

Gerd Pühlhofer Institut für Astronomie und Astrophysik, Universität Tübingen

VERITAS

MAGIC

H.E.S.S

Maybe the biggest highlight: lots of TeV sources

Maybe the biggest highlight: lots of TeV sources

Maybe the biggest highlight: lots of TeV sources

Conclusion

Very High Energy γ-rays: Surveys

- ▶ sources cluster at b=0° ⇒ Galactic, some kpc distance
- View on the highest (particle and γ-ray) energies

Very High Energy γ**-rays: Surveys**

Young SNR shells resolved in TeV

+ Cassiopeia A (HEGRA coll., MAGIC coll., VERITAS coll.)

unresolved in TeV, but almost certainly dominated by shell emission

+ recent discovery of TeV emission from Tycho's SNR (VERITAS coll.), but shell dominance not (yet?) clear

A little bit of shell SNR physics: RXJ 1713.7-3946

The next piece in the puzzle: Fermi observations of RXJ 1713.7-3946

HESS J1731-347: the only shell discovered so far (first) in VHE

HESS collaboration, A&A 2008: ~14 hours lifetime

Tian et al., ApJ 2008

Color map: H.E.S.S. γ-ray excess Contours: H.E.S.S. significance

B&W map: ATCA 1.4 GHz

(more data underway to confirm shell in TeV)

SNRs interacting with molecular clouds: better tracers for CR protons?

SNRs interacting with molecular clouds: better tracers for CR protons?

Already a piece of historical research

Candidates:

Shell type SNRs, well in Sedov phase interacting with molecular cloud

Results:

EGRET (<1 GeV): IC 443, γ –Cygni, ... Esposito et al (1996)

Whipple (> 300 GeV): upper limits Buckley et al. (1997/98)

HEGRA (> 500 GeV): upper limits

Heß et al. (1997)

SNR interacting with molecular clouds: H.E.S.S. results

HESS coll., ICRC 2009

Problems with the SNR-MC interactions

- + hadronic scenario plausible (energetics precludes IC scenario)
- + but: are we happy with the hadronic spectrum implied (low E-cutoff)?
- + and: high B-field from masers (0.2 0.6mG)
- → X-ray emission from secondary electrons expected (but not seen yet)

Young stellar clusters / star forming regions Wd 2 W43 SFR Wd 1 Collective stellar winds (OB, WR)? Colliding wind binaries? First SNR? First PWN? H.E.S.S. PRELIMINARY H.E.S.S. J1023-575 G340.4+00.4 ® G340.6+80.3 G338.5+00.1 100 🖁 G338.3-60 OFGL J1648.1-4606 R J1648-4611 -0.5 HESS J1848-18 Preliminary 10h30m 10h25m 10^h20^m .5 339 338.5 Galactic Longitude (deg) 340.5 340 Gal. Longitude [deg] Right ascension (J2000)

E. de Ona Wilhelmi ICRC 2009

HESS J1023-575:

Combination of a hard source, compatible with PSR J1028-5819, 0FGL J1028.6-5817) and a softer source (Wd 2, OFGL J1024.0-5754)

one of several instances where complex sources decompose into multiple objects

Source sizes & shapes → identification

Source of particles (e.g. pulsar)

Target "material": Gas for π^o production by protons CMB, IR, optical for IC upscattering of electrons

For uniform distribution of targets, γ-rays probe particle distribution

Typical lifetime of electrons is 10s of kyr, of protons 100s of kyr

- range 10s of pc, unless confined by strong magnetic fields or radiative losses
- typically large & diffuse sources
- electrons are more effective radiators

After W. Hofmann

The standard "relic" pulsar wind nebula candle

HESS J1825-137: Identification (mainly) by TeV spectral imaging

Asymmetric VHE Pulsar Wind Nebulae

- + IC electron lifetime larger than synchrotron lifetime
- + larger particle injection efficiency in the past

Among the most extended PWNe: Vela X

F. Dubois, ICRC 2009 HESS SOM 03/2010

Pulsars in HE vs. VHE

14 of 34 Fermi Bright Sources in Milagro FoV have >3σ

9 of 16 LAT PSR have $>3\sigma$

→ Most strong PSR extend into Multi-TeV regime (via PWNe)

Abdo et al., ApJL, 2009

"Dark" TeV sources?

only a fraction of the H.E.S.S. survey sources is already identified

"Dark" TeV sources?

only a fraction of the H.E.S.S. survey sources is already identified

- More (offset) PWNe? New pulsars are continuously being detected by Fermi and in the radio band
- Old SNRs? Since proton lifetimes are longer than electron lifetimes, old SNRs could be pure/predominant VHE emitters?
- Proton-Molecular cloud interaction near (undetected) SNR
- Exotic?

Molecular clouds illuminated by SNRs

sketch from Lee et al., ApJ 686, 2008

Gabici & A haronian, ApJ 665, 2007 see also Yamazaki et al. 2006, Lee et al. 2008

First ground-based detection of pulsed emission from a pulsar

MAGIC, Science 322, 2008 using special low-energy trigger

Origin of pulsed emission: outer gap

Emission from polar cap and slot gap cut off around 10 GeV due to pair production

Gamma-ray binaries

The center of our Galaxy

The most distant TeV PWN (?): N 157B / PSR J0537-6910 in LMC

Nu. Komin, ICRC 2009

About 1% of pulsar spindown luminosity (5 x 10^{38} ergs/s) visible in 1-10 TeV γ -rays

SN 1987a in FoV upper limits close to predicted TeV flux

M82, NGC 253: TeV detections ...

... at the very sensitivity limit of current TeV detectors

- 4.8 σ detection, 137 hrs
- Consistent with star burst core, but optical galaxy not resolvable (<psf)
- 91 Photons, 1/1.5 hrs
- $F(E>700 \text{ GeV}) = 3.7 \times 10^{-13} \text{ cm}^{-2}\text{s}^{-1}$, 0.9% Crab

- 5.2 σ detection, 119 hrs
- Emission from star burst core, not from disk
- 247 Photons, 2 / hrs
- $F(E>220 \text{ GeV}) = 5.5 \times 10^{-13} \text{ cm}^{-2}\text{s}^{-1}$, 0.3% Crab

M82, NGC 253: TeV detections ...

CR density 250 eV / cm3 -> 500 × higher than in our Galaxy

-> 2000 × higher than in our Galaxy (or 1400 higher than in the Galactic center region)

PKS 2155-304: Compton dominance

Blazars as extragalactic probes

Verification that the speed of light is not energy-dependent

- Einstein's postulate:
 "c is independent of the state of motion of the emitting body"
- Verification through time-offlight measurements: Energy dependence predicted in models that go beyond Einstein's postulate
- Substantial effects possible for cosmological sources

$$c' = c \left(1 + \xi \frac{E}{E_P} + \zeta \frac{E^2}{E_P^2} \right)$$
 (Ansatz)

$$E_p = 1.22 \times 10^{19} \text{GeV}$$
: Planck energy

- Absence of time delay -> upper limits on the energy dependence of c
- If effect was present -> worry also about source-intrinsic effects, sample of sources would then help
- Other sources that can be used: gamma-ray bursts

Blazars as extragalactic probes

Blazars as extragalactic probes

Probing the diffuse extragalactic background light

-> with TeV photons from AGN, infrared background fields are probed

Aharonian et al., Nature 2006

EBL limit from HESS

Towards a redshift breakthrough

Good news:

- The universe is much more transparent to TeV γrays than thought ten years ago
- Not only BL Lacs but also FSRQ are seen in TeV γ-rays (3C 279, PKS 1510-089, 4C+21.35)
- 3. And: also radio galaxies...

MAGIC collaboration. Science 2008

FRI Radio Galaxies: The parent population of blazars

M 87: a "misaligned" blazar

(1ES 1101-232: head-on view on the collimated jet)

F. Over, NRAO, With J. Strette, STSCI, &J. Elek, NWMVT.

VLA, 1.4 GHz

The radio galaxy M 87

Variability

- → radiation close to the BH likely (HST 1 not excluded but difficult) Hard VHE spectrum
 - → challenges off-axis blazar scenarios

HESS collaboration, Science 314, 2006

Conclusion (again)

