Semiconductor detectors for IXO and more

Peter Lechner
PNSensor & MPI HLL

Experimental High Energy Astrophysics Challenges for the new Decade

Tübingen, 16.07.10

- diode

$$ENC = \sqrt{\alpha \frac{2kT}{g_m} C_{tot}^2 A_1 \frac{1}{\tau} + 2\pi d_f C_{tot}^2 A_2 + qI_L A_3 \tau}$$

optimum shaping time

$$\tau_{opt} = \sqrt{\frac{2A_3}{A_1} \frac{kT C_{tot}^2}{q} \frac{2}{I_L} \frac{2}{3g_m}}$$

- → for
 - good resolution
 - high count rate capability

the capacitance must be minimised!!

sideward depletion structure

Emilio Gatti & Pavel Rehak, 1983

- > symmetric bias
- volume is fully depleted by reverse biased diodes on both surfaces
- minimum capacitance of bulk contact, independent of overall area
- potential minimum for majority carriers (electrons @ n-Si) in the center plane
- > asymmetric bias
- vertical shift of the potential minimum
- ?? signal extraction ??
- **→** advanced detector concepts

anodes

--V

drift strips

linear silicon drift detector (SDD)

Emilio Gatti & Pavel Rehak, 1984

- > segmentation and bias of diodes
 - → drift field || surface
- 2dim position resolution by
 - drift time measurement (trigger!)

electron potential (-V)

• segmentation of the anode

application: particle tracking

spectroscopy SDD

Josef Kemmer & Gerhard Lutz, 1987

- > one-sided field strip system
- > non-structured backside diode
 - → optimized for photon spectroscopy
 - → irradiation through homogeneous thin entrance window
- integrated 1st FET
 - → low noise
 - → robust against pickup & microphonic noise

pnCCD

Lothar Strüder et al., 1987

- definition of potential pockets by differently reverse-biased diodes
- charge transport by periodic clocking of shift registers
- column-parallel readout
 - → high frame rate
- - → low noise
- backside illuminated, fully depleted
 - → quantum efficiency

DePFET

Josef Kemmer & Gerhard Lutz, 1987

- p-MOSFET on depleted n-substrate
- combined detector & amplifier function
- localized potential minimum under gate = 'internal gate'
 - → modulation of FET current (300 pA/el.)
- - → excellent spectroscopic performance
- charge storage capability
 - → readout on demand
- - → potential of repetitive readout
- - → no reset noise
- backside illuminated, fully depleted
 - → quantum efficiency

- large sensitive area
- small capacitance + integrated FET
- low leakage current level
 - > room temperature / moderate cooling
- homogeneous entrance window
- flexible in shape and size
- multichannel arrays

EK Workshop, 16.07.10

spectroscopy

- SDD 10 mm², -20 °C
- energy resolution 124 eV FWHM @ 5.9 keV
- peak / background ratio
 8.500 ... 17.000 @ 6 keV / 1 keV

measured SDD 10 mm²

count rate capability

- > pulsed reset
- > stable performance up to > 100 kcps
 - resolution ~ % level
 - peak position ~ % level

measured SDD 5 mm²

SDD Performance

long term stability

▷ no effect up to 10¹³ photons
 (18 keV, 300 µm thick device)

measured SDD 5 mm²

quantum efficiency

- low energy limitradiation entrance window(Si dead layer, light blocking filters)
- high energy limitSi thickness, 450 μm

measurement & model data

NASA Mars Exploration Rovers Spirit & Opportunity

- scheduled for 3 months / 600 m but still active (> 6 years / > 7 km)
- APXS (a-particle X-ray spectrometer) by MPCh/Mainz on robotic arm
- SDD 10 mm² & 244Cu sources
- ▷ PIXE, composition of rocks
- > X-ray spectra of Marsian samples

NASA Mars Exploration Rover

PIN-diode Sojourner Pathfinder (1997)

velocity

Mößbauer spectroscopy

- resonant recoil-free emission/absorption of γ-rays by nuclei of solid-bound atoms
- nuclear levels of emitter/sample shifted and hyperfine split by chemical environment
- probing of levels by red/blue-shift
- \triangleright resolution E/ Δ E $\sim 10^{12}$

- simultaneous XRF
- ExoMars mission
- demonstration at Hawaiian volcano crater

sample (Fe57 atoms)

ntensity

14.41 keV

SDD module, 2 x 45 mm²

MIMOS-IIa assembly

Co57 source

detector

Mößbauer setup (backscattering)

MIMOS-IIa sensor head

G. Klingelhöfer Uni Mainz

- IXO High Time Resolution Spectrometer
 - > X-ray timing & spectroscopy
 - time resolution 10 µsec
 - 150 eV FWHM @ 6 keV
 - < 2 % pileup & deadtime @ 1 Crab

 - out-of-focus distance 11.3 cm
 - > r/o electronics development
 - 8-channel analog ASIC (τ ~ 600 nsec)
 - digital chain (τ ~ 200 nsec)

mechanical sample: readout side

radiation entrance window side

200 µm spokes 10 % coverage

γ-ray spectroscopy

- SDD = scintillator readout device, "counting" of optical photons
- \triangleright scintillators CsI(Tl) LaBr₃(Ce)

-	peak λ [nm]	550 - 565	360 - 380
-	light output [ph/keV]	50	60
_	decay time [nsec]	1.000	25

- anti-reflective coating (ARC):
 tuning of entrance window transmittance
 to scintillator wavelength
- example results: SDD 30 mm²
 (C. Fiorini, Politecnico di Milano)

14

- combined X-ray & γ-ray spectroscopy
 (C. Labanti, M. Marisaldi, CNR-IASF, Bologna)
 - SDD 10 mm²
 - direct conversion of X-rays
 - low energy threshold: 1.5 keV
 - ▷ CsI(Tl) scintillator
 - sensitive up to 1 MeV
 - event classification by pulse shape discrimination

γ-camera

- monolithic scintillator & pixelated SDD
- position resolution by centroid of the light distribution
- ▷ e.g. DRAGO (C. Fiorini, Politecnico di Milano):
 - monolithic SDD array, 77 cells
 - cell size: 8.7 mm² = \emptyset = 3.2 mm
 - area: $2.6 \times 2.9 \text{ cm}^2 = 6.7 \text{ cm}^2$
 - CsI scintillator, 5 mm
- spatial resolution
 0.27 ... 0.55 mm FWHM
 depending on the position relative to the cell center
 NB: cell size 3.2 mm, 77 readout channels
- comparisonCdTe pixel detector
 - 300 / 500 µm pixels
 - 7.000 / 4.000 readout channels

- p-FET on depleted n-bulk
 - > signal charge collected in potential minimum below FET channel
 - > transistor current modulation 300 pA/el.
- combined function of sensor & amplifier
 - - → excellent spectroscopic performance
 - - → no reset noise
 - > non-destructive readout
 - → potential of repetitive readout
 - - → readout on demand
 - - → quantum efficiency

IXO Wide Field Imager

- - 6-inch wafer-scale device, $\sim 10 \times 10 \text{ cm}^2$
 - $\sim 1024 \times 1024 \text{ pixels } (100 \mu\text{m})$
- prototype (XEUS heritage)
 - 256 x 256 pixels (75 μm)
 - 1.92 x 1.92 cm²
 - readout 4 x ASTEROID (6 μsec / row)
 - temperature -5 °C (!)
 - resolution 127 eV (singles) 140 eV (all)
 - σ (gain, noise, offset) \sim %

IXO-WFI mechanical sample

DePFET APS 256 x 256 75 µm pixel

DEPFET APPLICATIONS - HIGHEST RESOLUTION

- Repetitive Non-Destructive Readout ("PingPong")
 - ▷ 2 DePFETs per pixel
 - 1 empty / 1 full
 - intra-pixel charge transfer via transfer gate

 - \triangleright noise \sim 1/sqrt(N), N = number of readings
 - \triangleright record resolution $\sigma = 0.25$ el.

 - applications
 - optical metrology
 - optical astronomy

PingPong DePFET compact design

p+ drift rings

- Simbol-X Low Energy Detector

 - - 128 x 128 pixels (625 μm)

 - - 64 x 64 pixels (500 μm)

DEPFET

BepiColombo MIXS

- ▷ 2 imagers equipped with identical sensors:
 - MIXS-C collimator, wide field imaging (70 400 km)
 - MIXS-T mcp telescope, precise mapping (1 4 km)
- challenges: radiation hardness, thermal & power budget
- > macropixel sensor
 - 64 x 64 pixels (300 μm)
 - 1.92 x 1.92 cm²
 - sensitivity: Fe-L (700 eV) ... Fe-K (6.4/7.1 keV)

- many advanced sensor types derived from one intelligent basic structure
- flexible device principles allowing for application specific designs