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Abstract. In this article we investigate the field of Hilbertian metrics on
probability measures. Since they are very versatile and can therefore be
applied in various problems they are of great interest in kernel methods.
Quit recently Topsøe and Fuglede introduced a family of Hilbertian met-
rics on probability measures. We give basic properties of the Hilbertian
metrics of this family and other used metrics in the literature. Then we
propose an extension of the considered metrics which incorporates struc-
tural information of the probability space into the Hilbertian metric.
Finally we compare all proposed metrics in an image and text classifica-
tion problem using histogram data.

1 Introduction
Recently the need for specific design of kernels for a given data structure has been
recognized by the kernel community. One type of structured data are probability
measures M1

+(X )1on a probability space X . The following examples show the
wide range of applications of this class of kernels:

– Direct application on probability measures e.g. histogram data [1].
– Having a statistical model for the data one can first fit the model to the data

and then use the kernel to compare two fits, see [5, 4].
– Given a bounded probabiliy space X one can use the kernel to compare sets

in that space, by putting e.g. the uniform measure on each set.

In this article we study instead of positive definite (PD) kernels the more general
class of conditionally positive definite (CPD) kernels. Or to be more precise we
concentrate on Hilbertian metrics, that are metrics d which can be isometrically
embedded into a Hilbert space, that is −d2 is CPD. This choice can be justified
by the fact that the support vector machine (SVM) only uses the metric infor-
mation of the CPD2 kernel, see [3], and that every CPD kernel is generated by
a Hilbertian metric.
We propose a general method to build Hilbertian metrics on M1

+(X ) from
Hilbertian metrics on IR+. Then we completely characterize the Hilbertian met-
rics on M1

+(X ) which are invariant under the change of the dominating measure

1 M1
+(X ) denotes the set of positive measures µ on X with µ(X ) = 1

2 Note that every PD kernel is a CPD kernel.



using results of Fuglede. As a next step we introduce a new family of Hilbertian
metrics which incorporates similarity information of the probability space. Fi-
nally we support the theoretical analysis by two experiments. First we compare
the performance of the basic metrics on probability measures in an image and
text classification problem. Second we do the image classification problem again
but now using similarity information of the color space.

2 Hilbertian Metrics

An interesting subclass of metrics is the class of Hilbertian metrics, that are
metrics which can be isometrically embedded into a Hilbert space. In order to
characterize this subclass of metrics, we first introduce the following function
class:

Definition 1. A real valued function k on X × X is positive definite (PD)
(resp. conditionally positive definite (CPD)) if and only if k is symmetric and∑n

i,j cicjk(xi, xj) ≥ 0, for all n ∈ N, xi ∈ X , i = 1, ..., n, and for all ci ∈ IR, i =
1, ..., n, (resp. for all ci ∈ IR, i = 1, ..., n, with

∑n
i ci = 0).

The following theorem describes the class of Hilbertian metrics:

Theorem 1 (Schoenberg [6]). A metric space (X , d) can be embedded iso-
metrically into a Hilbert space if and only if −d2(x, y) is CPD.

What is the relevance of this notion for the SVM? Schölkopf showed that the
class of CPD kernels can be used in SVM’s due to the translation invariance of
the maximal margin problem in the RKHS, see [7]. Furthermore it is well known
that the maximal margin problem is equivalent to the optimal separation of the
convex hulls of the two classes. This was used in [3] to show that the properties
of the SVM only depend on the Hilbertian metric. That is all CPD kernels are
generated by a Hilbertian metric d(x, y) through k(x, y) = −d2(x, y)+g(x)+g(y)
where g : X → IR and the solution of the SVM only depends on the Hilbertian
metric d(x, y).

3 Hilbertian Metrics on Probability Measures

It would be very ambitious to address the question of all possible Hilbertian
metrics on probability measures. Instead we restrict ourselves to a special family.
Nevertheless this special case encompasses almost all measures previously used
in the machine learning community. In the first section we use recent results of
Fuglede and Topsøe, which describe all α-homogeneous3, continuous Hilbertian
(semi)-metrics on IR+

4. Using these results it is straightforward to characterize
all Hilbertian metrics on M1

+(X ) of a certain from. In the second part we extend
the framework and incorporate similarity information of X .
3 That means d2(c p, c q) = cαd2(p, q) for all c ∈ IR+
4 IR+ is the positive part of the real line with 0 included



3.1 Hilbertian Metrics on Probability Measures derived from
Hilbertian metrics on IR+

For simplicity we will first only treat the case of discrete probability measures
on D = {1, 2, . . . , N}, where 1 ≤ N ≤ ∞. Given a Hilbertian metric d on IR+

it is easy to see that the metric dM1
+

given by d2
M1

+
(P, Q) =

∑N
i=1 d2

IR+
(pi, qi)

is a Hilbertian metric on M1
+(D). The following proposition extends the simple

discrete case to the general case of a Hilbertian metric on a probability space
X . In order to simplify the notation we define p(x) to be the Radon-Nikodym
derivative (dP/dµ)(x) 5 of P with respect to the dominating measure µ.

Proposition 1. Let P and Q be two probability measures on X , µ an arbitrary
dominating measure6 of P and Q and dIR+ a 1/2-homogeneous Hilbertian metric
on IR+. Then dM1

+(X ) defined as

d2
M1

+(X )(P,Q) :=
∫

X
d2
IR+

(p(x), q(x))dµ(x) , (1)

is a Hilbertian metric on M1
+(X ). dM1

+(X ) is independent of the dominating
measure µ.

Proof. First we show by using the 1/2-homogeneity of dIR+ that dM1
+(X ) is in-

dependent of the dominating measure µ. We have
∫

X
d2
IR+

(
dP

dµ
,
dQ

dµ
)dµ =

∫

X
d2
IR+

(
dP

dν

dν

dµ
,
dQ

dν

dν

dµ
)
dµ

dν
dν =

∫

X
d2
IR+

(
dP

dν
,
dQ

dν
)dν

where we use that d2
IR+

is 1-homogeneous. It is easy to show that −d2
M1

+(X )

is conditionally positive definite, simply take for every n ∈ N, P1, . . . , Pn the
dominating measure

Pn
i=1 Pi

n and use that−d2
IR+

is conditionally positive definite.

It is in principle very easy to construct Hilbertian metrics on M1
+(X ) using an

arbitrary Hilbertian metric on IR+ and plugging it into the definition (1). But
the key property of the method we propose is the independence of the metric d
onM1

+(X ) of the dominating measure. That is we have generated a metric which
is invariant with respect to general coordinate transformations on X , therefore
we call it a covariant metric. For example the euclidean norm on IR+ will yield
a metric on M1

+(X ) but it is not invariant with respect to arbitrary coordinate
transformations. We think that this could be the reason why the naive appli-
cation of the linear or the Gaussian kernel yields worse results than Hilbertian
metrics resp. kernels which are invariant, see [1, 5].
Quite recently Fuglede completely characterized the class of homogeneous Hilber-
tian metrics on IR+. The set of all 1/2-homogeneous Hilbertian metrics on IR+

characterizes then all invariant Hilbertian metrics on M1
+(X ) of the form (1).

5 In IRn the dominating measure µ is usually the Lebesgue measure. In this case we
can think of p(x) as the normal density function.

6 Such a dominating measure always exists take, e.g. M = (P + Q)/2.



Theorem 2 (Fuglede [2]). A symmetric function d : IR+ × IR+ → IR+ with
d(x, y) = 0 ⇐⇒ x = y is a γ-homogeneous, continuous Hilbertian metric d on
IR+ if and only if there exists a (necessarily unique) non-zero bounded measure
µ ≥ 0 on IR+ such that d2 can be written as

d2(x, y) =
∫

IR+

∣∣∣x(γ+iλ) − y(γ+iλ)
∣∣∣
2

dµ(λ)

Topsøe proposed the following family of 1/2-homogeneous Hilbertian metrics.

Theorem 3 (Topsøe,Fuglede). The function d : IR+ × IR+ → IR defined as:

d2
α|β(x, y) =

αβ

β − α

[(
xα + yα

2

)1/α

−
(

xβ + yβ

2

)1/β
]

(2)

is a 1/2-homogeneous Hilbertian metric on IR+, if 1 ≤ α ≤ ∞, 1/2 ≤ β ≤ α.
Moreover −d2 is strictly CPD except when α = β or (α, β) = (1, 1/2).

Obviously one has d2
α|β = d2

β|α. Abusing notation we denote in the following
the final metric on M1

+(X ) generated using (1) by the same name d2
α|β . The

following special cases are interesting:

d2
∞|1(P, Q)=

1
2

∫

X
|p(x)− q(x)|dµ(x), d2

1
2 |1(P, Q)=

1
4

∫

X
(
√

p(x)−
√

q(x))2dµ(x)

d2
1|1(P, Q)=

1
2

∫

X
p(x) log

(
2p(x)

p(x) + q(x)

)
+ q(x) log

(
2q(x)

p(x) + q(x)

)
dµ(x)

d2
∞|1 is the total variation7. d2

1
2 |1

is the square of the Hellinger distance. It is in-
duced by the positive definite Bhattacharyya kernel, see [4]. d2

1|1 can be derived
by a limit process, see [2]. It was not used in the machine learning literature
before. Since it is the proper version of a Hilbertian metric which corresponds to
the Kullback-Leibler divergence D(P ||Q), it is especially interesting. In fact it
can be written with M = (P + Q)/2 as d2

1|1(P, Q) = 1
2 (D(P ||M) + D(Q||M)).

For an interpretation from information theory, see [9]. We did not consider other
metrics from this family since they all have similar properties as we show later.
Another 1/2-homogeneous Hilbertian metric previously used in the machine
learning literature is the modified χ2-distance : d2

χ2(P, Q) =
∑n

i=1
(pi−qi)

2

pi+qi
. d2

χ2 is
not PD, as often wrongly assumed in the literature, but CPD. See [8] for a proof
and also for the interesting upper and lower bounds on the considered metrics:

d2
1
2 |1 ≤ d2

α|β ≤ d2
∞|1 ≤

1
2
d 1

2 |1, 4d2
1
2 |1 ≤ d2

χ2 ≤ 8d2
1
2 |1, 2d4

∞|1 ≤ d2
χ2 ≤ 2d2

∞|1

In order to compare all different kinds of metrics resp. kernels on M1
+(X ) which

were used in the kernel community, we also considered the geodesic distance of

7 This metric was implicitly used before, since it is induced by the positive definite
kernel k(P, Q) =

Pn
i=1 min(pi, qi).



the multinomial statistical manifold used in [5]: dgeo(P,Q) = arccos(
∑N

i=1

√
piqi).

We could not prove that it is Hilbertian. In [5] they actually use the kernel
exp(−λd2(P, Q)) as an approximation to the first order parametrix of the heat
kernel of the multinomial statistical manifold. Despite the mathematical beauty
of this approach, there remains the problem that one can only show that this
kernel is PD for λ < ε8. In practice ε is not known which makes it hard to judge
when this approach may be applied.
It is worth mentioning that all the Hilbertian metrics explicitly mentioned in
this section can be written as f -divergences. It is a classical result in informa-
tion geometry that all f -divergences induce up to scaling the Fisher metric. In
this sense all considered metrics are locally equivalent. Globally we have the up-
per and lower bounds introduced earlier. Therefore we expect in our experiments
relatively small deviations in the results of the different metrics.

3.2 Hilbertian Metrics on Probability Measures Incorporating
Structural Properties of the Probability Space

If the probability space X is a metric space (X , dX ) one can use dX to derive a
metric on M1

+(X ). One example of this kind is the Kantovorich metric:

dK(P,Q) = inf
µ
{
∫

X×X
d(x, y)dµ(x, y)

∣∣∣µ ∈M1
+(X × X ), π1(µ) = P, π2(µ) = Q}

where πi denotes the marginal with respect to i-th coordinate. When X is finite,
the Kantovorich metric gives the solution to the mass transportation problem. In
a similar spirit we extend the generation of Hilbertian metrics on M1

+(X ) based
on (1) by using similarity information of the probability space X . That means
we do not only compare the densities pointwise but also the densities of distinct
points weighted by a similarity measure k(x, y) on X . The only requirement we
need is that we are given a similarity measure on X , namely a positive definite
kernel k(x, y)9. The disadvantage of our approach is that we are not anymore
invariant with respect to the dominating measure. On the other hand if one
can define a kernel on X , then one can build e.g. by the induced semi-metric a
uniform measure µ on X and use this as a dominating measure. We denote in
the following by M1

+(X , µ) all probability measure which are dominated by µ.

Theorem 4. Let k be a PD kernel on X and k̂ a PD kernel on IR+ such that
∫
X

√
k(x, x) k̂(q(x), q(x)) dµ(x) < ∞, ∀ q ∈M1

+(X , µ). Then

K(P,Q) =
∫

X

∫

X
k(x, y) k̂(p(x), q(y)) dµ(x) dµ(y) (3)

is a positive definite kernel on M1
+(X , µ)×M1

+(X , µ).

8 which does not imply that −d2
geo is CPD.

9 Note that a positive definite kernel k on X always induces a semi-metric on X by
d2
X (x, y) = k(x, x) + k(y, y)− 2k(x, y).



Proof. Note first that the product k(x, y)k̂(r, s) (x, y ∈ X , r, s ∈ IR+) is a positive
definite kernel on X × IR+. The corresponding RKHS H is the tensor product
of the RKHS Hk and Hk̂, that is H = Hk ⊗Hk̂. We denote the corresponding
feature map by (x, r) → φx⊗ψr. Now let us define a linear map Lq : H → IR by

Lq : φx ⊗ ψr −→
∫

X
k(x, y)k̂(r, q(y))dµ(y) =

∫

X
〈φx, φy〉Hk

〈
ψr, ψq(y)

〉
Hk̂

dµ(y)

≤ ‖φx ⊗ ψr‖H
∫

X

∥∥φy ⊗ ψq(y)

∥∥
H dµ(y)

Therefore by the assumption Lq is continuous. By the Riesz lemma, there exists
a vector uq such that ∀v ∈ H, 〈uq, v〉H = Lq(v). It is obvious from

〈up, uq〉H=
∫

X

〈
up, φy ⊗ ψq(y)

〉
H dµ(y) =

∫

X 2

〈
φx ⊗ ψp(x), φy ⊗ ψq(y)

〉
H dµ(y)dµ(x)

=
∫

X 2
k(x, y) k̂(p(x), q(y)) dµ(x) dµ(y)

that K is positive definite.

The induced Hilbertian metric D of K is given by

D2(P, Q)=
∫

X 2
k(x, y)

[
k̂(p(x), p(y)) + k̂(q(x), q(y))− 2k̂(p(x), q(y))

]
dµ(x)dµ(y)

=
∫

X

∫

X
k(x, y)

〈
ψp(x) − ψq(x), ψp(y) − ψq(y)

〉
dµ(x)dµ(y). (4)

4 Experiments

The performance of the following Hilbertian metrics on probability distributions

d2
geo(P, Q) = arccos2(

N∑

i=1

√
pi
√

qi), d2
χ2(P, Q) =

N∑

i=1

(pi − qi)2

pi + qi

d2
H(P, Q) =

1
4

N∑

i=1

(
√

pi −√qi)2, d2
TV (P, Q) =

1
2

N∑

i=1

|pi − qi|

d2
JS(P, Q) =

1
2

N∑

i=1

pi log
(

2pi

pi + qi

)
+ qi log

(
2qi

pi + qi

)
(5)

respectively of the transformed ”Gaussian” metrics

d2
exp(P, Q) = 1− exp(−λd2(P, Q)) (6)

was evaluated in three multi-class classification tasks:
The Reuters data set. The documents are represented as term histograms. Fol-
lowing [5] we used the five most frequent classes earn, acq, moneyFx, grain and
crude. We excluded documents that belong to more than one of theses classes.



This resulted in a data set with 8085 examples of dimension 18635. The We-
bKB web pages data set. The documents are also represented as histograms. We
used the four most frequent classes student, faculty, course and project. 4198
documents remained each of dimension 24212 (see [5]). The Corel image data
base. We chose the data set Corel14 as in [1], which has 14 classes. Two different
features were used. First the histogram was computed directly from the RGB
data second from the CIE Lab color space, which has the advantage that the eu-
clidean metric in that space locally discriminates colors according to the human
vision uniformly over the whole space. Therefore the quantization process is more
meaningful in CIE Lab than in RGB space10. In both spaces we used 16 bins per
dimension, yielding a 4096-dimensional histogram. All the data sets were split
into a training (80%) and a test (20%) set . The multi-class problem was solved by
one-vs-all with SVM’s using the CPD kernels K = −d2. For each metric d from
(5) we either used the metric directly with varying penalty constants C in the
SVM, or we used the transformed metric dexp defined in (6) again with different
penalty constants C and λ. The best parameters were found using 10-folds cross-
validation from the set C ∈ {10k | k = −2,−1, ..., 4} =: RC respectively (C, λ) ∈
RC × 1

σ{2, 1, 2
3 , 1

2 , 2
5 , 1

3 , 1
4 , 1

5 , 1
7 , 1

10}, where σ was set to {π
4 ,
√

2
2 ,

√
2

2 ,
√

log 2
2 ,

√
2

2 }
to compensate for the different maximal distances of dgeo, dχ2 , dH , dJS , dTV re-
spectively. For the best parameters the classifier was trained then on the whole
training set and its error evaluated on the test set. The results are shown in Ta-
ble 1. In a second experiment we used (4) for the Corel data11. We employ the
euclidean CIE 94 distance on the color space since it models the color perception
of humans together with the compactly supported RBF k(x, y) = (1−‖x− y‖)2+,
see e.g. [10], to generate a similarity kernel for the color space. Then the same
experiments are done again for the RGB histograms and the CIE histograms
with all the distances except the geodesic one, since it is not of the form (1).
The results are shown in rows CIE CIE94 and RGB CIE94.

Table 1: The table shows the test errors with the optimal values of
the parameters of C resp. C, λ found from 10-fold cross-validation.
The first row of each data set is obtained using the metric directly,
the second row shows the errors of the transformed metric (6).

Geodesic χ2 Hellinger JS Total Var.

error C σ error C σ error C σ error C σ error C σ

Reuters
0.015 1 0.016 1 0.016 102 0.014 10 0.018 102

0.015 10 1/10 0.015 10 1/7 0.016 10 1/10 0.015 10 1/5 0.019 103 1/13

WebKB
0.052 1 0.046 1 0.046 1 0.045 10 0.052 1
0.045 10 1/2 0.048 103 2/5 0.044 10 1/2 0.049 104 2/3 0.050 10 1/10

Corel RGB
0.254 1 0.171 1 0.225 10 0.171 10 0.161 10
0.171 102 1/2 0.157 102 1 0.154 102 1 0.161 102 1/2 0.161 102 1/5

Corel CIE
0.282 1 0.179 10 0.200 10 0.196 103 0.186 102

0.154 10 1 0.146 10 2/5 0.139 10 2/3 0.146 102 2/3 0.171 10 2/3

10 In principle we expect no difference in the results of RGB and CIE Lab when we use
invariant metrics. The differences in practice come from the different discretizations.

11 The geodesic distance cannot be used since it cannot be written in appropriate form.



RGB CIE94
0.161 1 0.214 10 0.168 10 0.168 10
0.157 10 1/4 0.164 100 1/2 0.161 100 2/3 0.157 100 1/5

CIE CIE94
0.161 10 0.182 10 0.150 102 0.193 10
0.154 10 2/5 0.143 102 2/5 0.146 102 2/3 0.179 10 2/5

The results show that there is not a ”best” metric. It is quite interesting that the
result of the direct application of the metric are comparable to that of the trans-
formed ”Gaussian” metric. Since the ”Gaussian” metric requires an additional
search for the optimal width parameter, in the case of limited computational
resources the direct application of the metric seems to yield a good trade-off.

5 Conclusion
We presented a general method to build Hilbertian metrics on probability mea-
sures from Hilbertian metrics on IR+. Using results of Fuglede we characterized
the class of Hilbertian metrics on probability measures generated from Hilber-
tian metrics on IR+ which are invariant under the change of the dominating
measure. We then generalized this framework by incorporating a similarity mea-
sure on the probability space into the Hilbertian metric. Thus adding structural
information of the probability space into the distance. Finally we compared all
studied Hilbertian metrics in two text and one image classification tasks.
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