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Why are you here? to do science and stuff

 Learn to solve a given complex problem in a group, using your programming skills

» Selecta fun research topic

« Come up with a solution that you like

* Implement that solution in a group (4-5 people)
 Evaluate your solution

« Make it "nice"

* Present your work to the group

 Write a scientific report & share your code

science and stuff




Topics

* Interesting & novel research questions
* One topic can be shared by multiple groups, if they concentrate on different aspects/

solutions
« If you have some other topic in mind, feel free to discuss it with us :)

« Aligned with our research interests:
- Natural Language Processing
- Computer Vision




Topics

* You can use whichever language and tools you want to

* Most of the papers already have implementations available which you can directly use
« We will grade you based on the novel ideas/additional experiments you do

« Justdon't take credit for stuff you used from others!




Organization: ILIAS

ILIAS System (important):
- Important information, materials, templates, dates, ...
- Groups
Slack for group selection and communication
Registration starts on 25th April at 10am (so that you have some time to go through list of
topics and decide if you would like to join)

Contact:
valay.bundele@uni-tuebingen.de
zohreh.ghaderi@uni-tuebingen.de



mailto:valay.bundele@uni-tuebingen.de
mailto:Zohreh.ghaderi@uni-tuebingen.de

Organization

Next meeting in two weeks [07.05.2024]
- Fix groups and topics

- Fill out the form for W Sl account
= S0 you could use our machines with GPUs

- Present short brainstorm of ideas and a rough plan for the semester

* Regular individual group meetings
- Progress discussion

* Final Presentation [16.07.2024]
- 15 mins presentation of the project & submission of the slides

» Written Report(paper?) until [15.09.2024]
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1. Zero-shot Image Classification with vision-language models

« Zero-shot classification performance depends a lot on the input prompt
« CoOp makes the input prompt learnable; trains the prompt vectors on a small subset of dataset

Caltech101 Prompt
a [CLASS).

a photo of [CLASS).

a photo of a [CLASS].

V] [Vl -.. [V]w [CLASS).
(a)

Describable Textures (DTD) Prompt
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1. Zero-shot Image Classification with vision-language models

Learning to Prompt with Text Only Supervision for Vision-Language Models
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1. Zero-shot Image Classification with vision-language models

W hat does a platypus look like? Generating customized prompts for zero-shot image classification
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2. Generalizable Surgical Instrument Segmentation using Vision-
Language models

* To segment surgical instruments from videos; helpful for minimally invasive surgeries
» Wide variety of surgical instruments; lack of an annotated dataset for all of them
* Most SIS models trained only on pre-defined categories; don't generalize to other instruments
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Conventional vision-based surgical instrument segmentation method
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2. Generalizable Surgical Instrument Segmentation using Vision-
Language models

« Make the task text-promptable and use vision-language models to enhance generalization
 Whatcan you do?
o Experiment with the architecture and the losses
o Check if medical domain specific vision-language model can be used for better performance
o Maybe try to use temporal information from videos to improve segmentation results
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3. Self-Supervised Learning for Medical Image Analysis

xvl

 Labeling data is time-consuming and often requires expert
knowledge, e.g. in medical image analysis

» Self-supervised learning, harness the data itself as a
supervisory signal

]

Same Architecture Similarity

|

e CE T

» Tasks:
« Curate a multi-modal 2D image dataset (Histopathological, Endoscopic, Fundus Images, ...)
» Train CNN- and Transformer-based architectures
« Compare different cutting-edge (contrastive) self-supervised strategies
» Evaluate their performance on different downstream tasks (Image classification, instance retrieval, ...
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4. Cross-Domain Few-shot Medical Image Classification

* Not enough annotated data available in every domain
« Similarities exist between different medical image analysis datasets
« Can we leverage shared knowledge to learn previously unseen tasks more efficiently?
* What's the task?
o Given datasets from different domains (Breast Ultrasound, Chest X-Ray, Colorectal cancer...)
o Learn a model which could generalize to new domains (Dermatoscopy, Fundus Multi-disease)
with just a few samples

Source Domain

minilmagenet
Nature Images
Perspective
Color

The similarity between the target domain and the
source domain gradually decreases
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Nature Images Nature Images Medical Images ~ Medical Images
Perspective No Perspective No Perspective No Perspective
Color Color Color Grayscale
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5. Utilizing Longitudinal Information for Chest X-Ray Report Generation

« Automatically generating a radiology report from a given patient’'s CXR

 Whatyou can do?
o Use a vision encoder like MedClip/RadDino along with gpt-2m to generate reports
o Experiment with also using reports from previous visits of the patient
o Use pretrained models and finetune them for the task
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6. Adaptive Token Sampling for Efficient Vision Transformers

* Vision Transformers are very computationally expensive

» Authors propose a method to adaptively sample significant tokens to make ViTs efficient

« What can you do?
o Train the proposed model on a small dataset (maybe TinylmageNet) for image classification
o Try to improve the approach to further reduce the computational cost on the same dataset
Paper : https://arxiv.org/abs/2111.15667

Cutput Tokers

Computergraphics | Seminar
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https://arxiv.org/abs/2111.15667

/. Self-supervised Video Transformer

« A method for self-supervised training of video transformers using unlabeled video data

« Authors report results on action recognition benchmarks

 What can you do?
o Adapt to some other tasks like video object recognition/video captioning
o Use the pretrained video transformer along with something on top to perform the task
o Keep the video transformer frozen (very expensive to train from scratch)

» Datasets:
o Charades (object recognition)
o MSVD (video captioning)

o Paper : Global VIEWH

o https://arxiv.org/abs/2112.01514 =0 ' S
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https://arxiv.org/abs/2112.01514

8. Sensitivity and Robustness of VideolLLavato Prompt Template

* Recent research on engineering relevance has surged thanks to advancements in pre-trained and
large language models. However, a significant challenge has arisen: these models often struggle
with sensitivity and robustness when faced with prompt templates. You can do this with Video-Llva:

* Prompt sensitivity - data

’ OUtPUt distribution an alySiS Yes, the image and the video are depicting the same place. The video shows

« Smoothness of video - “creativity” of the model the statue of liberty from different angles, while the image shows a close-up

of the statue. Both the video and the image capture the beauty and grandeur

 Fairness, diversity, inclusion topics - comparison with othe ot e oftivers:

* Papers: Large Language Model
o https://arxiv.org/abs/2305.08714 s .
o https://arxiv.org/abs/2311.10122 ¥ GE G B0 B B0 B G D O o
o https://arxivl 0rq/abs/23 10.11324 %  Share Projection  fp Word Embedding Layer fw
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(a) [lustration of Video-LLaVA
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Your Next Tasks

1. Find more info about the
topics: https://docs.google.com/spreadsheets/d/1j1zbMLXR3fMb8XgaSs60bDg-
rJaXSVoCkQPveYIBAfw/edit?usp=sharing

2. Apply for WSl user account (until 27.04)

= Applicationletter is on ILIAS in the supplementary materials folder
» Guidelinesfor WSl are also be available
= Submit your filled out form using the "'WSI Application' exercise

3. Find a group (until 02.05)
= Slack link: https://join.slack.com/t/practical-course-2024/shared_invite/zt-2hi7s3bjk-BIOIF6NzR7cOda8MaK GgkA

» |nform us about your group members and the topic you will be working on via email
® One email per group

4. Have fun doing science and stuff !
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https://docs.google.com/spreadsheets/d/1j1zbMLxR3fMb8XqaSs6ObDq-rJgXSVoCkQPveYlBAfw/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1j1zbMLxR3fMb8XqaSs6ObDq-rJgXSVoCkQPveYlBAfw/edit?usp=sharing
https://join.slack.com/t/practical-course-2024/shared_invite/zt-2hi7s3bjk-Bl0IF6NzR7cOda8MaKGqkA

Timetable

23.04.2024

07.05.2024

28.05.2024
11.06.2024
25.06.2024
09.07.2024
16.07.2024
15.09.2024

Meeting
Zoom

Meeting (All)

Meeting (Groups)
Meeting (Groups)
Meeting (Groups)
Meeting (Groups)
Meeting (All)

Deadline

Introduction
* logistics
» Topics introductions

Topics selected
Present your ideas (solutions) & your rough working plan

Progress meeting (time slot for each group around 15 min)
Progress meeting
Progress meeting
Progress meeting
Final presentation

Final report submission
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