The Power Mean Laplacian for Multilayer Graph Clustering

Pedro Mercado! Antoine Gautier!

Francesco Tudisco? Matthias Hein!

'Department of Mathematics and Computer Science, Saarland University, Germany
2Department of Mathematics and Statistics, University of Strathclyde, G11XH Glasgow, UK

1 Proofs for the Stochastic Block
Model analysis

This section has two parts corresponding to the Case
1 and 2 of the stochastic block model analysis. At
the beginning of each of these sections, we first state
what will be proved and discuss further refinements
implied by the results presented here. For convenience
we recall the notation where needed.

The correspondence between the results of the main
paper and those proved here is as follows: In Section
1.1 we discuss and prove Lemma 1, 2, Theorem 1 and
Corollary 1 of the main paper. These results are di-
rectly implied by Lemma 1, Theorem 1 and Corollaries
1, 2, respectively, of the present manuscript. Then, in
Section 1.2, we prove Theorem 2 and Theorem 3 of
the main paper which are respectively equivalent to
Theorems 2 and 3 below.

Before proceeding to the proofs, let us recall the set-
ting. Let V = {v1,...,v,} be a set of nodes and let
T be the number of layers, represented by the ad-
jacency matrices W = {W® ... W@}, For each
matrix W we have a graph G® = (V,W®) and,

overall, a multilayer graph G = (GM,...,G(™). We
denote the ground truth clusters by Cy,...,C and as-
sume that they all have the same size, i.e. |C;| = |C|

fori=1,... k.

In the following, we denote the identity matrix in R™
by I,,. Furthermore, for a matrix X € R™*™ we
denote its eigenvalues by A\ (X),..., Ay (X).

1.1 All layers have the same clustering
structure

Fort=1,...,T, let pi(:;) (resp. pgtu)t) denote the prob-

ability that there exists an edge in layer G®*) between
nodes that belong to the same (resp. different) clus-
ters. Suppose that for t = 1,...,T, the expected
adjacency matrix W € R™ ™ of G® is given for

t,j=1,...,n as

() P-(t)
Wi =1 ®

Dout  Otherwise.

if v;, v; belong to the same cluster

Furthermore, for every t =1,...,T, and € > 0, let

0r = pi(:;) - Pétu)t
2P+ (k- 1)p%,

Lo =7 — (D(t))’1/2W(t) (D(t))*1/2 +el,

sym

DY = diag(W®1),

Observe that Eg,)m is the normalized Laplacian of the
expected graph plus a diagonal shift. The diagonal
shift is necessary to enforce this matrix to be positive
definite for the cases p < 0, as stated in [1].

We consider the vectors xi,...,xr € R" defined as

X1:17 X,:(k—l)lcq—la, 222 k}

geeey

By construction, xi,...,xx are all eigenvectors of
W® for every t = 1,...,T. These eigenvectors are
precisely the vectors allowing to recover the ground
truth clusters. Let

L, = M,(L)

sym? *

L L)

sym

where we assume that ¢ > 0 if p < 0. We prove the
following:

Theorem 1. Let p € [—00, 0], and assume that e > 0
if p < 0. Then, there exists \; such that L,X; = \iXi
foralli=1,... k. Furthermore, A1, ..., A\, are the k-
smallest eigenvalues of L, if and only if m,(p+€l) <
1+e, where p =(1—p1,...,1—pr).

Before giving a proof of Theorem 1 we discuss some of
its implications in order to motivate the result. First,
we note that it implies that if x1,...,x, are among
the smallest eigenvectors of £, then they are among
the smallest eigenvectors of £, for any ¢ < p.

Corollary 1. Let ¢ < p and assume that € > 0 if
min{p,q} < 0. If x1,...,Xxk correspond to the k-
smallest eigenvalues of L,,, then X1, ..., Xk correspond
to the k-smallest eigenvalues of L,.
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Proof. If A1, ..., A\, are among the k-smallest eigenval-
ues of £, then by Theorem 1, we have my,(p + €l) <
1+e Asmg(p+€l) < my(p+ €l), Theorem 1 con-
cludes the proof. O

The next corollary deals with the extreme cases where
p = £oo. In particular, it implies that whenever at
least one layer G*) is informative then the eigenvectors
of £L_. allow to recover the clusters. This contrasts
with p = co where the clusters can be recovered from
the eigenvectors of L., if and only if all layers are
informative.

Corollary 2. Letp € [—00,00] and € >0 if p < 0.

1. If p = oo, then Xx1,...,Xk correspond to the k-
smallest eigenvalues of Lo if and only if all lay-
ers are informative, i.e. pi(fl) > pétu)t holds for all
te{l,...,T}.

2. If p = —o0, then x1,...,Xkr correspond to the k-
smallest eigenvalues of L_oo if and only if there is
at least one informative layer, i.e. there exists a

te{l,...,T} such that pi(fl) > p(()tlzt,

Proof. Recall that lim, ,oo my(Vv) = max;—1. mv;
and lim,_, o m,(v) = min;—1, ., v; for any v.€ R™
with nonnegative entries. Hence, we have m4..(p +
€1) = m4oo(p)+e and thus the condition my, (p+el) <
1 + € of Theorem 1 reduces to mioo(p) < 1 for p =
Fo00. Furthermore, note that we have y; =1—p; <1
if and only if pi(fl) > pg;)t. To conclude, note that
Moo(p) = maxy=1 . pp < 1if and only if g, < 1
forallt=1,...,T and m_oo(p) = ming—y, 7 <1
if and only if there exists ¢t € {1,...,T} such that
pe < 1. O

For the proof of Theorem 1, we give an explicit for-
mula for eigenvalues of £, in terms of the eigenvalues
of Eg,zn, R £§Qﬂ Then, we discuss the ordering of
these eigenvalues. Furthermore, we show that x; are
all eigenvectors of £,, and compute their corresponding
eigenvalues.

By construction, there are k eigenvectors x; of W®
corresponding to a possibly nonzero eigenvalue /\Z(.t).
These are given by

xi=1, A =1clef + (k- 1)pl),
xi = (k— 1, — 1z, M =1c| () — i)

for ¢+ = 2,...,k. It follows that x1,...,Xxr are eigen-
t

vectors of cé?m with eigenvalues )\i(Léy)m). Further-
more, we have

MED) =6 MED) =1—pite, i=2,...,k
N(LW) =146, j=k+1,....n (1)

Let
L, = M,(L{})

sym? *

L L.

sym
The following lemma will be helpful to show that

X1,---,Xk are all eigenvectors £, and gives a formula
for their corresponding eigenvalue.

Lemma 1. Let Aq,..., Ap € R™ ™ be symmetric pos-
itive semi-definite matrices and let p € R. Suppose
that Ay,...,Ar are positive definite if p < 0. If u
is an eigenvector of A; with corresponding eigenvalue
Ai for all i = 1,...,T, then u is an eigenvector of
My(Ay,. .., Ar) with eigenvalue my(A1,. .., Ar).

Proof. First, note that M = M,(A;,...,Ar) is sym-
metric positive (semi-)definite as it is a positive sum of
such matrices. In particular, M is diagonalizable and
thus the eigenvectors of M and MP are the same for
every p. Now, as A;u= Nufori=1,...,T, we have
APu = Mu for all ¢ and thus

T T
1 1
— Py — P
MP(Ay,...,Ar)u= 221 Alu = Ezl Au

= mg()\l, DVILE
Thus, u is an eigenvector of M,(A1,...,Ap) with
eigenvalue my(A1, ..., Ap). O

The above lemma, allows to obtain an explicit formula
for £,, which fully describes its spectrum. Indeed, we
have the following

Corollary 3. Let X and A" be matrices such

that Eg,zn = XAWXT X is orthogonal and
AW = diag(A (L50), - ML), Then, we
have L, = XAX where A is the diagonal ma-

tric A = diag(AM(Lp), ..., \(Lyp)) with X(L,) =
MmN (LS, - AL, for alli =1,... ,n.

Proof. As ££§,)m have the same eigenvectors for every
t=1,...,T, it follows by Lemma 1 that £,X = XA
and thus £, = XAX . O

We note that on top of providing information on the
spectral properties of £,,, Corollary 3 ensures the exis-
tence of L1 € R™*™ such that limy, 4o £, = Li.

Combining Lemma 1 with equation (1) we obtain the
following

Lemma 2. The limits limp 100 £, = Lio exist.
Furthermore, for p € [—o0, 0], we have LyXx; = XiXi
with

)\1 =€,

Ni=mp(p+el), 1=2,...k

where p = (1 — p1,...,1 — pr). Furthermore, the re-
maining eigenvalues satisfy Apy1 ==, =1+¢€.
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Proof. With Corollary 3 and Equation (1) we directly
obtain fori =2,...,kand j=k+1,...,n,

b=

1/
ep) - my(el) =€

el
B

H
l
.

1/p
=mp(p + €l)

&

I
—
N[~

-

(1= pite))

H
Il
i

(1+ e)P)l/p =my(1+e)1) =1+

Rl

|
~—~
N -
(]~

~
Il
—

We are now ready to prove Theorem 1.

Proof of Theorem 1. Clearly, Ay,...,A\r are among
the k-smallest eigenvalues of £, if and only if A\ <
Aeg1r < - < Adpand Ay < o0 <A < A <
-+ Ap where Aq,..., \, are all eigenvalues of £,. By
Lemma 2, we have Ay = €, Ay = - = A\, = my,(pu+el)
and A\gp1 = =A, =1+e€ Clearly \y =e < 1+e=
A < -+ < Ay, thus, the first condition holds. Hence,
A1, ..., A correspond to the k-smallest eigenvalues of
L, if and only if m,(p + €1) < 1 4 € which concludes
the proof. O

1.2 No layer contains full information of the
Graph

In this setting, we fix the number k of cluster to k = 3.

For convenience, we slightly overload the notation for
the remaining of this section: we denote by n the size
of each cluster Cy,...,Cg, ie. |Cj| =|C|] =n for i =
1,...,k. Thus, the size of the graph is expressed in
terms of the number and size of clusters, i.e. |[V| = nk.

Furthermore, we suppose that for ¢ = 1,2, 3, the ex-
pected adjacency matrix W e R37%37 of G are

given, for all 7,5 =1,...,3n, as
W-@ _ Jpin if v;,v; € C; or v;,v; € C;
t Pout Otherwise,

where 0 < poyt < pin < 1. For t = 1,2,3 and € > 0,
let DO = diag(W®1),

1) _ t)\—1/2( t)\—1/2
O =1 (D)W (DO)=12 4,
and for a nonzero integer p let

L, = Mp(ﬁ(l) £2  rG ),

sym» ~sym>’ ~sym

where we assume that € > 0 if p < 0. Consider further
X1,X2, X3 € R the vectors defined as

x1=1, x2=1¢ —1¢,, Xx3=1¢, —1¢,.

In opposition to the previous model, it turns out that
,cg?n, ,céizn and Eéizn do not commute and thus do not
share the same eigenvectors. Hence, we can not derive
an explicit expression for £, as in Corollary 3. In
particular this implies that we need to use different

mathematical tools in order to study the eigenpairs of
Ly.

The first main result of this section, presented in Theo-
rem 2, shows that, in general, the ground truth clusters
can not be reconstructed from the 3 smallest eigenvec-
tors of L’g,)m for any t = 1,2, 3.

Theorem 2. If 1 > piy > pouws > 0, then for any
t = 1,2,3, there exist scalars a > 0 and f > 0 such
that the eigenvectors of £§§)m corresponding to the two
smallest eigenvalues are

w1 =ale, + 15 and 3 = —flc, + 15

whereas any vector orthogonal to both 3, and 3¢5 is an
eigenvector for the third smallest eigenvalue.

In fact, we prove even more by giving a full description
of the eigenvectors of Eg,)m as well as the ordering of
their corresponding eigenvalues. These results can be

found in Lemma 12 below.

Our second main result is the following Theorem 3.
It shows that the ground truth clusters can always be
recovered from the three smallest eigenvectors of £,.

Theorem 3. Let p be any nonzero integer and assume
that € > 0 if p < 0. Furthermore, suppose that 0 <
Dout < Din < 1. Then, there exists \; such that Lpyx; =
Aixi fori=1,2,3 and A1, A2, A3 are the three smallest
eigenvalues of L.

Again, we actually prove more than just Theorem 3.
In fact, a full description of the eigenvectors of £, and
of the ordering of their corresponding eigenvalues is
given in Lemma 18 below.

For the proof of Theorems 2 and 3, and the correspond-
ing additional results, we proceed as follows. First we
assume that n = |C;| = 1 and prove our claims. Then,
we generalize these results to the case n > 1. For the
sake of clarity, as we will need to refer to the casen = 1
for the proofs of the case n > 1, we put a tilde on the
matrices in R3*3.

The case n = 1:

Suppose that n = 1, then [NZsym = Eg;ln is given by
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and «, 8, a,b,c > 0 are given by

= Pin + 2Pout, B = 2pin + Dout,
_ Din _ Pout DPin
a= b= c

a’ Vap’ B

Moreover, note that for any (\,v) € R x R? we have

Mv =Av — LoymV =(T—=AN)v. (3)

This implies that we can study the spectrum of M in
order to obtain the spectrum of Lgy,. We have the
following lemma:

Lemma 3. Suppose that poy: > 0 and let A > 0 be de-

fined as A = \/(a — 2¢)? + 8b%. Then the eigenvalues

of M are

2c—-A N
=0, =SS Nen

and it holds 5\1 < :\2 < 5\3. Furthermore, the corre-
sponding eigenvectors are given by

u; = (0,-1,1)",
uz = (\/a7 \/37 \/E)Tv

and it holds % < 0.

a—2c—A T
= 711)
uy ( 2 ) Ly )

Proof. The equality Mu; = 0 follows from a direct
computation. Furthermore, note that us = D'/21 and
SO

Muz = D™V2WD=12DY21 = DYV = uy

implying Mus = uz. Now, let s = %. Then
s4 and s_ are the solutions of the quadratic equation
bs? + (2¢ — a)s — 2b = 0 which can be rearranged as
as + 2b = (bs + 2¢)s. The latter equation is equivalent

to

2b = A - (® 5
as 8 — M1l =X]1
bs+2c= A
1 1
Hence, uy = (si,1,1) are both eigenvectors of M
corresponding to the eigenvalues
—2c+ A 2ct+ A
N b 2= ITRED Ly ar2eEA

Note in particular that we have uy = u_ and 5\2 =A_.
This concludes the proof that (A\;, u;) are eigenpairs of
M for i = 1,2,3. We now show that \; < Ay < A3
and (a —2c— A)/2b < 0.

As A > 0, we have A\_ < A;. We prove A_ > 0. As
Din > Dout by assumption, the definition of a,b,c¢ > 0
implies that

2
2 _ Pout
(2pin + pout)(p'm + 2pout)
2
< 1 = ac.
(2pzn + pout)(pin + 2pout>

And from ac > b? it follows that a® + 4ac + 4c* >
a? —4ac+4c? +8b% which implies that (a+2¢)? > (a—
2¢)?+8b% = A?. Hence, a+2c—A > 0 and thus A\_ > 0.
Thus we have 0 < A_ < Ay. Now, as M has strictly
positive entries, the Perron-Frobenius theorem (see for
instance Theorem 1.1 in [3]) implies that M has a
unique nonnegative eigenvector u. Furthermore, u has
positive entries and its corresponding eigenvalue is the
spectral radius of M. As ug = D21 has positive
entries and is an eigenvector of M, we have u = us.
It follows that p(M) = A, = X3. Furthermore, uy
must have a strictly negative entry and thus it holds
s_ <0. O

Combining the results of Lemma 3 and Equation (3)
we directly obtain the following corollary which fully
describes the eigenvectors of Esym as well as the order-
ing of the corresponding eigenvalues:

Corollary 4. There exists A\ € (0,1) and s_ <
0 < sy < 1 such that (1 — 1,(s4,1,1)7), (7 —
A, (s—,1, I)T), (T, (0, -1, I)T) are the eigenpairs of

Lsym-

Proof. The only thing which is not directly implied by
Lemma 3 and Equation (3) is that s; < 1. But this
follows again from Lemma 3. Indeed, as (s4,1,1) and

(v/a,+/B,+/B) must span the same line, we have

o [Pin+ 2Pout
Sy =45 =77
5 2pzn +pout
AS Pout < Pin, we get 0 < sy < 1. O

Now, we study the spectral properties of Ep =L, €
R3*3.  To this end, for t = 1,2,3 let W®

W(t),ﬁg,)m = £§§)m € R3f3. ~Fu~rthermore, consider
the permutation matrices Py, Py, P3 € R3*3 defined as

3 y 0 0 1 0 1 0
pP=I3;, PB=[0 1 0|, Ps=1|1 0 0

1 00 0 0 1
Then, we have W) = PWP, for t = 1,2,3. The
following lemma relates Zﬁgé)m and ﬁsym.
Lemma 4. Fort = 1,2,3, we have P, = ]5[1 = PtT
and ig,)m = pt[tsympt-
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Proof. The identity P, = ]5[1 = Nt—r follows by a
direct computation. Now, as P;1 = 1, we have
PWP1 = PW1. Assuming the exponents on the
vector in the following expressions are taken compo-
nent wise, we have diag(W1)~/2 = diag((W1)~/?)
and thus
diag(Pthtl)fl/Q = dlag((lstwptl)fl/z)
_ diag (BOV1)/?) = Bding (W1)~/2) B,
= Ptdiag(W1)71/2p7§ = Ptﬁ71/2pt.

It follows that

£(t) _TPtPt 1/2Pt15t1/~\/15t15t D—1/2 Pt
= Ptﬁsympty
which concludes our proof. O

Combining Corollary 4 with Lemma 4, we directly ob-
tain the following

Corollary 5. There exists A\ € (0,1) and s_ <
0 < sy such that (7 — 1 ,Py(s4,1,1) (=
)\,Pt(s,, 1, l)T), (7', Pt(O, -1,0)7 ) are the eigenpairs
of Eéﬁ)m fort=1,23.

A similar argument as in the proof of Lemma 1 implies

that the eigenvectors of £, coincide with those of the
matrix L, € R3*3 defined as

Lp = (LOLP + (LE)P + (LE) )P = 3LE.

sym

We study the spectral properties of tp. To this end,
we consider the following subspaces of matrices:

S1 S2 82
U3={ S3 S5  S4 ‘81,...,S5€R},
S3 S4 Sp
1ty to
Z3 = { to t1 to ‘ t1,t2 € R}
ta 12 0

We prove that for every p, it holds (ES)m)P € Us and
L, € Z3. We need the following lemma:

Lemma 5. The following holds:
1. For all A, B € Us we have AB € Us.

2. If AeUs and det([l) £0, then A~! € Us.

8. Z3 = PlUs Py + Polds Py + Psls Ps.

Proof. Let A € Us, C' € Z5 be respectively defined as
s1 S2 8o t1 ta a2

A: S3 S5 S4 |, C = tg tl tg
S3 84 S ta ta 11

1. Follows from a direct computation.

2. If det(A) # 0, then A is invertible and

det(A)A~1 =
52— 83 So(s4 — 85)  S2(s4 — 85)
83(34 - 55) 5185 — 5283 5253 — S154
S3(84 — S5) S283 — S1S4  S1S5 — S2S3

It follows that A= € Us.

3. We have

3
S PAP - (W
=1

81+2S5
So 4+ 83 + 84
S2+ 53+ 84

So + 83+ 84
So + 83 + S84
51+ 2s5

So 4+ 83+ 84
81+ 2s5
So + 83 + 84

and conversely, there clearly exists si,...,84 such
that $1+285 =1t and so + s34 s4 = to, SO we have
ZZ 1 P,AP; = C implying the reverse inclusion.

O

Now, we show that [p € Z5 for all nonzero integer p.

Lemma 6. For every integer p # 0 we have |:p € Zs.

Proof. From (2), we know that ENSLI € Us. By point
2 in Lemma 5, this implies that (Eéiir,)sig“@) € Us.
Now point 1 of Lemma 5 implies that (ESZH)P =
((Eé%)sig““’)) Pl ¢ Us. Finally, by Lemma 4 and point
3 in Lemma 5, we have

3 3
DICIRES o LRGP
t=1 t=1
which concludes the proof. O

Matrices in Z3 have the interesting property that they
have a simple spectrum and they all share the same
eigenvectors. Indeed we have the following:

Lemma 7. Let~é' S ZgNand t1,to be such that C =
(t1 — ta)I3 + toF where E € ]R~3X3 1s the matriz of all
ones. Then the eigenpairs of C' are given by:

(t1 —t2, (=1,0,1)7),  (t1 —t2,(—1,1,0)7),

(t1+2t2, (1,1,1) ).
Proof. Follows from a direct computation. O
So, the last thing we need to discuss is the order of

the eigenvalues of I:p. To this end, we study the sign
pattern of the powers of this matrix.
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Lemma 8. For every positive integer p > 0 we have

(‘égym)i,j <0< (‘E’gym)i,i < TP fOT all 1,7 = 1,2,3

with i # j. For every negative integer p < 0 we have

(Egym) i >0 foralli,j=1,2,3.

Proof. First, assume that p > 0 and let S =D W,
We have

Ep = (TIg

sym

_DYHP1/2yp
£
:151/2(; (f)#"r( 1y (B ) B2

= bl/Q(Tlg —

71)T(D~71/2V~V'[)71/2)T

SpD12,

As DY2 and D2 are diagonal with positive di-

agonal entries, the sign of the entries of £Sym coin-
cide with those of (713 — S)P. Furthermore, we have

(ﬁgym) = ((tI3 — S)?);; for all i. Now the matrix S

is row stochastic, that is S1 = 1 and has the following
form

1-2a6 a a & 1
S=11-20 b b &:1+2A, b=2+A
1-2b b b “ “
where & = pout/pin € (0,1). Let
2 2
~ 7 Pout — Pin
’y = (a — b = < 0,
( ) (QPm +pout)(2pout +pin)
7 DPin
=(1-20)=————>0
( ) 2pout + Pin
For all positive integer p, we have
ch-Sr— (e 0
Tl3 — = Sp Ty U
2+l Sp up tp
where gp, 7, Sp, tp, U are given by
= pu(r — 1)P 4+ 2a(2y + )",
=a[(r— 1) — (2y+7)7],
I
Sp = 2 Tps (5)
tp =al(r— 1P +7°] + %[Tp + (27 +1)P],
up = al(r —1)P — 7] — g[Tp —(2v+1)P].

Note that as p;, > pour > 0, we have

§=2y+1=2G—b)+1=2a+pu
_ 5pinpout + 4p(2)ut
2p12n + 5pinpout + 21731“5

€(0,1),

Furthermore, as 7 > 1 and v < 0, we have § < (27 +
7) < 7. It follows that

0 < p(r—1)P 4+ 2a0® < g, < p(t — 1)? + 2a7*
<oétP < 7P

0<af(r—1)7+77] +g(rp+5p) <t
< 2atP + pur? = 61P < 7P.

Finally, we have

rpzé[(T—l)p—(J—F(T—l))p] <0, sp= %’I‘p < 0.

Now, suppose that p < 0, then we have 7 > 1 and

(rIs = DPWDV2) T =3 (D
k=0

1/2];\}@1/2)]@.

As M = D Y2WD1/2 is a matrix with strictly pos-
itive entries, this implies that Lgym has positive en-
tries as well. Furthermore, it also implies that Lsym =

(Esym)|p| is positive for every p < 0. O

Observation 1. Numerical evidences strongly suggest
that the formulas in (5) for the coefficients of (113 —
S)P hold for any real p € R\ {0}.

We can now use the above leNmma to determine the
ordering of the eigenvalues of L,.

Lemma 9. Let t1,to € R be such that it holds I:p =
(t1—to)Is+to E. Furthermore, for any nonzero integer
p, it holds 0 < t1 —ty < t1 4+ 2t2 if p < 0 and t; —ty >
t1 + 2to otherwise.

Proof. If p < 0, then we must have 7 > 1 for Ep to
be well defined. By Lemma 8§, ([,sym)p has strictly
positive entries. Hence, L, = Zt L P(L byzn)th is also
a matrix with positive entrles It follows that t; —ty >
0 and to > 0 so that 0 < t; — to < t1 + 2t5. Now
assume that p > 0, Lemma 8 implies that (Eéy)m)p with
positive diagonal elements and negative off-diagonal.
It follows from (4) that L, also has positive diagonal
elements and negative off-diagonal. Hence, we have
to < 0 < t1 and thus t; —ty > t1 + 2t5 which concludes
the proof. O

We have the following corollary on the spectral prop-
erties of the Laplacian p-mean.

Corollary 6. Let p be a nonzero integer and let € > 0
ifp>0ande>0 if p<0. Define

P

)

((ﬁéiﬁn)f’ + (Eéi) P+ (/3(3) )1”)1/17
3
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then there exists 0 < A1 < Ao such that the eLgenpairs
of L, are given by

(5\17 (_1707 1)T)»
(A2, (1,1,1)T).

(M, (-1,1,0)7),

Proof. First, note that £, = (%Ep)l/p hence as they
are positive semi-definite matrices, ,C~p and I:p share
the same eigenvectors. Precisely, we have Epv = \v if
and only if £,v = f(A\)v where f(t) = (t/3)'/?. Now,
by Lemmas 6 and 7 we know all eigenvectors of I:p
and the corresponding eigenvalues are 61 = t; —t5 and
02 = t1 + 2t5. Finally, using Lemma 9 and the fact
that f is increasing if p > 0 and decreasing if p < 0 we
deduce the ordering of A\; = f(6;). O

The case n > 1:

We now generalize the previous results to the case
n > 1. To this end, we use mainly the properties of
the Kronecker product ® which we recall is defined for
matrices A € R™*™2 B ¢ R™3*™4 a3 the block ma-
trix A ® B € R™M™MsXm2™m4 with mimsq blocks of the
form A; ;B € R™3*™4 for all ¢,5. In particular, for
n > 1, if E denotes the matrix of all ones in R™*™ we
have then W) = W) @ E for every t = 1,2, 3. Fur-
thermore, let us define W =W ® F and P, = P, ® I,,
for t = 1,2,3 so that W) = PWP, for t = 1,2,3. Fi-
nally, let Loy = 713, — D~ /2WD~1/2 where we recall
that 7 = 1 4+ ¢ and D = diag(W1). The normalized
Laplacians of W and W are related in the following
lemma:

Lemma 10. It holds

Lsym = Tl3, — [LD7V2PWD™V2] g E.

Proof. First, note that D = nﬁ@[n, as (A1®B1)(42®
Bs) = (A1A3 ® B1Bs) for any compatible matrices
Al, AQ, Bl, BQ. We have

(D20 1,)We E)(D a1,
n
— 1p VD12 g,

D—1/2WD—1/2 _

which concludes the proof. O

In order to study the eigenpairs of Ly, we combine
Lemma 4 with the following theorem from [2] which
implies that eigenpairs of Kronecker products are Kro-
necker products of the eigenpairs:

Theorem 4 (Theorem 4.2.12, [2]). Let A € R™*™
and B € R"™™. Let (A\,x) and (u,y) be eigenpairs of
A and B respectively. Then (Au, z®y) is an eigenpair
of A® B.

Indeed, the above theorem implies that the eigenpairs
of D=1/2WD~1/2 are Kronecker products of the eigen-
pairs of D™1/2WD~1/2 and E. As we already know
those of D~Y2WD~1/2 we briefly describe those of E:

Lemma 11. Let E € R™™" n > 2 be the matrix of
all ones, then the eigenpairs of E are given by (n,1)

and (0,v1),...,(0,v,_1) where v, € R™ is given as
1 if § < K,
(Vi)j = -k ifj=k+1, (6)
0 otherwise.

Proof. As E = 11", it is clear that (n,1) is an eigen-
pair of E. Now, for every i we have Ev; = (1)1
and 1Tv; =i—i=0. O

We can now describe the spectral properties of Eéty)m
fort=1,2,3.

Lemma 12. There exists A € (0,1) and s— < 0 <
S+ < 1 such that, for t = 1,2,3, the eigenpairs of
Zé?m are given by
(r—1,P(s4,1,1)T ®@1), (r =\ Pi(s-,1,1) " ®1),
(r,P(0,-1,1)T ®1), (1, P(s+, 1, 1)T @vy),
(r,P(s_,1,1)" @vi), (r.P(0,-1,1)"T ®vy),

fork=1,...,n—1, where v is defined as in (6).
Proof. Follows from Lemmas 3, 11 and Theorem 4. [

Similarly to the case n = 1, let us consider L, €
R3"*37 defined as

Lp = (Lin)” + (L7 + (£5)" = 3L,

sym

Again, we note that the eigenvectors of L, and 3LF are
the same. Now, let us consider the sets Uz, C R37*3"
and Zs, C R3%3" defined as

Uz, = {Sofgn — /1 QF | /1 € Us,s0 € R},

Z3n = {to]:gn—é@E | C’g Zg,SQ €R}
Note that, as sglz+U3 = Uz and sglz+ Z3 = Z3 for all
so € R, the definitions of Us,, and Z3,, reduce to that
of U3 and Z3 when n = 1. We prove that L, € Z3,, for

all nonzero integer p. To this end, we first prove the
following lemma which generalizes Lemma 5.

Lemma 13. The following holds:

1. Us, is closed under multiplication, i.e. for all

A, B € U3, we have AB € Us,,.
2. If A € Us, satisfies det(A) # 0, then A~ € Us,,.
8. Z3 = PiUs, Py + Polds, Py + P33, Ps.
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Proof. Let A, B € U3,,C € Z3, and so,10,t9 € R,
A B e Ug,C € Z3 such that A = sol3, — A® E,
B—T‘0]37L—B®E andC’—toIg,n—C®E

1. We have
AB= 807’0]3n + (TlAB — Soé — 7’0121) QK F

As AB € Uz by Lemma 5, (1), we have (nAB —
soB — TOA) € Uz and so AB € Us,.

2. First note that as A is invertible, it holds sy # 0.
Furthermore, using von Neumann series, we have

Zs
_ZsklkAk )

As AF e Us for all k by Lemma 5, (1) we have
that S, = > v_o sk nk(AFQE) € Us,, for all v =
0,1,... As hmy_wo S, = A~1 and Us, is closed,
it follows that A=! € Us,,.

(solspy —AQ E)™ (A E)*

3. Note that for ¢ = 1,2, 3 it holds
PiAPi:SOIgn—(PAP )
Hence, we have

3

3
i=1

i=1

We know from Lemma 5, (3) that Zle P,AP; €
Us and thus 2?21 P, AP, € Z3. Finally, note that
by choosing the coefficients in A in the same way
as in the proof of Lemma 5, (3), we have A = C
with sg = to. This concludes the proof.

We can now prove that L, € Z3,,.

Lemma 14. For every nonzero integer p, we have
Lp € Z3p.

Proof. As Loym = Esym € Us,, we have Eé’ym € Usn,
by Lemma 13, (1) and (2). We prove that L, =
Zf 1 PeLE L, P To this end, note that, with the con-
vention that powers on vectors are consuiered compo-
nent wise, for t = 1,2, 3, we have

diag(P,WP1)Y/? = diag(P,(W1)~1/?)

= Pdiag((W1)~"/?)P, = P,DP,.

Furthermore,

diag(PtWPt1)_1/2PtWPtdiag(PtWPt )~1/?
:Ptthl/QPtQWPtQ 1/2Pt 1/2WD 1/2Pt

This implies that £§§)m = P Loym P, for t =1,2,3 and
thus we obtain the desired expression for L,. Lemma
13, (3) finally imply that L, € Zs,. O

We combine Theorem 4 and Lemmas 7, 11 to obtain
the following:

Lemma 15. Let C € Z3!l and tg,t1,ts such that C =
tolsn, — ((t1 —to)Is + toF) ® E. Then, the eigenpairs
of C are given by

(t() - n(t1 - tg), (71, 0, 1)T & 1),

(to — n(t1 — tg), (—]., 1, O)T ® 1),

(to — n(t1 +2t2), (1,1,1) T ® 1).

and, with v; defined as in (6),

(to, (-1,0,1)" @ v;),
(t07 (17 1a 1)T & Vi),

(to,(—l,l,O)T ®V,‘),
t=1,...,n—1.

Similar to Lemma 9, we have following lemma for de-
ciding the order of the eigenvectors of L,,.

Lemma 16. For every positive p > 0 we have
(Esym)” <0< (LE)ii < 7P foralli,j=1,...,3n

with i # j. For every negative p < 0 we have
(LEm)ij >0 foralli,j=1,...,3n.

Proof. Let M = Q’l/QWD’lm, then by Lemma 10,
we have M = 1(M ® E). Now, for p > 0, it holds:

ﬁgym =7PI3, + Z ( )Tp ¥ )kn_k(-/\;lk ® Ek)

P
=L+ () (i) D) MY @ B

k=1
:ijgn (ﬁé’ymepIg) ®E (7)

By Lemma 8, we know that (ﬁbym)lj <0ifi#j
and (Esym)”- — 7P < 0 for all i.

Q= Esymfﬂ’f 3 has strictly negative entries. Thus, all
the off-diagonal elements of LP,  are strictly negative.
Finally, note that

Hence, the matrix

Sym

(LEm)isi

sym

= P4 (LP ®E);

sym

—T1P = <£§ym®E)i,i > 0.

This concludes the proof for the case p > 0. The case
p < 0 can be proved in the same way as for the case
n =1 (see Lemma 8). O
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Observation 2. We note that Equation (7) implies
the following relation between L, and L,:

Ly = 37713, + (L, — 7 I;) ® E. (8)

Lemma 17. Let tg,t1,t2 € R be such that L, =
tolsn, — ((t1 —t2) I3 +t2E3) @ E,,. Furthermore, for any
integer p # 0, it holds to < to—n(t1 —t2) < to—n(t1+
2t2) pr < 0 and tg > tg —n(t1 —tg) > tg —n(t1 +2t2)
otherwise.

Proof. The proof is essentially the same as that of
Lemma 9. Indeed, if p < 0, then L, is strictly positive
and thus ta < 0 as (Lp)1,3n > 0,t1—t2 < 0as (Lp)1, >
0 and tg —nt; > 0 as (Lp)1,1 > 0. This means that
ti—ta > t1+2t5 and so to—ﬂ(h—tg) < to—n(t1 +2t2).
Furthermore, this shows that to—n(t; —t2) > to. Now,
if p > 0, by Lemma 16 we have t5 > 0 as (Lp)1,3, <0,
t1 —t2 > 0as (Lp)in < 0 and tp —nt; > 0 as
(I—p)l,l > 0. It follows that t; — ty < t1 + 2t9 and
thus tg — n(t1 — tg) > to — Tb(tl + 2t2). Finally, as
t; — ta > 0, we have tg > tog — n(t; — t2) which con-
cludes the proof. O

We conclude by giving a description of the spectral
properties of L.

Lemma 18. Let p be any nonzero integer and assume
that € > 0 if p < 0. Define

. ((cé%l)p + (L5 + (céih,)p) 1p
P 3 )

then there exists 0 < A1, Ao < A3 such that the eigen-

pairs of L, are given by
(A, (-1,0,1)" ®1),
(M, (-1,1,00" ® 1),
(A27 (1a 1) 1)T ® 1))

()‘37(_17071)T ®Vz)
(A37(_17170)T ®V’L)
<)\3a (15 17 1)T & Vi)7

and it =1,...,n— 1, where v; is defined in (6).

Proof. The proof is the same as that of Corollary 6
where one uses Lemmas 14, 15, 17 instead of Lemmas
6,7,9. O
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