - 9.44	18 ? <1.3 4	$m_{50ccd} = 28.6$ $B = 27.2$ $B = 25.2$ $B > 26$	$\begin{array}{c} 145 \\ 332 \end{array}$

Isolated thermally emitting neutron stars

Population modeling (assuming different cooling scenarios) is difficult as ages are only determined in a few cases (Kaplan et al. 2007). To test theoretical models one needs sufficient number of sources!

Turner et al., 2010: the number of isolated thermally emitting NSs in RASS/BSC is **7**÷**50**; eRoseta should find **240**÷**1500**!

CCO and Magnetars

- can also be detected in eRosita survey.

CCO in HESSJ 1731-347, Pühlhofer, Klochkov, Santangelo, in prep.

Both classes are associated with SNRs. The SNR population of the Galaxy is going to increase, also using TeV-range (recent discoveries by H.E.S.S., future observations with CTA)

Preliminary analysis of TeV data by H.E.S.S. collaboration

CCO in HESS J1731-347

HESS J1731–347–N Best Period: 3.8640000000000

No pulsations detected by XMM/PN

From simple BB-fit:

 $D_{10\,\mathrm{km}} \simeq 30\,\mathrm{kpc}$

 $D_{15\,\mathrm{km}} \simeq 45\,\mathrm{kpc}$.

Distance to SNR:

~3.2 kpc

(Tian et al. 2008)

Modification of the spectrum by NS atmosphere gives lower limit (V. Suleimanov, priv. comm.):

D~19 kpc!

D. Klochkov, IAAT

Wanted!

Several compact object types not discovered yet:

- Isolated accreting NSs (Bondi-Hoyle accretion) MHD-simulations show that \dot{M} given by Bondi formula should be reduced by 10^{-3} , consistent with essentially no such sources detected by ROSAT. But eRosita might find some!
- Isolated BHs (accretion or some exotic emission) probably some unidentified EGRET sources (*Punsly et al.* 2000)
- Isolated NSs on the propeller stage (Blondin & Popov 2010)
- Extragalactic magnetars.

Ultraluminous X-ray sources

- sources with $L_{\rm X}\gtrsim 10^{39}$ erg/s, Eddington luminosity for a $10M_{\odot}$ black hole (Fabbiano 1989)

If emitting isotropically, ${\rm M}\sim 20\div 10^3 M_{\odot}$ - "Intermediate Mass Black Holes"

Composite X-ray (red)/optical (blue & white) image of the spiral galaxy M74 (Liu et al.)

Ultraluminous X-ray sources

ULXs in star-forming galaxies (SFG) within ~30 Mpc can in principle be resolved with eRosita: 30'' corresponds to ~1/3-1/2 of the linear size of the Galaxy

Prokopenko & Gilfanov (2009) considered:

galaxies within 35 kpc

$$L_{\rm X} \simeq 10^{39} \, {\rm erg \, s^{-1}} \to F_{\rm X} \simeq 2 \times 10^{-14} \, {\rm erg \, s^{-1} cm^{-2}}$$

- luminosity function of X-ray sources in SFGs for $L_{\rm X} \simeq 10^{39}\,{\rm erg\,s^{-1}}$ (Grimm et al. 2003)
- distribution of galaxies in star forming rate (Bell 2003)

Result: $N_{\rm ULX} \simeq 85$

Ultraluminous X-ray sources

M 51 (star-forming galaxy at 7.5 kpc)
Chandra eRoseta (simulated)

Prokopenko & Gilfanov 2009

ART-XC

Table 2. Basic parameters of the ART-XC instrument

number of mirror systems	7		
number of nested mirror shells	28		
mirror shells and coating materials	Nickel and Iridium		
focal length	2700 mm		
FOV	Ø32'		
angular resolution	<1'		
effective area for pointed observations	510 cm ² at 7 keV		
Grasp for survey	45 deg ² cm ² at 7 keV		
detector type	DSSD CdTe		
size	$25.6 \times 25.6 \text{ mm}^2$		
number of strips	64 × 64		
Strip pitch	0.4 mm		
Energy range	6 – 30 keV		
Energy resolution	10% at 14 keV		
Time resolution	1 ms		
Working temperature	-40° C		
Total weight of instrument	350 kg		
Power consumption	300 W		

ART-XC

 Heavily obscured galactic XRB/SFXT discovered with INTEGRAL (see e. g. Chaty 2008 for a review)

Before INTEGRAL only a few HMXBs were known to have a supergiant OB-companion. After launch of Spectrum-GR the population of obscured XRB/SFXT might grow significantly

 Study of broad band spectra of galactic XRBs (CRSFs!), AXPs, SGRs; cross-calibration with MAXI all-sky monitor