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1 Proofs for the Stochastic Block
Model analysis

This section has two parts corresponding to the Case
1 and 2 of the stochastic block model analysis. At
the beginning of each of these sections, we first state
what will be proved and discuss further refinements
implied by the results presented here. For convenience
we recall the notation where needed.

The correspondence between the results of the main
paper and those proved here is as follows: In Section
1.1 we discuss and prove Lemma 1, 2, Theorem 1 and
Corollary 1 of the main paper. These results are di-
rectly implied by Lemma 1, Theorem 1 and Corollaries
1, 2, respectively, of the present manuscript. Then, in
Section 1.2, we prove Theorem 2 and Theorem 3 of
the main paper which are respectively equivalent to
Theorems 2 and 3 below.

Before proceeding to the proofs, let us recall the set-
ting. Let V = {v1, . . . , vn} be a set of nodes and let
T be the number of layers, represented by the ad-
jacency matrices W = {W (1), . . . ,W (T )}. For each
matrix W (t) we have a graph G(t) = (V,W (t)) and,
overall, a multilayer graph G = (G(1), . . . , G(T )). We
denote the ground truth clusters by C1, . . . , Ck and as-
sume that they all have the same size, i.e. |Ci| = |C|
for i = 1, . . . , k.

In the following, we denote the identity matrix in Rm
by Im. Furthermore, for a matrix X ∈ Rm×m, we
denote its eigenvalues by λ1(X), . . . , λm(X).

1.1 All layers have the same clustering
structure

For t = 1, . . . , T , let p
(t)
in (resp. p

(t)
out) denote the prob-

ability that there exists an edge in layer G(t) between
nodes that belong to the same (resp. different) clus-
ters. Suppose that for t = 1, . . . , T , the expected
adjacency matrix W(t) ∈ Rn×n of G(t) is given for

i, j = 1, . . . , n as

W(t)
ij =

{
p

(t)
in if vi, vj belong to the same cluster

p
(t)
out otherwise.

Furthermore, for every t = 1, . . . , T, and ε ≥ 0, let

D(t) = diag(W(t)1), ρt =
p

(t)
in − p

(t)
out

p
(t)
in + (k − 1)p

(t)
out

,

L(t)
sym = In − (D(t))−1/2W(t)(D(t))−1/2 + εIn

Observe that L(t)
sym is the normalized Laplacian of the

expected graph plus a diagonal shift. The diagonal
shift is necessary to enforce this matrix to be positive
definite for the cases p ≤ 0, as stated in [1].

We consider the vectors χ1, . . . ,χk ∈ Rn defined as

χ1 = 1, χi = (k − 1)1Ci − 1Ci , i = 2, . . . , k.

By construction, χ1, . . . ,χk are all eigenvectors of
W(t) for every t = 1, . . . , T . These eigenvectors are
precisely the vectors allowing to recover the ground
truth clusters. Let

Lp = Mp

(
L(1)

sym, . . . ,L(T )
sym

)
where we assume that ε > 0 if p ≤ 0. We prove the
following:

Theorem 1. Let p ∈ [−∞,∞], and assume that ε > 0
if p ≤ 0. Then, there exists λi such that Lpχi = λiχi
for all i = 1, . . . , k. Furthermore, λ1, . . . , λk are the k-
smallest eigenvalues of Lp if and only if mp(µ+ ε1) <
1 + ε, where µ = (1− ρ1, . . . , 1− ρT ).

Before giving a proof of Theorem 1 we discuss some of
its implications in order to motivate the result. First,
we note that it implies that if χ1, . . . ,χk are among
the smallest eigenvectors of Lp then they are among
the smallest eigenvectors of Lq for any q ≤ p.
Corollary 1. Let q ≤ p and assume that ε > 0 if
min{p, q} ≤ 0. If χ1, . . . ,χk correspond to the k-
smallest eigenvalues of Lp, then χ1, . . . ,χk correspond
to the k-smallest eigenvalues of Lq.
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Proof. If λ1, . . . , λk are among the k-smallest eigenval-
ues of Lp, then by Theorem 1, we have mp(µ + ε1) <
1 + ε. As mq(µ + ε1) ≤ mp(µ + ε1), Theorem 1 con-
cludes the proof.

The next corollary deals with the extreme cases where
p = ±∞. In particular, it implies that whenever at
least one layer G(t) is informative then the eigenvectors
of L−∞ allow to recover the clusters. This contrasts
with p = ∞ where the clusters can be recovered from
the eigenvectors of L∞ if and only if all layers are
informative.

Corollary 2. Let p ∈ [−∞,∞] and ε > 0 if p ≤ 0.

1. If p = ∞, then χ1, . . . ,χk correspond to the k-
smallest eigenvalues of L∞ if and only if all lay-

ers are informative, i.e. p
(t)
in > p

(t)
out holds for all

t ∈ {1, . . . , T}.
2. If p = −∞, then χ1, . . . ,χk correspond to the k-

smallest eigenvalues of L−∞ if and only if there is
at least one informative layer, i.e. there exists a

t ∈ {1, . . . , T} such that p
(t)
in > p

(t)
out.

Proof. Recall that limp→∞mp(v) = maxi=1,...,m vi
and limp→−∞mp(v) = mini=1,...,m vi for any v ∈ Rm
with nonnegative entries. Hence, we have m±∞(µ +
ε1) = m±∞(µ)+ε and thus the conditionmp(µ+ε1) <
1 + ε of Theorem 1 reduces to m±∞(µ) < 1 for p =
±∞. Furthermore, note that we have µt = 1− ρt < 1

if and only if p
(t)
in > p

(t)
out. To conclude, note that

m∞(µ) = maxt=1,...,T µt < 1 if and only if µt < 1
for all t = 1, . . . , T and m−∞(µ) = mint=1,...,T µt < 1
if and only if there exists t ∈ {1, . . . , T} such that
µt < 1.

For the proof of Theorem 1, we give an explicit for-
mula for eigenvalues of Lp in terms of the eigenvalues

of L(1)
sym, . . . ,L(T )

sym. Then, we discuss the ordering of
these eigenvalues. Furthermore, we show that χi are
all eigenvectors of Lp and compute their corresponding
eigenvalues.

By construction, there are k eigenvectors χi of W(t)

corresponding to a possibly nonzero eigenvalue λ
(t)
i .

These are given by

χ1 = 1, λ
(t)
1 = |C| (p(t)

in + (k − 1)p
(t)
out),

χi = (k − 1)1Ci − 1Ci , λ
(t)
i = |C| (p(t)

in − p
(t)
out)

for i = 2, . . . , k. It follows that χ1, . . . ,χk are eigen-

vectors of L(t)
sym with eigenvalues λi(L(t)

sym). Further-
more, we have

λ1(L(t)
sym) = ε, λi(L(t)

sym) = 1− ρt+ε, i = 2, . . . , k,

λj(L(t)
sym) = 1+ε, j = k + 1, . . . , n (1)

Let
Lp = Mp

(
L(1)

sym, . . . ,L(T )
sym

)
.

The following lemma will be helpful to show that
χ1, . . . ,χk are all eigenvectors Lp and gives a formula
for their corresponding eigenvalue.

Lemma 1. Let A1, . . . , AT ∈ Rn×n be symmetric pos-
itive semi-definite matrices and let p ∈ R. Suppose
that A1, . . . , AT are positive definite if p ≤ 0. If u
is an eigenvector of Ai with corresponding eigenvalue
λi for all i = 1, . . . , T , then u is an eigenvector of
Mp(A1, . . . , AT ) with eigenvalue mp(λ1, . . . , λT ).

Proof. First, note that M = Mp(A1, . . . , AT ) is sym-
metric positive (semi-)definite as it is a positive sum of
such matrices. In particular, M is diagonalizable and
thus the eigenvectors of M and Mp are the same for
every p. Now, as Aiu = λiu for i = 1, . . . , T , we have
Apiu = λpiu for all i and thus

Mp
p (A1, . . . , AT )u =

1

T

T∑
i=1

Apiu =
1

T

T∑
i=1

λpiu

= mp
p(λ1, . . . , λT )u.

Thus, u is an eigenvector of Mp(A1, . . . , AT ) with
eigenvalue mp(λ1, . . . , λT ).

The above lemma, allows to obtain an explicit formula
for Lp which fully describes its spectrum. Indeed, we
have the following

Corollary 3. Let X and Λ(1) be matrices such

that L(1)
sym = XΛ(1)XT , X is orthogonal and

Λ(1) = diag(λ1(L(1)
sym), . . . , λn(L(1)

sym)). Then, we
have Lp = XΛX where Λ is the diagonal ma-
trix Λ = diag(λ1(Lp), . . . , λn(Lp)) with λi(Lp) =

mp(λi(L(1)
sym), . . . , λi(L(T )

sym)), for all i = 1, . . . , n.

Proof. As L(t)
sym have the same eigenvectors for every

t = 1, . . . , T , it follows by Lemma 1 that LpX = XΛ
and thus Lp = XΛX>.

We note that on top of providing information on the
spectral properties of Lp, Corollary 3 ensures the exis-
tence of L±∞ ∈ Rn×n such that limp→±∞ Lp = L±∞.

Combining Lemma 1 with equation (1) we obtain the
following

Lemma 2. The limits limp→±∞ Lp = L±∞ exist.
Furthermore, for p ∈ [−∞,∞], we have Lpχi = λiχi
with

λ1 = ε, λi = mp(µ + ε1), i = 2, . . . , k

where µ = (1 − ρ1, . . . , 1 − ρT ). Furthermore, the re-
maining eigenvalues satisfy λk+1 = · · · = λn = 1 + ε.
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Proof. With Corollary 3 and Equation (1) we directly
obtain for i = 2, . . . , k and j = k + 1, . . . , n,

λ1 =
( 1

T

T∑
t=1

εp
)1/p

= mp(ε1) = ε

λi =
( 1

T

T∑
t=1

(1− ρt + ε)p
)1/p

= mp(µ + ε1)

λj =
( 1

T

T∑
t=1

(1 + ε)p
)1/p

= mp((1 + ε)1) = 1 + ε

We are now ready to prove Theorem 1.

Proof of Theorem 1. Clearly, λ1, . . . , λk are among
the k-smallest eigenvalues of Lp if and only if λ1 <
λk+1 ≤ · · · ≤ λn and λ2 ≤ . . . ≤ λk < λk+1 ≤
· · ·λn where λ1, . . . , λn are all eigenvalues of Lp. By
Lemma 2, we have λ1 = ε, λ2 = · · · = λk = mp(µ+ε1)
and λk+1 = · · · = λn = 1+ ε. Clearly λ1 = ε < 1+ ε =
λk ≤ · · · ≤ λn, thus, the first condition holds. Hence,
λ1, . . . , λk correspond to the k-smallest eigenvalues of
Lp if and only if mp(µ + ε1) < 1 + ε which concludes
the proof.

1.2 No layer contains full information of the
Graph

In this setting, we fix the number k of cluster to k = 3.

For convenience, we slightly overload the notation for
the remaining of this section: we denote by n the size
of each cluster C1, . . . , Ck, i.e. |Ci| = |C| = n for i =
1, . . . , k. Thus, the size of the graph is expressed in
terms of the number and size of clusters, i.e. |V | = nk.

Furthermore, we suppose that for t = 1, 2, 3, the ex-
pected adjacency matrix W(t) ∈ R3n×3n of G(t), are
given, for all i, j = 1, . . . , 3n, as

W(t)
ij =

{
pin if vi, vj ∈ Ct or vi, vj ∈ Ct
pout otherwise,

where 0 < pout ≤ pin ≤ 1. For t = 1, 2, 3 and ε ≥ 0,
let D(t) = diag(W(t)1),

L(t)
sym = I − (D(t))−1/2W(t)(D(t))−1/2 + εI,

and for a nonzero integer p let

Lp = Mp(L(1)
sym,L(2)

sym,L(3)
sym),

where we assume that ε > 0 if p < 0. Consider further
χ1,χ2,χ3 ∈ R3n the vectors defined as

χ1 = 1, χ2 = 1C1 − 1C2 , χ3 = 1C1 − 1C3 .

In opposition to the previous model, it turns out that

L(1)
sym,L(2)

sym and L(3)
sym do not commute and thus do not

share the same eigenvectors. Hence, we can not derive
an explicit expression for Lp as in Corollary 3. In
particular this implies that we need to use different
mathematical tools in order to study the eigenpairs of
Lp.

The first main result of this section, presented in Theo-
rem 2, shows that, in general, the ground truth clusters
can not be reconstructed from the 3 smallest eigenvec-

tors of L(t)
sym for any t = 1, 2, 3.

Theorem 2. If 1 ≥ pin > pout > 0, then for any
t = 1, 2, 3, there exist scalars α > 0 and β > 0 such

that the eigenvectors of L(t)
sym corresponding to the two

smallest eigenvalues are

κκκ1 = α1Ct + 1Ct and κκκ2 = −β1Ct + 1Ct

whereas any vector orthogonal to both κκκ1 and κκκ2 is an
eigenvector for the third smallest eigenvalue.

In fact, we prove even more by giving a full description

of the eigenvectors of L(t)
sym as well as the ordering of

their corresponding eigenvalues. These results can be
found in Lemma 12 below.

Our second main result is the following Theorem 3.
It shows that the ground truth clusters can always be
recovered from the three smallest eigenvectors of Lp.
Theorem 3. Let p be any nonzero integer and assume
that ε > 0 if p < 0. Furthermore, suppose that 0 <
pout < pin ≤ 1. Then, there exists λi such that Lpχi =
λiχi for i = 1, 2, 3 and λ1, λ2, λ3 are the three smallest
eigenvalues of Lp.

Again, we actually prove more than just Theorem 3.
In fact, a full description of the eigenvectors of Lp and
of the ordering of their corresponding eigenvalues is
given in Lemma 18 below.

For the proof of Theorems 2 and 3, and the correspond-
ing additional results, we proceed as follows. First we
assume that n = |Ci| = 1 and prove our claims. Then,
we generalize these results to the case n > 1. For the
sake of clarity, as we will need to refer to the case n = 1
for the proofs of the case n > 1, we put a tilde on the
matrices in R3×3.

The case n = 1:

Suppose that n = 1, then L̃sym = L(1)
sym is given by

L̃sym = τI3 − D̃−1/2W̃D̃−1/2 = τI3 − M̃,

where τ = 1 + ε, W̃ =W(1), D̃ = diag(W̃1),

D̃ =

α 0 0
0 β 0
0 0 β

 , M̃ =

a b b
b c c
b c c

 , (2)
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and α, β, a, b, c > 0 are given by

α = pin + 2pout, β = 2pin + pout,

a =
pin
α
, b =

pout√
αβ

, c =
pin
β
.

Moreover, note that for any (λ,v) ∈ R× R3 we have

M̃v = λv ⇐⇒ L̃symv = (τ − λ)v. (3)

This implies that we can study the spectrum of M̃ in
order to obtain the spectrum of L̃sym. We have the
following lemma:

Lemma 3. Suppose that pout > 0 and let ∆ > 0 be de-
fined as ∆ =

√
(a− 2c)2 + 8b2. Then the eigenvalues

of M̃ are

λ̃1 = 0, λ̃2 =
a+ 2c−∆

2
, λ̃3 = 1,

and it holds λ̃1 < λ̃2 < λ̃3. Furthermore, the corre-
sponding eigenvectors are given by

u1 = (0,−1, 1)>, u2 =
(a− 2c−∆

2b
, 1, 1

)>
,

u3 =
(√
α,
√
β,
√
β
)>
,

and it holds a−2c−∆
2b < 0.

Proof. The equality M̃u1 = 0 follows from a direct
computation. Furthermore, note that u3 = D̃1/21 and
so

M̃u3 = D̃−1/2W̃D̃−1/2D1/21 = D̃−1/2W̃1 = u3

implying M̃u3 = u3. Now, let s± = a−2c±∆
2b . Then

s+ and s− are the solutions of the quadratic equation
bs2 + (2c − a)s − 2b = 0 which can be rearranged as
as+ 2b = (bs+ 2c)s. The latter equation is equivalent
to {

as+ 2b = λs

bs+ 2c = λ
⇐⇒ M̃

s1
1

 = λ

s1
1

 .

Hence, u± = (s±, 1, 1) are both eigenvectors of M̃
corresponding to the eigenvalues

λ± = b s± + 2c =
a− 2c±∆

2
+ 2c =

a+ 2c±∆

2
.

Note in particular that we have u2 = u− and λ̃2 = λ−.
This concludes the proof that (λi,ui) are eigenpairs of
M̃ for i = 1, 2, 3. We now show that λ̃1 < λ̃2 < λ̃3

and (a− 2c−∆)/2b < 0.

As ∆ > 0, we have λ− < λ+. We prove λ− > 0. As
pin > pout by assumption, the definition of a, b, c > 0
implies that

b2 =
p2
out

(2pin + pout)(pin + 2pout)

<
p2
in

(2pin + pout)(pin + 2pout)
= ac.

And from ac > b2 it follows that a2 + 4ac + 4c2 >
a2−4ac+4c2 +8b2 which implies that (a+2c)2 > (a−
2c)2+8b2 = ∆2. Hence, a+2c−∆ > 0 and thus λ− > 0.
Thus we have 0 < λ− < λ+. Now, as M̃ has strictly
positive entries, the Perron-Frobenius theorem (see for
instance Theorem 1.1 in [3]) implies that M̃ has a
unique nonnegative eigenvector u. Furthermore, u has
positive entries and its corresponding eigenvalue is the
spectral radius of M̃. As u3 = D̃1/21 has positive
entries and is an eigenvector of M̃, we have u = u3.
It follows that ρ(M̃) = λ+ = λ̃3. Furthermore, u2

must have a strictly negative entry and thus it holds
s− < 0.

Combining the results of Lemma 3 and Equation (3)
we directly obtain the following corollary which fully
describes the eigenvectors of L̃sym as well as the order-
ing of the corresponding eigenvalues:

Corollary 4. There exists λ̃ ∈ (0, 1) and s− <
0 < s+ < 1 such that

(
τ − 1, (s+, 1, 1)>

)
,
(
τ −

λ̃, (s−, 1, 1)>
)
,
(
τ, (0,−1, 1)>

)
are the eigenpairs of

L̃sym.

Proof. The only thing which is not directly implied by
Lemma 3 and Equation (3) is that s+ < 1. But this
follows again from Lemma 3. Indeed, as (s+, 1, 1) and
(
√
α,
√
β,
√
β) must span the same line, we have

s+ =

√
α

β
=

√
pin + 2pout
2pin + pout

.

As pout < pin, we get 0 < s+ < 1.

Now, we study the spectral properties of L̃p = Lp ∈
R3×3. To this end, for t = 1, 2, 3 let W̃(t) =

W(t), L̃(t)
sym = L(t)

sym ∈ R3×3. Furthermore, consider
the permutation matrices P̃1, P̃2, P̃3 ∈ R3×3 defined as

P̃1 = I3, P̃2 =

0 0 1
0 1 0
1 0 0

 , P̃3 =

0 1 0
1 0 0
0 0 1

 .

Then, we have W̃(t) = P̃tW̃P̃t for t = 1, 2, 3. The

following lemma relates L̃(t)
sym and L̃sym.

Lemma 4. For t = 1, 2, 3, we have P̃t = P̃−1
t = P̃>t

and L̃(t)
sym = P̃tL̃symP̃t.
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Proof. The identity P̃t = P̃−1
t = P̃>t follows by a

direct computation. Now, as P̃t1 = 1, we have
P̃tW̃P̃t1 = P̃tW̃1. Assuming the exponents on the
vector in the following expressions are taken compo-
nent wise, we have diag(W̃1)−1/2 = diag

(
(W̃1)−1/2

)
and thus

diag(P̃tW̃P̃t1)−1/2 = diag
(
(P̃tW̃P̃t1)−1/2

)
= diag

(
P̃t(W̃1)−1/2

)
= P̃tdiag

(
(W̃1)−1/2

)
P̃t

= P̃tdiag(W̃1)−1/2P̃t = P̃tD̃−1/2P̃t.

It follows that

L̃(t)
sym = τP̃tP̃t − P̃tD̃−1/2P̃tP̃tW̃P̃tP̃tD̃−1/2P̃t

= P̃tL̃symP̃t,

which concludes our proof.

Combining Corollary 4 with Lemma 4, we directly ob-
tain the following

Corollary 5. There exists λ̃ ∈ (0, 1) and s− <
0 < s+ such that

(
τ − 1, P̃t(s+, 1, 1)>

)
,
(
τ −

λ, P̃t(s−, 1, 1)>
)
,
(
τ, P̃t(0,−1, 1)>

)
are the eigenpairs

of L̃(t)
sym for t = 1, 2, 3.

A similar argument as in the proof of Lemma 1 implies
that the eigenvectors of L̃p coincide with those of the

matrix L̃p ∈ R3×3 defined as

L̃p = (L̃(1)
sym)p + (L̃(2)

sym)p + (L̃(3)
sym)p = 3L̃pp.

We study the spectral properties of L̃p. To this end,
we consider the following subspaces of matrices:

U3 =
{s1 s2 s2

s3 s5 s4

s3 s4 s5

 ∣∣∣ s1, . . . , s5 ∈ R
}
,

Z3 =
{t1 t2 t2

t2 t1 t2
t2 t2 t1

 ∣∣∣ t1, t2 ∈ R
}
.

We prove that for every p, it holds (L̃(1)
sym)p ∈ U3 and

L̃p ∈ Z3. We need the following lemma:

Lemma 5. The following holds:

1. For all Ã, B̃ ∈ U3 we have ÃB̃ ∈ U3.

2. If Ã ∈ U3 and det(Ã) 6= 0, then Ã−1 ∈ U3.

3. Z3 = P̃1U3P̃1 + P̃2U3P̃2 + P̃3U3P̃3.

Proof. Let Ã ∈ U3, C̃ ∈ Z3 be respectively defined as

Ã =

s1 s2 s2

s3 s5 s4

s3 s4 s5

 , C̃ =

t1 t2 t2
t2 t1 t2
t2 t2 t1



1. Follows from a direct computation.

2. If det(Ã) 6= 0, then Ã is invertible and

det(Ã)Ã−1 = s2
5 − s2

4 s2(s4 − s5) s2(s4 − s5)
s3(s4 − s5) s1s5 − s2s3 s2s3 − s1s4

s3(s4 − s5) s2s3 − s1s4 s1s5 − s2s3

 .

It follows that Ã−1 ∈ U3.

3. We have

3∑
i=1

P̃iÃP̃i = (4) s1 + 2s5 s2 + s3 + s4 s2 + s3 + s4

s2 + s3 + s4 s1 + 2s5 s2 + s3 + s4

s2 + s3 + s4 s2 + s3 + s4 s1 + 2s5


and conversely, there clearly exists s1, . . . , s4 such
that s1 + 2s5 = t1 and s2 + s3 + s4 = t2, so we have∑3
i=1 P̃iÃP̃i = C̃ implying the reverse inclusion.

Now, we show that L̃p ∈ Z3 for all nonzero integer p.

Lemma 6. For every integer p 6= 0 we have L̃p ∈ Z3.

Proof. From (2), we know that L̃(1)
sym ∈ U3. By point

2 in Lemma 5, this implies that (L̃(1)
sym)sign(p) ∈ U3.

Now point 1 of Lemma 5 implies that (L̃(1)
sym)p =(

(L̃(1)
sym)sign(p)

)|p| ∈ U3. Finally, by Lemma 4 and point
3 in Lemma 5, we have

L̃p =

3∑
t=1

(L̃(t)
sym)p =

3∑
t=1

P̃t(L̃(1)
sym)pP̃t ∈ Z3,

which concludes the proof.

Matrices in Z3 have the interesting property that they
have a simple spectrum and they all share the same
eigenvectors. Indeed we have the following:

Lemma 7. Let C̃ ∈ Z3 and t1, t2 be such that C̃ =
(t1 − t2)I3 + t2Ẽ where Ẽ ∈ R3×3 is the matrix of all
ones. Then the eigenpairs of C̃ are given by:(

t1 − t2, (−1, 0, 1)>
)
,
(
t1 − t2, (−1, 1, 0)>

)
,(

t1 + 2t2, (1, 1, 1)>
)
.

Proof. Follows from a direct computation.

So, the last thing we need to discuss is the order of
the eigenvalues of L̃p. To this end, we study the sign
pattern of the powers of this matrix.
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Lemma 8. For every positive integer p > 0 we have
(L̃psym)i,j < 0 < (L̃psym)i,i < τp for all i, j = 1, 2, 3
with i 6= j. For every negative integer p < 0 we have
(L̃psym)i,j > 0 for all i, j = 1, 2, 3.

Proof. First, assume that p > 0 and let S̃ = D̃−1W̃.
We have

L̃psym = (τI3 − D̃−1/2W̃D̃−1/2)p

=

p∑
r=0

(
p

r

)
τp−r(−1)r(D̃−1/2W̃D̃−1/2)r

= D̃1/2
( p∑
r=0

(
p

r

)
τp−r(−1)r(D̃−1W̃)r

)
D̃−1/2

= D̃1/2(τI3 − S̃)pD̃−1/2.

As D̃1/2 and D̃−1/2 are diagonal with positive di-
agonal entries, the sign of the entries of L̃psym coin-

cide with those of (τI3 − S̃)p. Furthermore, we have
(L̃psym)i,i = ((τI3 − S̃)p)i,i for all i. Now the matrix S̃

is row stochastic, that is S̃1 = 1 and has the following
form

S̃ =

1− 2â â â

1− 2b̂ b̂ b̂

1− 2b̂ b̂ b̂

 â =
α̂

1 + 2α̂
, b̂ =

1

2 + α̂

where α̂ = pout/pin ∈ (0, 1). Let

γ = (â− b̂) =
p2
out − p2

in

(2pin + pout)(2pout + pin)
< 0,

µ = (1− 2b̂) =
pin

2pout + pin
> 0

For all positive integer p, we have

(τI3 − S̃)p =
1

2γ + 1

qp rp rp
sp tp up
sp up tp


where qp, rp, sp, tp, up are given by

qp = µ(τ − 1)p + 2â(2γ + τ)p,

rp = â
[
(τ − 1)p − (2γ + τ)p

]
,

sp =
µ

â
rp, (5)

tp = â
[
(τ − 1)p + τp

]
+
µ

2

[
τp + (2γ + τ)p

]
,

up = â
[
(τ − 1)p − τp

]
− µ

2

[
τp − (2γ + τ)p

]
.

Note that as pin > pout > 0, we have

δ = 2γ + 1 = 2(â− b̂) + 1 = 2â+ µ

=
5pinpout + 4p2

out

2p2
in + 5pinpout + 2p2

out

∈ (0, 1),

Furthermore, as τ ≥ 1 and γ < 0, we have δ ≤ (2γ +
τ) < τ . It follows that

0 < µ(τ − 1)p + 2âδp ≤ qp < µ(τ − 1)p + 2âτp

≤ δτp < τp

0 < â
[
(τ − 1)p + τp

]
+
µ

2
(τp + δp) ≤ tp

< 2âτp + µτp = δτp < τp.

Finally, we have

rp = â
[
(τ − 1)p−

(
δ+ (τ − 1)

)p]
< 0, sp =

µ

â
rp < 0.

Now, suppose that p < 0, then we have τ > 1 and

(τI3 − D̃−1/2W̃D̃1/2)−1 =

∞∑
k=0

(D̃−1/2W̃D̃1/2)k.

As M̃ = D̃−1/2W̃D̃1/2 is a matrix with strictly pos-
itive entries, this implies that L̃sym has positive en-

tries as well. Furthermore, it also implies that L̃psym =

(L̃−1
sym)|p| is positive for every p < 0.

Observation 1. Numerical evidences strongly suggest
that the formulas in (5) for the coefficients of (τI3 −
S̃)p hold for any real p ∈ R \ {0}.

We can now use the above lemma to determine the
ordering of the eigenvalues of L̃p.

Lemma 9. Let t1, t2 ∈ R be such that it holds L̃p =

(t1−t2)I3+t2Ẽ. Furthermore, for any nonzero integer
p, it holds 0 < t1− t2 < t1 + 2t2 if p < 0 and t1− t2 >
t1 + 2t2 otherwise.

Proof. If p < 0, then we must have τ > 1 for L̃p to

be well defined. By Lemma 8, (L̃(1)
sym)p has strictly

positive entries. Hence, L̃p =
∑3
t=1 P̃t(L̃

(1)
sym)pP̃t is also

a matrix with positive entries. It follows that t1− t2 >
0 and t2 > 0 so that 0 < t1 − t2 < t1 + 2t2. Now
assume that p > 0, Lemma 8 implies that (L̃(1)

sym)p with
positive diagonal elements and negative off-diagonal.
It follows from (4) that L̃p also has positive diagonal
elements and negative off-diagonal. Hence, we have
t2 < 0 < t1 and thus t1− t2 > t1 +2t2 which concludes
the proof.

We have the following corollary on the spectral prop-
erties of the Laplacian p-mean.

Corollary 6. Let p be a nonzero integer and let ε ≥ 0
if p > 0 and ε > 0 if p < 0. Define

L̃p =
( (L̃(1)

sym)p + (L̃(2)
sym)p + (L̃(3)

sym)p

3

)1/p

,
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then there exists 0 ≤ λ̃1 < λ̃2 such that the eigenpairs
of L̃p are given by(

λ̃1, (−1, 0, 1)>
)
,

(
λ̃1, (−1, 1, 0)>

)
,(

λ̃2, (1, 1, 1)>
)
.

Proof. First, note that L̃p =
(

1
3 L̃p
)1/p

hence as they

are positive semi-definite matrices, L̃p and L̃p share

the same eigenvectors. Precisely, we have L̃pv = λv if

and only if L̃pv = f(λ)v where f(t) = (t/3)1/p. Now,

by Lemmas 6 and 7 we know all eigenvectors of L̃p
and the corresponding eigenvalues are θ1 = t1− t2 and
θ2 = t1 + 2t2. Finally, using Lemma 9 and the fact
that f is increasing if p > 0 and decreasing if p < 0 we
deduce the ordering of λ̃i = f(θi).

The case n > 1:

We now generalize the previous results to the case
n > 1. To this end, we use mainly the properties of
the Kronecker product ⊗ which we recall is defined for
matrices A ∈ Rm1×m2 , B ∈ Rm3×m4 as the block ma-
trix A ⊗ B ∈ Rm1m3×m2m4 with m1m2 blocks of the
form Ai,jB ∈ Rm3×m4 for all i, j. In particular, for
n > 1, if E denotes the matrix of all ones in Rn×n, we
have then W(t) = W̃(t) ⊗ E for every t = 1, 2, 3. Fur-
thermore, let us define W = W̃ ⊗ E and Pt = P̃t ⊗ In
for t = 1, 2, 3 so that W(t) = PtWPt for t = 1, 2, 3. Fi-
nally, let Lsym = τI3n−D−1/2WD−1/2 where we recall
that τ = 1 + ε and D = diag(W1). The normalized
Laplacians of W and W̃ are related in the following
lemma:

Lemma 10. It holds

Lsym = τI3n −
[

1
n D̃
−1/2W̃D̃−1/2

]
⊗ E.

Proof. First, note that D = nD̃⊗In, as (A1⊗B1)(A2⊗
B2) = (A1A2 ⊗ B1B2) for any compatible matrices
A1, A2, B1, B2. We have

D−1/2WD−1/2 =
(D̃−1/2 ⊗ In)(W̃ ⊗ E)(D̃−1/2 ⊗ In)

n

= 1
n D̃
−1/2W̃D̃−1/2 ⊗ E,

which concludes the proof.

In order to study the eigenpairs of Lsym, we combine
Lemma 4 with the following theorem from [2] which
implies that eigenpairs of Kronecker products are Kro-
necker products of the eigenpairs:

Theorem 4 (Theorem 4.2.12, [2]). Let A ∈ Rm×m
and B ∈ Rn×n. Let (λ, x) and (µ, y) be eigenpairs of
A and B respectively. Then (λµ, x⊗y) is an eigenpair
of A⊗B.

Indeed, the above theorem implies that the eigenpairs
of D−1/2WD−1/2 are Kronecker products of the eigen-
pairs of D̃−1/2W̃D̃−1/2 and E. As we already know
those of D̃−1/2W̃D̃−1/2, we briefly describe those of E:

Lemma 11. Let E ∈ Rn×n, n ≥ 2 be the matrix of
all ones, then the eigenpairs of E are given by (n,1)
and (0,v1), . . . , (0,vn−1) where vk ∈ Rn is given as

(vk)j =


1 if j ≤ k,
−k if j = k + 1,

0 otherwise.

(6)

Proof. As E = 11>, it is clear that (n,1) is an eigen-
pair of E. Now, for every i we have Evi = (1>vi)1
and 1>vi = i− i = 0.

We can now describe the spectral properties of L(t)
sym

for t = 1, 2, 3.

Lemma 12. There exists λ ∈ (0, 1) and s− < 0 <
s+ < 1 such that, for t = 1, 2, 3, the eigenpairs of

L̃(t)
sym are given by(
τ − 1, Pt(s+, 1, 1)> ⊗ 1

)
,
(
τ − λ, Pt(s−, 1, 1)> ⊗ 1

)
,(

τ, Pt(0,−1, 1)> ⊗ 1
)
,

(
τ, Pt(s+, 1, 1)> ⊗ vk

)
,(

τ, Pt(s−, 1, 1)> ⊗ vk
)
,

(
τ, Pt(0,−1, 1)> ⊗ vk

)
,

for k = 1, . . . , n− 1, where vk is defined as in (6).

Proof. Follows from Lemmas 3, 11 and Theorem 4.

Similarly to the case n = 1, let us consider Lp ∈
R3n×3n defined as

Lp = (L(1)
sym)p + (L(2)

sym)p + (L(3)
sym)p = 3Lpp.

Again, we note that the eigenvectors of Lp and 3Lpp are
the same. Now, let us consider the sets U3n ⊂ R3n×3n

and Z3n ⊂ R3n×3n defined as

U3n =
{
s0I3n − Ã⊗ E

∣∣ Ã ∈ U3, s0 ∈ R},
Z3n =

{
t0I3n − C̃ ⊗ E

∣∣ C̃ ∈ Z3, s0 ∈ R}.

Note that, as s0I3 +U3 = U3 and s0I3 +Z3 = Z3 for all
s0 ∈ R, the definitions of U3n and Z3n reduce to that
of U3 and Z3 when n = 1. We prove that Lp ∈ Z3n for
all nonzero integer p. To this end, we first prove the
following lemma which generalizes Lemma 5.

Lemma 13. The following holds:

1. U3n is closed under multiplication, i.e. for all
A,B ∈ U3n we have AB ∈ U3n.

2. If A ∈ U3n satisfies det(A) 6= 0, then A−1 ∈ U3n.

3. Z3 = P1U3nP1 + P2U3nP2 + P3U3nP3.
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Proof. Let A,B ∈ U3n, C ∈ Z3n and s0, r0, t0 ∈ R,
Ã, B̃ ∈ U3, C̃ ∈ Z3 such that A = s0I3n − Ã ⊗ E,
B = r0I3n − B̃ ⊗ E and C = t0I3n − C̃ ⊗ E.

1. We have

AB = s0r0I3n + (nÃB̃ − s0B̃ − r0Ã)⊗ E

As ÃB̃ ∈ U3 by Lemma 5, (1), we have (nÃB̃ −
s0B̃ − r0Ã) ∈ U3 and so AB ∈ U3n.

2. First note that as A is invertible, it holds s0 6= 0.
Furthermore, using von Neumann series, we have

(s0I3n − Ã⊗ E)−1 =

∞∑
k=0

sk−1
0 (Ã⊗ E)k

=
∞∑
k=0

sk−1
0 nk(Ãk ⊗ E).

As Ãk ∈ U3 for all k by Lemma 5, (1) we have
that Sν =

∑ν
k=0 s

k−1
0 nk(Ãk⊗E) ∈ U3n for all ν =

0, 1, . . . As limν→∞ Sν = A−1 and U3n is closed,
it follows that A−1 ∈ U3n.

3. Note that for i = 1, 2, 3 it holds

PiAPi = s0I3n − (P̃iÃP̃i ⊗ E).

Hence, we have

3∑
i=1

PiAPi = 3s0I3n −
( 3∑
i=1

P̃iÃP̃i

)
⊗ E.

We know from Lemma 5, (3) that
∑3
i=1 P̃iÃP̃i ∈

U3 and thus
∑3
i=1 P̃i Ã P̃i ∈ Z3. Finally, note that

by choosing the coefficients in Ã in the same way
as in the proof of Lemma 5, (3), we have A = C
with s0 = t0. This concludes the proof.

We can now prove that Lp ∈ Z3n.

Lemma 14. For every nonzero integer p, we have
Lp ∈ Z3n.

Proof. As Lsym = L(1)
sym ∈ U3n, we have Lpsym ∈ U3n

by Lemma 13, (1) and (2). We prove that Lp =∑3
t=1 PtLpsymPt. To this end, note that, with the con-

vention that powers on vectors are considered compo-
nent wise, for t = 1, 2, 3, we have

diag(PtWPt1)1/2 = diag
(
Pt(W1)−1/2

)
= Ptdiag

(
(W1)−1/2

)
Pt = PtDPt.

Furthermore,

diag(PtWPt1)−1/2PtWPtdiag(PtWPt1)−1/2

= PtD−1/2P 2
tWP 2

t D−1/2Pt = PtD−1/2WD−1/2Pt.

This implies that L(t)
sym = PtLsymPt for t = 1, 2, 3 and

thus we obtain the desired expression for Lp. Lemma
13, (3) finally imply that Lp ∈ Z3n.

We combine Theorem 4 and Lemmas 7, 11 to obtain
the following:

Lemma 15. Let C ∈ Z3n and t0, t1, t2 such that C =
t0I3n − ((t1 − t2)I3 + t2Ẽ) ⊗ E. Then, the eigenpairs
of C are given by(

t0 − n(t1 − t2), (−1, 0, 1)> ⊗ 1
)
,(

t0 − n(t1 − t2), (−1, 1, 0)> ⊗ 1
)
,(

t0 − n(t1 + 2t2), (1, 1, 1)> ⊗ 1
)
.

and, with vi defined as in (6),(
t0, (−1, 0, 1)> ⊗ vi

)
,

(
t0, (−1, 1, 0)> ⊗ vi

)
,(

t0, (1, 1, 1)> ⊗ vi
)
, i = 1, . . . , n− 1.

Similar to Lemma 9, we have following lemma for de-
ciding the order of the eigenvectors of Lp.

Lemma 16. For every positive p > 0 we have
(Lpsym)i.j < 0 < (Lpsym)i.i < τp for all i, j = 1, . . . , 3n
with i 6= j. For every negative p < 0 we have
(Lpsym)i,j > 0 for all i, j = 1, . . . , 3n.

Proof. Let M = D−1/2WD−1/2, then by Lemma 10,
we have M = 1

n (M̃ ⊗ E). Now, for p > 0, it holds:

Lpsym = τpI3n +

p∑
k=1

(
p

k

)
τp−k(−1)kn−k(M̃k ⊗ Ek)

= τpI3n +
( p∑
k=1

(
p

k

)
τp−k(−1)kM̃k

)
⊗ E

= τpI3n +
(
L̃psym − τpI3

)
⊗ E. (7)

By Lemma 8, we know that (L̃psym)i,j < 0 if i 6= j

and (L̃psym)i,i − τp < 0 for all i. Hence, the matrix

Q̃ = L̃psym−τpI3 has strictly negative entries. Thus, all
the off-diagonal elements of Lpsym are strictly negative.
Finally, note that

(Lpsym)i,i = τp+(L̃psym⊗E)i,i−τp = (L̃psym⊗E)i,i > 0.

This concludes the proof for the case p > 0. The case
p < 0 can be proved in the same way as for the case
n = 1 (see Lemma 8).
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Observation 2. We note that Equation (7) implies
the following relation between Lp and L̃p:

Lp = 3τpI3n +
(
L̃p − τpI3

)
⊗ E. (8)

Lemma 17. Let t0, t1, t2 ∈ R be such that Lp =
t0I3n− ((t1− t2)I3 + t2E3)⊗En. Furthermore, for any
integer p 6= 0, it holds t0 < t0−n(t1− t2) < t0−n(t1 +
2t2) if p < 0 and t0 > t0−n(t1− t2) > t0−n(t1 + 2t2)
otherwise.

Proof. The proof is essentially the same as that of
Lemma 9. Indeed, if p < 0, then Lp is strictly positive
and thus t2 < 0 as (Lp)1,3n > 0, t1−t2 < 0 as (Lp)1,n >
0 and t0 − nt1 > 0 as (Lp)1,1 > 0. This means that
t1−t2 > t1+2t2 and so t0−n(t1−t2) < t0−n(t1+2t2).
Furthermore, this shows that t0−n(t1−t2) > t0. Now,
if p > 0, by Lemma 16 we have t2 > 0 as (Lp)1,3n < 0,
t1 − t2 > 0 as (Lp)1,n < 0 and t0 − nt1 > 0 as
(Lp)1,1 > 0. It follows that t1 − t2 < t1 + 2t2 and
thus t0 − n(t1 − t2) > t0 − n(t1 + 2t2). Finally, as
t1 − t2 > 0, we have t0 > t0 − n(t1 − t2) which con-
cludes the proof.

We conclude by giving a description of the spectral
properties of Lp.
Lemma 18. Let p be any nonzero integer and assume
that ε > 0 if p < 0. Define

Lp =
( (L(1)

sym)p + (L(2)
sym)p + (L(3)

sym)p

3

)1/p

,

then there exists 0 ≤ λ1, λ2 < λ3 such that the eigen-
pairs of Lp are given by(

λ1, (−1, 0, 1)> ⊗ 1
)
,

(
λ3, (−1, 0, 1)> ⊗ vi

)(
λ1, (−1, 1, 0)> ⊗ 1

)
,

(
λ3, (−1, 1, 0)> ⊗ vi

)(
λ2, (1, 1, 1)> ⊗ 1

)
,

(
λ3, (1, 1, 1)> ⊗ vi

)
,

and i = 1, . . . , n− 1, where vi is defined in (6).

Proof. The proof is the same as that of Corollary 6
where one uses Lemmas 14, 15, 17 instead of Lemmas
6, 7, 9.
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