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Abstract. In this article we construct a maximal margin classification
algorithm for arbitrary metric spaces. At first we show that the Support
Vector Machine (SVM) is a maximal margin algorithm for the class of
metric spaces where the negative squared distance is conditionally posi-
tive definite (CPD). This means that the metric space can be isometri-
cally embedded into a Hilbert space, where one performs linear maximal
margin separation. We will show that the solution only depends on the
metric, but not on the kernel. Following the framework we develop for
the SVM, we construct an algorithm for maximal margin classification
in arbitrary metric spaces. The main difference compared with SVM is
that we no longer embed isometrically into a Hilbert space, but a Ba-
nach space. We further give an estimate of the capacity of the function
class involved in this algorithm via Rademacher averages. We recover an
algorithm of Graepel et al. [6].

1 Introduction

It often occurs that real-world data does not have a natural vector space struc-
ture. It is rather common, however that a natural (semi)-metric exists on this
data that measures pairwise dissimilarities. For the task of classification in a
(semi)-metric space (X , d), where X is a set and d a (semi)-metric on X , in the
absence of other information or prior knowledge, we can only use the metric.
Therefore all algorithms for classification on metric spaces assume that the met-
ric is somehow adapted to the classification task. This means heuristically that
the inner class distances should be low compared with the distance between the
two classes. If the metric fulfills these conditions, then it reveals valuable infor-
mation for the classification problem. Therefore any kind of transformation of X
that distorts this distance structure (the only information we have on the data)
should be avoided.
On the other hand the idea of maximal margin separation of two sets, which is
equivalent to finding the distance between the convex hulls of the two sets, is a
very appealing geometric concept. Obviously we cannot do this for all (semi)-
metric spaces, because in general no linear structure is available. Therefore we
employ isometric embeddings into linear spaces which, on the one hand, pre-
serve the distance structure of the input space, which can be seen as our prior



knowledge on the data, and on the other hand, provide us with the linearity to
do maximal margin separation.
In the first section we start by reviewing the formulation of the SVM. Then we
turn around the normal viewpoint on SVM, and show that the SVM is actually
a maximal-margin algorithm for (semi)-metric spaces. This means that one can
start with a (semi)-metric space, where the negative squared metric is CPD, then
embed this (semi)-metric space isometrically into a Hilbert space, and then use
the linear structure of the Hilbert space to do maximal margin separation. We
emphasize this point by showing that any CPD kernel, which includes any posi-
tive definite (PD) kernel, can be expressed as a sum of the squared (semi)-metric
and some function, and only the (semi)-metric enters the solution of the SVM.
We also show that the optimization problem and the solution can be written in
terms of the (semi)-metric of the input space only.
Unfortunately only the class of metric spaces where the negative square of the
distance is CPD can be used in the SVM. We thus provide a generalization of
the maximum margin principle to arbitrary metric spaces. The main idea is that
any (semi)-metric space can be embedded isometrically into a Banach space.
Since a Banach space is linear and the concept of maximal margin separation
between convex sets can be extended to Banach spaces [2, 12], it is then possible
to write down a maximal margin classification algorithm, which can be applied
to arbitrary (semi)-metric spaces. However the solution of this algorithm differs
from the SVM solution if applied to the same metric space.
Next, we compare semi-metric spaces to metric spaces with respect to classifica-
tion. It turns out that a semi-metric space can be seen as a space where certain
invariances are realized. Therefore using a semi-metric means that one implicitly
uses prior knowledge about invariances of the data. If the data does not share
this invariance property, the use of semi-metrics may lead to a bad classifier.
In the end we compare both algorithms in terms of their generalization ability
and other properties. In particular, we show that the capacity of the class of
functions generated by the proposed embedding is directly related to the metric
entropy of the input space.

2 SVM as a Maximal Margin Algorithm for Metric
Spaces

2.1 The RKHS and the Formulation of the SVM

In this section we construct the Reproducing Kernel Hilbert Space (RKHS) and
state the problem of the SVM; see [11] for an overview on kernel methods. We
first need the definition of the two classes of kernels that are used in the SVM:

Definition 1. A real valued function k on X × X is positive definite (resp.
conditionally positive definite) if and only if k is symmetric and

n∑

i,j

cicjk(xi, xj) ≥ 0, (1)



for all n ∈ N, xi ∈ X , i = 1, ..., n, and for all ci ∈ IR, i = 1, ..., n, (resp. for all
ci ∈ IR, i = 1, ..., n, with

∑n
i ci = 0).

Notice that a PD kernel is always CPD.
A PD kernel allows the construction of a RKHS H in the following way:

1. Define a feature map Φ : X → IRX , x → Φx = k(x, .)
2. Turn it into a vector space by considering all finite linear combinations of

Φxi
: f =

∑n
i=1 αiΦxi

3. Turn it into a pre-Hilbert space H̃ by introducing the dot product:
< Φx, Φy >= k(x, y)

4. Turn it into a Hilbert space H by completing H̃
With these definitions, we can describe the SVM algorithm as follows. The input
space X is mapped into a Hilbert space H via the feature map Φ, and a maximal
margin hyperplane is searched for in this space. Hyperplanes correspond to linear
continuous functionals on the Hilbert space. The margin of such a hyperplane is
defined as twice the distance from the hyperplane to the closest data point. The
margin of the optimal hyperplane is equal to the distance between the convex
hulls of the two classes [2, 12]. Due to Riesz theorem, each continuous linear
functional can be considered as a vector of the Hilbert space (the normal vector
of the corresponding hyperplane).

Given a training set {(xi, yi)}i=1..n, xi ∈ X , yi ∈ {−1, +1}, the optimization
problem corresponding to the maximum margin hyperplane can be written as

min
α

∥∥∥∥∥∥
∑

i:yi=+1

αiΦxi −
∑

i:yi=−1

αiΦxi

∥∥∥∥∥∥

2

H
s.th :

∑

i:yi=+1

αi =
∑

i:yi=−1

αi = 1, αi ≥ 0,

which is equivalent to

min
α

∥∥∥∥∥
∑

i

yiαiΦxi

∥∥∥∥∥

2

H
=

∑

i,j

yiyjαiαjk(xi, xj)

s.th :
∑

i

yiαi = 0,
∑

i

αi = 2, αi ≥ 0,

where the normal vector to the hyperplane is given by

w =
n∑

i=1

αiyiΦxi .

2.2 The Input Space as a (Semi)-Metric Space

Let us first put the standard point of view on SVM like this:

X kernel k−−−−−→ H −→ maximal margin separation (2)



In this section we show by using results which date back to Schoenberg that
there exists an equivalent point of view, which allows us to generalize later on
to arbitrary metric spaces. It can be summarized with the following scheme:

(X , d) isometric−−−−−−→ H −→ maximal margin separation (3)

Recall that a semi-metric is a non-negative symmetric function, d : X ×X → IR,
which satisfies the triangle inequality and d(x, x) = 0 (it is a metric if d(x, y) =
0 ⇒ x = y).
First we note that through the previous construction of the RKHS, we can induce
a semi-metric on X by the following definition:

d2(x, y) := ‖Φx − Φy‖2H = k(x, x) + k(y, y)− 2 k(x, y) . (4)

Note that d will be a metric if Φx is injective (and a semi-metric otherwise). A
simple example of a kernel whose feature map is not injective is k(x, y) = 〈x, y〉2.
We will consider the difference between a metric and semi-metric with respect
to classification in a later section.

The next proposition can be found in a different form in Berg et al. (see
Proposition 3.2 of [3]). We have rewritten it in order to stress the relevant parts
for the SVM.

Proposition 1. Let X be the input space and k : X × X → IR a CPD kernel.
Then the function d, defined as

d(x, y) =
√

k(x, x) + k(y, y)− 2 k(x, y) , (5)

is a semi-metric on X such that −d2 is CPD. All CPD kernels k : X ×X → IR
are generated by a (semi)-metric d (with −d2 CPD) in the sense that there exists
a function g : X → IR such that

k(x, y) = −1
2
d2(x, y) + g(x) + g(y) , (6)

and any kernel of this form induces the semi-metric d via Equation (5).

This proposition states that semi-metrics d, where −d2 is CPD, are up to a
function f equivalent to the whole class of CPD kernels. Next, one can show
that the obtained metric space can be isometrically embedded into a Hilbert
space (see also Proposition 3.2 of [3]).

Proposition 2. Let (X , d) be the semi-metric space defined in Proposition 1.

(i) It can be isometrically embedded into a Hilbert space H;
(ii) if k is bounded, H can be continuously embedded into (Cb(X ), ‖·‖∞).

Moreover, the class of semi-metric spaces defined in Proposition 1 consists of all
metric spaces that can be embedded isometrically into a Hilbert space, which is
a result of Schoenberg [9]. Schoenberg proved this theorem already in 1938 and
introduced the notion of PD and CPD functions. We are getting back to the
roots of the kernel industry.



Theorem 1. A necessary and sufficient condition for a (semi)-metric space
(X , d) to be isometrically embeddable into a Hilbert space is that k̃(x, y) =
− 1

2d(x, y)2 is CPD.

We now try to show the relevance of these results for the SVM. This theorem
together with Proposition 1 gives the full equivalence of the standard (2) and our
(3) point of view on SVM. This can be summarized as follows: defining a CPD
kernel on the input space X is equivalent to defining a unique (semi)-metric d
on the input space X via (5); and in the other direction any (semi)-metric d on
X , where −d2 is CPD, defines a non-unique PD kernel via (6) and (7), such that
(X , d) can be embedded isometrically into the corresponding RKHS.
We will also use these results to show in the next section that the SVM classifier
only depends on the metric, so that all the kernels of the form (6) are equivalent
from the SVM point of view.
In the rest of this section we give the proofs of the propositions.

Proof (Proposition 1). If k is CPD but not PD, we consider for an arbitrary
x0 ∈ X ,

k̃(x, y) := k(x, y)− k(x, x0)− k(x0, y) + k(x0, x0) . (7)

This kernel is PD if and only if k is CPD (see [3]) and k̃(x, x)+k̃(y, y)−2k̃(x, y) =
k(x, x) + k(y, y) − 2k(x, y), so that k̃ defines the same semi-metric d as k (via
Equation (5)). Note that k(x, y) = k̂(x, y) + g(x) + g(y) is CPD, if k̂ is CPD:

∑

i,j

cicjk(xi, xj) =
∑

i,j

cicj k̂(xi, xj) + 2
∑

j

cj

∑

i

cig(xi)

=
∑

i,j

cicj k̂(xi, xj) ≥ 0,

where the second term vanishes because
∑

i ci = 0.
Thus from (5) we get that −d2 is CPD with f(x) = − 1

2k(x, x). On the other
hand, if we start with a semi-metric d, where − 1

2d2(x, y) is CPD, then k defined
by (6) is CPD and k induces d as a semi-metric via (5). Now if two CPD kernels
k and k̂ induce the same (semi)-metric, then they fulfill k(x, y) = k̂(x, y) +
1
2 [(k(x, x)−k̂(x, x))+(k(y, y)−k̂(y, y))]. Thus they differ by a function g : X → IR
with g(.) = 1

2 (k(., .)− k̂(., .)). ut
Proof (Proposition 2). We have shown in the proof of Proposition 1 that each
CPD kernel k defines a PD kernel k̃ via (7), which induces the same (semi)-
metric. With the PD kernel k̃ we define a reproducing kernel Hilbert space H
as above, with associated feature map Φ (Φx = k̃(x, ·)). It trivially defines an
isometry.
We note that the kernel is always continuous with respect to the (semi)-metric
it induces:

|k(x, y)− k(x′, y′)| = | < kx, ky − ky′ > + < kx − kx′ , ky′ > |
≤ ‖kx‖‖ky − ky′‖+ ‖kx − kx′‖‖ky′‖
=

√
k(x, x)

√
d(y, y′) +

√
k(y′, y′)

√
d(x, x′).



Furthermore, if the kernel is bounded, then for any f ∈ H,

|f(x)| = | 〈f, k(x, ·)〉 | ≤ ‖f‖H
√

k(x, x)

so that f is bounded, and similarly

|f(x)− f(y)| ≤ ‖f‖ ‖k(x, ·)− k(y, ·)‖ = ‖f‖ d(x, y),

hence f is continuous. ut

2.3 Formulation of the SVM in Terms of the (Semi)-Metric

It was already recognized by Schölkopf [10] that the SVM relies only on distances
in the RKHS. This can be seen directly from the optimization problem (2), where
we minimize the euclidean distance of the convex hulls in H, which is translation
invariant. Schölkopf showed that this implies one can use the bigger class of CPD
kernels in SVM. One can show this by directly plugging in the expression of the
PD kernel in terms of a CPD kernel from (7) into the optimization problem. All
terms except the CPD kernel k(x, y) part cancel out because of the constraints.

We have shown in the last section that a (semi)-metric lies at the core of
every CPD kernel, and that there exists a whole class of CPD kernels which
induce the same (semi)-metric on X . Applying the results of the last section we
go one step further and show that the SVM is a maximal-margin algorithm for
a certain class of (semi)-metric spaces.

Theorem 2. The SVM method can be applied to the class of (semi)-metric
spaces (X , d), where −d2 is CPD. The (semi)-metric space (X , d) is embedded
isometrically via the corresponding positive definite kernel into a Hilbert space.
Using the linear structure of the Hilbert space, the two sets of points, corre-
sponding to the two classes, are linearly separated so that the margin between the
two sets is maximized. The distance between the convex hulls of the two classes
is twice the margin. The solution of the SVM does not depend on the specific
isometric embedding Φ, nor on the corresponding choice of the kernel. The op-
timization problem and the solution can be completely expressed in terms of the
(semi)-metric d of the input space,

min
α

∥∥∥∥∥
∑

i

yiαiΦxi

∥∥∥∥∥

2

H
= −1

2

∑

i,j

yiyjαiαjd
2(xi, xj)

s.th :
∑

i

yiαi = 0,
∑

i

αi = 2, αi ≥ 0.

The solution can be written as

f(x) = −1
2

∑

i

yiαid
2(xi, x) + c.



Proof. By combining the Proposition 1 and the theorem of Schoenberg, we
showed the equivalence of the standard view on SVM and the view of an isomet-
ric embedding of the (semi)-metric space (X , d) into a Hilbert spaceH. Therefore
the SVM is restricted to metric spaces (X , d), where −d2 is CPD. The statement
about the equivalence of maximal-margin separation and the distance between
the convex hulls of the two classes can be found in [2, 12]. Now the expression of
the optimization problem of the SVM in terms of the (semi)-metric follows from
(6);

∥∥∥∥∥
∑

i

yiαiΦxi

∥∥∥∥∥

2

H
=

∑

i,j

yiyjαiαjk(xi, xj)

=
∑

i,j

yiyjαiαj [−1
2
d2(xi, xj) + g(xi) + g(xj)]

= −1
2

∑

i,j

yiyjαiαjd
2(xi, xj),

where f drops out due to the constraint
∑

i yiαi = 0.
The solution expressed in terms of a CPD kernel k can also be expressed in
terms of the (semi)-metric by using (6):

f(x) =
∑

i

yiαik(xi, x) + b =
∑

i

yiαi[−1
2
d(xi, x)2 + g(xi) + g(x)]

= −1
2

∑

i

yiαid
2(xi, x) + c,

where again
∑

i yiαig(x) drops out and c = b +
∑

i yiαig(xi), but c can also
be directly calculated with the average value of b = yj + 1

2

∑
i yiαid

2(xi, xj),
where j runs over all indices with αj > 0. Since neither the specific isometric
embedding Φ nor a corresponding kernel k enter the optimization problem or
the solution, the SVM only depends on the (semi)-metric. ut
The kernel is sometimes seen as a similarity measure. The last theorem, however,
shows that this property of the kernel does not enter the algorithm. On the
contrary the (semi)-metric as a dissimilarity measure of the input space only
enters the algorithm. Nevertheless it seems to be easier to construct a CPD
kernel than a function d(x, y), where d is a (semi)-metric and −d2 is CPD, but
one should remain aware that only the induced (semi)-metric has an influence on
the solution, and therefore compare two different kernels through their induced
(semi)-metrics.
One can use the high ambiguity in the kernel to chose from the whole class of
kernels which induce the same (semi)-metric (6) that which is computationally
the cheapest, because the solution does not change as is obvious from the last
theorem. As a final note we would like to add that the whole argumentation
on the isometric embedding of the (semi)-metric space into a Hilbert space also
applies to the soft-margin-formulation of the SVM. The reformulation in terms
of reduced convex hulls is a little bit tricky, and we refer to [2, 12] for this issue.



3 Maximal Margin Algorithm for Arbitrary
(Semi)-Metric Spaces

The maximal margin algorithm where the space one embeds the data isometri-
cally is a Hilbert space, which is equivalent to the SVM, is limited to a subclass
of all metric spaces. In this section we will treat arbitrary metric spaces trying
to follow the same steps described at the end of the last section. We first de-
fine an isometric embedding of an arbitrary metric space into a Banach space.
We then use the fact that in Banach spaces the problem of a maximal margin
hyperplane is equivalent to finding the distance between the convex hulls. With
this property we are able to formulate the problem and discuss the algorithm.
The scheme we use can be stated as follows

(X , d) isometric−−−−−−→ (D̄, ‖.‖∞) ⊂ (Cb(X ), ‖.‖∞) −→ maximal margin separation

where D̄ is a Banach space of (continuous and bounded) functions defined on X
(see definitions below).

3.1 Isometric embedding of a general metric space into a Banach
space

In this section we construct a pair of dual Banach spaces. The metric space X
will be isometrically embedded into the first one, and the second one will be
used to define continuous linear functionals (i.e. hyperplanes).

Let (X , d) be a compact1 metric space and denote by Cb(X ) the Banach
space of continuous and bounded functions on X endowed with the supremum
norm. The topological dual of Cb(X ) is the space of Baire measures M(X ) with
the measure norm ‖µ‖ =

∫
X dµ+ −

∫
X dµ− (where µ+ and µ− are respectively

the positive and negative parts of µ).
Consider an arbitrary x0 ∈ X and define the following maps

Φ : X → IRX and Ψ : X → IRX

x 7→ Φx := d(x, ·)− d(x0, ·) x 7→ Ψx := d(·, x)− d(x0, x) .

Let D = span{Φx : x ∈ X} and E = span{Ψx : x ∈ X} be the linear spans of
the images of the maps Φ and Ψ .
We will show that Φ defines an isometric embedding of the metric space X into
the closure D̄ of D (with respect to the infinity norm). Moreover, D̄ is a Banach
space whose dual is isometrically isomorphic to (hence can be identified with)
the completion Ē of E with respect to the norm

‖e‖E = inf

{∑

i∈I

|βi| : e =
∑

i∈I

βiψxi , xi ∈ X , |I| < ∞
}

.

The following results formalize the above statements.
1 Compactness is needed for the analysis but the algorithm we present in the next

section works without this assumption since it performs an approximation on a
finite set.



Lemma 1. Φ is an isometry from (X , d) into the Banach space (D̄, ‖·‖∞) ⊂
(Cb(X ), ‖·‖∞).

Proof. We have ‖Φx‖∞ ≤ d(x, x0) < ∞ and |Φx(y) − Φx(y′)| ≤ |d(x, y) −
d(x, y′)| + |d(x0, y) − d(x0, y

′)| ≤ 2d(y, y′), so that Φx ∈ Cb(X ). In addition
‖Φx − Φy‖∞ = ‖d(x, ·)− d(y, ·)‖∞ ≤ d(x, y) and the supremum is attained at x
and y. Hence, Φ is an isometry from (X , d) into (D, ‖·‖∞) which is a subspace of
Cb(X ). Defining D̄ as the closure of D in Cb(X ) which is a Banach space yields
that D̄ is complete. ut
Note that, as an isometry, Φ is continuous, and x0 is mapped to the origin of D.

Lemma 2. ‖·‖E is a norm on E.

Proof. It is easy to see that ‖·‖E satisfies the properties of a semi-norm. To prove
that it is a norm, consider e ∈ E such that ‖e‖E = 0. Then there exist sequences
(In), (βi,n) and xi,n such that e =

∑
i∈In

βi,nΨxi,n and
∑

i∈In
|βi,n| → 0. As a

consequence, for any x ∈ X , |e(x)| = |∑i∈In
βi,nΨxi,n

(x)| ≤ d(x, x0)
∑

i∈In
|βi,n|

, so that taking the limit n →∞ we obtain e(x). This proves e ≡ 0 and concludes
the proof. ut
As a normed space, E can be completed with respect to the norm ‖·‖E into a
Banach space Ē with extended norm ‖·‖Ē . Let D̄′ be the topological dual of D̄
with dual norm ‖·‖D̄′ .

Theorem 3. (Ē, ‖·‖Ē) is isometrically isomorphic to (D̄′, ‖·‖D̄′).

Proof. Let D̄⊥ = {d′ ∈ D̄′ : 〈d′, d〉 = 0, ∀ d ∈ D} and consider the space
M(X )/D̄⊥ of equivalence classes of measures that are identical on the subspace
D̄ and endow this space with the quotient norm ‖µ̃‖ = inf{‖µ‖ : µ ∈ µ̃}. Then
by theorem 4.9 of [8] (D̄′, ‖·‖D̄′) is isometrically isomorphic to (M(X )/D̄⊥, ‖·‖).
Recall that the span of measures with finite support is dense in M(X ), so the
same is true for the quotient spaceM(X )/D̄⊥. The linear map σ : E → span{δx :
x ∈ X}/D̄⊥ defined as σ(Ψx) = δx|D induces an isometric isomorphism between
E and span{δx : x ∈ X}/D̄⊥, which can be extended to the closure of these
spaces. ut

3.2 Duality of Maximal Margin Hyperplanes and Distance of
Convex Hulls in Banach Spaces

We have stated in the beginning that the two problems of finding the distance
between two disjoint convex hulls and finding a maximal margin hyperplane are
equivalent for Banach spaces. This can be seen by the following theorem (see
[12] for a proof), where we define co(T ) = {∑i∈I αixi|

∑
i∈I αi = 1, xi ∈ T, αi ∈

IR+, |I| < ∞}.
Theorem 4. Let T1 and T2 be two finite sets of points in a Banach space B
then if co(T1) ∩ co(T2) = ∅

d(co(T1), co(T2)) = inf
y∈co(T1),z∈co(T2)

‖y − z‖ = sup
x′∈B′

infy∈T1,z∈T2 < x′, y − z >

‖x′‖ .



We now rewrite the right term by using the definition of the infimum:

inf
x′∈B′,c,d

‖x′‖
c− d

subject to: x′(y) ≥ c, ∀ y ∈ T1, x′(z) ≤ d, ∀ z ∈ T2.

Now subtract − c+d
2 from both inequalities, and define the following new quan-

tities: b = c+d
d−c , w′ = 2

c−dx′, T = T1 ∪ T2. Then one gets the standard form:

min
w′∈B′,b

‖w′‖ (8)

subject to: yi(w′(xi) + b) ≥ 1 ∀xi ∈ T = T1 ∪ T2.

3.3 The Algorithm

We now plug our isometric embedding into the equation (8) to get the opti-
mization problem for maximal margin classification in arbitrary (semi)-metric
spaces:

min
w′ ∈ D̄′,b∈ IR

‖w′‖

subject to: yj(w′(Φxj ) + b) ≥ 1 ∀xj ∈ T.

We are using the isometric isomorphism between D̄′ and Ē to state it equiv-
alently in Ē. By density of E in Ē and by continuity of the norm and of the
duality-product, the minimum on Ē can be replaced by an infimum on E:

inf
e∈E,b

‖e‖ = inf
m∈IN, x1,...,xm∈Xm, b

m∑

i=1

|βi|

s.t. yj(
m∑

i=1

βiψxi(Φxj ) + b) = yj(
m∑

i=1

βi(d(xj , xi)− d(x0, xi)) + b) ≥ 1 ∀xj ∈ T.

Notice that the infimum may not be attained in E. Unlike in the SVM case there
seems to be no guarantee such as a representer theorem that the solution can be
expressed in terms of points in the training set only.
In order to make the problem computationally tractable, we have to restrict the
problem to a finite dimensional subspace of E. A simple way to do this is to
consider only the subspace of E generated by a finite subset Z ∈ X , |Z| = m.
We are free to choose the point x0, so we choose it as x0 = z1, z1 ∈ Z. Since the
problem stated in Theorem 4 is translation invariant, this choice has no influence
on the solution. This leads to the following optimization problem:

min
βi,b

m∑

i=1

|βi|

subject to: yj(
m∑

i=1

βi(d(xj , zi)− d(z1, zi)) + b) ≥ 1, ∀xj ∈ T.



In general, a convenient choice for Z is Z = T . In a transduction setting one can
use for Z the union of labelled and unlabelled data.
As

∑m
i=1 βid(z1, zi) does not depend on j, due to translation invariance, we can

put it in the constant b and solve the equivalent problem:

min
βi,c

m∑

i=1

|βi|

subject to: yj(
m∑

i=1

βi d(xj , zi) + c) ≥ 1, ∀xj ∈ T.

The corresponding decision function is given by

f(x) = sgn

(
m∑

i=1

βi d(x, zi) + c

)
.

The above optimization problem can be transformed into a linear programming
problem, and is easily solvable with standard methods. Note that if we take
Z = T we recover the algorithm proposed by Graepel et al. [6]. We also note
that it is easily possible to obtain a soft-margin version of this algorithm. In
this case there still exists the equivalent problem of finding the distance between
the reduced convex hulls [2, 12]. This algorithm was compared to other distance
based classifiers by Pekalska et al. in [7] and showed good performance.

Using Theorem 4, we can also formulate the problem (in dual form) as follows

min
αi ∈ IR

sup
x∈X

∣∣∣∣∣
n∑

i=1

yiαid(x, xi)

∣∣∣∣∣

subject to:
n∑

i=1

yiαi = 0,

n∑

i=1

αi = 2 , αi ≥ 0 .

Unfortunately, there is no simple relationship between primal (βi) and dual (αi)
variables which allows to compute the decision function from the αi. However,
it is interesting to notice that the approximation of the primal problem which
consists in looking for a solution generated by a finite subset Z corresponds, in
dual form, to restricting the supremum to Z only. This means for finite metric
spaces the problem can be solved without approximation.

4 Semi-Metric Spaces compared to Metric Spaces for
Classification

In the last two sections we made no distinction between semi-metric and metric
spaces. In fact there is a connection between both of them which we want to
clarify in this section.



Theorem 5. Let (X , d) be a (semi)-metric space and ∼ be the equivalence re-
lation defined by x ∼ y ⇔ d(x, y) = 0. Then (X/ ∼, d) is a metric space, and
if −d2(x, y) is a CPD Kernel and k a PD Kernel on X which induces d on X ,
then −d2 is also a CPD Kernel and k a PD kernel on (X/ ∼, d).

Proof. The property d(x, y) = 0 defines an equivalence relation on X , x ∼
y ⇐⇒ d(x, y) = 0. Symmetry follows from the symmetry of d, and transitivity
x ∼ y, y ∼ z ⇒ x ∼ z follows from the triangle inequality d(x, z) ≤ d(x, y) +
d(y, z) = 0. Then d(x, y) is a metric on the quotient space X/ ∼ because all
points with zero distance are identified, so

d(x, y) = 0 ⇐⇒ x = y,

and obviously symmetry and the triangle inequality are not affected by this
operation. d is well-defined because if x ∼ z then |d(x, .)− d(z, .)| ≤ d(x, z) = 0.
The fact that −d2 is CPD on X/ ∼ follows from the fact that all possible
representations of equivalence classes are points in X and −d2 is CPD on X . It
is also well defined because if x ∼ z then

|d2(x, .)− d2(z, .)| ≤ d(x, z)|(d(x, .) + d(z., )| = 0.

The argumentation that k is also PD on X/ ∼ is the same as above. It is well
defined because if x ∼ x′ then ‖Φx − Φx′‖ = 0, so that actually k(x, ·) = k(x′, ·)
(since for all y ∈ X , |k(x, y)− k(x′, y)| ≤ ‖Φx − Φx′‖ ‖Φy‖). ut
The equivalence relation defined in Theorem 5 can be seen as defining a kind of
global invariance on X . For example in the SVM setting when we have the kernel
k(x, y) = 〈x, y〉2, the equivalence relation identifies all points which are the same
up to a reflection. This can be understood as one realization of an action of the
discrete group D = {−e,+e} on Rn, so this kernel can be understood as a kernel
on IRn/D.
Assume now that there are no invariances in the data and two different points
x 6= y with different labels are such that d(x, y) = 0. Then they cannot be
separated by any hyperplane. This means that using semi-metrics implicitly
assumes invariances in the data, which may not hold.

5 Generalization Bounds using Rademacher Averages

In this section we calculate the Rademacher averages corresponding to the func-
tion classes of the two algorithms presented. The Rademacher average is a mea-
sure of capacity of a function class with respect to classification, and can be used
to derive upper bounds on the error of misclassification (see e.g. Theorems 7 and
11 from [1]).
Let P be a probability distribution on X ×{±1} and consider a training sample
T = {(Xi, Yi)n

i=1} drawn according to Pn. Let R̂n be the empirical Rademacher
average of the function class F , defined as

R̂n(F) = Eσ sup
f∈F

| 1
n

n∑

i=1

σif(xi)| ,



where σ are Rademacher variables and Eσ denotes the expectation conditional
to the sample (i.e. with respect to the σi only). The function classes we are
interested in are those of continuous linear functionals on Hilbert or Banach
spaces. More precisely, we consider the following two classes. For a given PD
kernel k, let k̃ be defined as k̃(x, ·) = k(x, ·)− k(x0, ·)2 and H be the associated
RKHS for k̃. We define F1 = {g : g ∈ H, ‖g‖ ≤ B}. Also, with the notations of
the previous section, we define F2 = {e ∈ Ē, ‖e‖ ≤ B}.

Theorem 6. With the above notation, we have

R̂n(F1) ≤ B

n

√√√√
n∑

i=1

d(xi, x0)2 .

where d(xi, x0) = ‖k(xi, ·) − k(x0, ·)‖H is the distance induced by the kernel on
X . Also, there exists a universal constant C such that

R̂n(F2) ≤ CB√
n

∫ ∞

0

√
log N(

ε

2
,X , d) dε.

Proof. We first compute the Rademacher average for F2:

R̂n(F2) = Eσ sup
e∈Ē,‖e‖≤B

∣∣∣∣∣
1
n

n∑

i=1

σi 〈e, Φxi〉
∣∣∣∣∣ = Eσ sup

e∈Ē,‖e‖≤B

∣∣∣∣∣

〈
e,

1
n

n∑

i=1

σiΦxi

〉∣∣∣∣∣

=
B

n
Eσ

∥∥∥∥∥
n∑

i=1

σiΦxi

∥∥∥∥∥
∞

=
B

n
Eσ sup

x∈X

∣∣∣∣∣
n∑

i=1

σiΦxi(x)

∣∣∣∣∣ (9)

We will use Dudley’s upper bound on the empirical Rademacher average [5]
which gives that there exists an absolute constant C for which the following
holds: for any integer n, any sample {xi}n

i=1 and every class F2,

R̂n(F2) ≤ C√
n

∫ ∞

0

√
log N(ε,F2, L2(µn))dε, (10)

where µn is the empirical measure supported on the sample and N(ε,F2, L2(µn))
are the covering numbers of the function class F2 with respect to L2(µn).

In order to apply this result of Dudley, we notice that the elements of X can
be considered as functions defined on X . Indeed, for each x ∈ X , one can define
the function fy : x 7→ Φx(y). We denote by G the class of all such functions, i.e.
G = {fy : y ∈ X}. Then using (9), we get

R̂n(F2) = B Eσ sup
x∈X

∣∣∣∣∣
1
n

n∑

i=1

σiΦxi(x)

∣∣∣∣∣ = B R̂n(G). (11)

2 where k(x0, ·) corresponds to the origin in H and is introduced to make the compar-
ison with the space Ē easier



We now try to upper bound the empirical L2-norm of G:

‖fy1 − fy2‖L2(µn) ≤ ‖fy1 − fy2‖L∞(µn) = max
xi∈T

|Φxi
(y1)− Φxi

(y2)|
= max

xi∈T
|d(xi, y1)− d(xi, y2) + d(x0, y2)− d(x0, y1)|

≤ 2d(y1, y2). (12)

Combining (10) and (12) we get

R̂n(G) ≤ C√
n

∫ ∞

0

√
log N(

ε

2
,X , d)dε

This gives the first result. Similarly, we have

R̂n(F1) =
B

n
Eσ

∥∥∥∥∥
n∑

i=1

σi(k(xi, .)− k(x0, .))

∥∥∥∥∥
H
≤ B

n

√√√√
n∑

i=1

d(xi, x0)2 ,

where the second step follows from Jensen’s inequality (applied to the concave
function

√·). ut
Notice that a trivial bound on R̂n(F2) can be found from (9) and

∣∣∣∣∣
n∑

i=1

σi(d(xi, x)− d(x0, x))

∣∣∣∣∣ ≤
n∑

i=1

d(xi, x0),

which gives the upper bound

R̂n(F2) ≤ B

n

n∑

i=1

d(xi, x0) ,

which is also an upper bound on R̂n(F1). However, this upper bound is loose
since if all the data is at approximately the same distance from x0 (e.g. on a
sphere), then this quantity does not decrease with n.

6 Conclusion and Perspectives

In this article we have built a general framework for the generation of maximal
margin algorithms for metric spaces. We first use an isometric embedding of the
metric space into a Banach space followed by a maximal margin separation. It
turned out that the SVM uses the same principle, but is restricted to the special
class of metric spaces that allow an isometric embedding into a Hilbert space.
In the following diagram the structure of both algorithms is shown:

RKHS
continuous−−−−−−−→ C(X )

(X , d) isometric−−−−−−→
↗
↘

(D̄, ‖.‖∞) isometric−−−−−−→ (Cb(X ), ‖.‖∞)



The structural difference between the two algorithms is the space into which
they embed. Since there exist several isometric embeddings of metric spaces into
normed linear spaces, this raises two questions. First what is their difference in
terms of mathematical structure, and second what are the consequences for a
learning algorithm, especially its generalization ability ?
Further on in the SVM case we shifted the problem of choosing a kernel on X to
the problem of choosing a metric on X . Maybe one can construct a measure on
the space of metrics for a given space X , which can be calculated on the data,
that captures the heuristic notion of “small inner class distance and big distance
between the classes”.
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