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Hilbertian Metrics and Positive Definite Kernels on
Probability Measures

Matthias Hein and Olivier Bousquet

Abstract. We investigate the problem of defining Hilbertian metrics resp. positive definite kernels on proba-
bility measures, continuing the work in [1]. This type of kernels has shown very good results in text classification
and has a wide range of possible applications. In this paper we extend the two-parameter family of Hilbertian
metrics of Topsøe such that it now includes all commonly used Hilbertian metrics on probability measures. This
allows us to do model selection among these metrics in an elegant and unified way. Second we investigate further
our approach to incorporate similarity information of the probability space into the kernel. The analysis provides
a better understanding of these kernels and gives in some cases a more efficient way to compute them. Finally we
compare all proposed kernels in two text and one image classification problem.

1 Introduction

Kernel Methods have shown in the last years that they are one of the best and generally applicable tools in machine
learning. Their great advantage is that positive definite (pd) kernels can be defined on every set. Therefore they
can be applied to data of any type. Nevertheless in order to get good results the kernel should be adapted as well as
possible to the underlying structure of the input space. This has led in the last years to the definition of kernels on
graphs, trees and manifolds. Kernels on probability measures also belong to this category but they are already one
level higher since they are not defined on the structures directly but on probability measures on these structures. In
recent time they have become quite popular due to the following possible applications:

• Direct application on probability measures e.g. histogram data of text [2] and colors [3].

• Given a statistical model for the data one can first fit the model to the data and then use the kernel to compare
two fits, see [2, 4]. Thereby linking parametric and non-parametric models.

• Given a bounded probability spaceX one can use the kernel to compare arbitrary sets in that space, by putting
e.g the uniform measure on each set. This is extremely useful to compare data of variable length e.g. sequence
data in bioinformatics.

In this paper we consider Hilbertian metrics and pd kernels onM1
+(X )1. In a first section we will summarize the

close connection between Hilbertian metrics and pd kernels so that in general statements for one category can be
easily transferred to the other one.
We will consider two types of kernels on probability measures. The first one is general covariant that means
that arbitrary smooth coordinate transformations of the underlying probability space will have no influence on
the kernel. Such kernels can be applied if only the probability measures itself are of interest but not the space
they are defined on. We introduce and extend a two parameter family of covariant pd kernels which encompasses
all previously used kernels of this type. Despite the great success of these general covariant kernels in text and
image classification, they have some shortcomings. For example for some applications we might have a similarity
measure resp. a pd kernel on the probability space which we would like to use for the kernel on probability
measures. In the second part we further investigate a type of kernel on probability measures which incorporates
such a similarity measure, see [1]. This will yield on the one hand a better understanding of this type of kernels and
on the other hand gives an efficient way of computing these kernels in some cases. Finally we apply these kernels
on two text and one image classification tasks, namely the Reuters, the WebKB data set and the Corel14 data set.

1M1
+(X ) denotes the set of positive measuresµ onX with µ(X ) = 1
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2 Hilbertian Metrics versus Positive Definite Kernels

It is a well-known fact that a pd kernelk(x, y) corresponds to an inner product〈φx, φy〉H in some feature space
H. The class of conditionally positive definite (cpd) kernels is less well known. Nevertheless this class is of great
interest since Scḧolkopf showed in [5] that all translation invariant kernel methods can also use the bigger class of
cpd kernels. Therefore we give a short summary of this type of kernels and their connection to Hilbertian metrics2.

Definition 2.1 A real valued functionk on X × X is pd (resp. cpd) if and only ifk is symmetric and∑n
i,j cicjk(xi, xj) ≥ 0, for all n ∈ N, xi ∈ X , i = 1, ..., n, and for all ci ∈ R, i = 1, ..., n, (resp. for all

ci ∈ R, i = 1, ..., n, with
∑n

i ci = 0).

Note that every pd kernel is also cpd. The close connection between the two classes is shown by the following
lemma:

Lemma 2.1 [6] Let k be a kernel defined ask(x, y) = k̂(x, y)− k̂(x, x0)− k̂(x0, y) + k̂(x0, x0), wherex0 ∈ X .
Thenk is pd if and only if̂k is cpd.

Similar to pd kernels one can also characterize cpd kernels. Namely one write all cpd kernels in the form:k(x, y) =
−‖φx − φy‖H + f(x) + f(y). The cpd kernels corresponding to Hilbertian (semi)-metrics are characterized by
f(x) = 0 for all x ∈ X , whereas ifk is pd it follows thatf(x) ∼ k(x, x) ≥ 0. We refer to [6, 3.2] and [5] for more
on this topic. We also would like to point out that for SVM’s the class of Hilbertian (semi)-metrics is in a sense
more important than the class of pd kernels. Namely one can show, see [7], that the solution and optimization
problem of the SVM only depends on the Hilbertian (semi)-metric, which is implicitly defined by each pd kernel.
Moreover a whole family of pd kernels induces the same semi-metric. In order to avoid confusion we will in
general speak of Hilbertian metrics since, using Lemma 2.1, one can always define a corresponding pd kernel.
Nevertheless for the convenience of the reader we will often explicitly state the corresponding pd kernels.

3 Hilbertian Metrics and Positive Definite Kernels onR+
3

The class of Hilbertian metrics on probability measures we consider in this paper are all based on a pointwise
comparison of the densitiesp(x) with a Hilbertian metric onR+. Therefore Hilbertian metrics onR+ are the basic
ingredient of our approach. In principle we could use any Hilbertian metric onR+, but as we will explain later we
require the metric on probability measures to have a certain property. This in turn requires that the Hilbertian metric
on R+ is γ-homogeneous4. The class ofγ-homogeneous Hilbertian metrics onR+ was recently characterized by
Fuglede:

Theorem 3.1 (Fuglede [8])A symmetric functiond : R+ × R+ → R+ with d(x, y) = 0 ⇐⇒ x = y is a γ-
homogeneous, continuous Hilbertian metricd on R+ if and only if there exists a (necessarily unique) non-zero
bounded measureρ ≥ 0 onR+ such thatd2 can be written as

d2(x, y) =
∫

R+

∣∣∣x(γ+iλ) − y(γ+iλ)
∣∣∣2 dρ(λ) (1)

Using Lemma 2.1 we define the corresponding class of pd kernels onR+, where we choosex0 = 0. We will see
later that this corresponds to choosing the zero-measure as origin of the RKHS.

Corollary 3.1 A symmetric functionk : R+ × R+ → R+ with k(x, x) = 0 ⇐⇒ x = 0 is a 2γ-homogeneous
continuous pd kernelk on R+ if and only if there exists a (necessarily unique) non-zero bounded symmetric
measureκ ≥ 0 onR such thatk can be written as

k(x, y) =
∫

R
x(γ+iλ)y(γ−iλ) dκ(λ) (2)

2A (semi)-metricd(x, y) (A semi-metricd(x, y) fulfills the conditions of a metric except thatd(x, y) = 0 does not imply
x = y.) is called Hilbertian if one can embed the (semi)-metric space(X , d) isometrically into a Hilbert space. A (semi)-metric
d is Hilbertian if and only if−d2(x, y) is cpd. That is a classical result of Schoenberg.

3R+ is the positive part of the real line with0 included
4A symmetric functionk is γ-homogeneous ifk(c x, c y) = cγk(x, y) for all c ∈ R+
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Proof: If k has the form given in (2), then it is obviously2γ-homogeneous and sincek(x, x) = x2γκ(R) we
havek(x, x) = 0 ⇐⇒ x = 0. The other direction follows by first noting thatk(0, 0) = 〈v0, v0〉 = 0 and then by
applying theorem 3.1, whereκ is the symmetrized version ofρ around the origin, together with lemma 2.1 and

k(x, y) = 〈vx, vy〉 =
1
2

(
−d2(x, y) + d2(x, 0) + d2(y, 0)

)
.

�
At first glance Theorem 3.1, though mathematical beautiful, seems to be not very helpful from the viewpoint of
applications. But as we will show in the section on structural pd kernels onM1

+(X ) this result will allow to
compute this class of kernels very efficiently.
Recently Topsøe and Fuglede proposed an interesting two-parameter family of Hilbertian metrics onR+ [9, 8]. We
will now extend the parameter range of this family. This will allow us in the next section to recover all previously
used Hilbertian metrics on probability measures from this family.

Theorem 3.2 The functiond : R+ × R+ → R defined as:

d2
α|β(x, y) =

2
1
β (xα + yα)

1
α − 2

1
α

(
xβ + yβ

) 1
β

2
1
α − 2

1
β

(3)

is a 1/2-homogeneous Hilbertian metric onR+, if α ∈ [1,∞], β ∈ [ 12 , α] or β ∈ [−∞,−1]. Moreover the
pointwise limit forα → β is given as:

lim
α→β

d2
α|β(x, y) =

β221/β

log(2)
∂

∂β

(
xβ + yβ

2

)(1/β)

=

(
xβ + yβ

) 1
β

log(2)

[
xβ

xβ + yβ
log

(
2xβ

xβ + yβ

)
+

yβ

xβ + yβ
log

(
2yβ

xβ + yβ

)]
Note thatd2

α|β = d2
β|α. We need the following lemmas in the proof:

Lemma 3.1 [6, 2.10] If k : X × X is cpd andk(x, x) ≤ 0, ∀x ∈ X thenkγ is also cpd for0 < γ ≤ 1.

Lemma 3.2 If k : X × X → R−5 is cpd, then−1/k is pd.

Proof: It follows from theorem 2.3 in [6] that ifk : X × X → R− is cpd, then1/(t− k) is pd for allt > 0. The
pointwise limit of a sequence of cpd resp. pd kernels is cpd resp. pd if the limit exists, see e.g. [10]. Therefore
limt→0 1/(t− k) = −1/k is positive definite ifk is strictly negative. �
We can now prove Theorem 3.2:
Proof: The proof for the symmetry, the limitα → β and the parameter range1 ≤ α ≤ ∞, 1/2 ≤ β ≤ α
can be found in [8]. We prove that−d2

α|β is cpd for1 ≤ α ≤ ∞, −∞ ≤ β ≤ −1. First note thatk(x, y) =
−(f(x)+ f(y)) is cpd onR+, for any functionf : R+ → R+ and satisfiesk(x, y) ≤ 0, ∀x, y ∈ X . Therefore by
Lemma 3.1,−(xα + yα)1/α is cpd for1 ≤ α < ∞. The pointwise limitlimα→∞−(xα + yα)1/α = −max{x, y}
exists, therefore we can include the limitα = ∞. Next we considerk(x, y) = −(x + y)1/β for 1 ≤ β ≤ ∞
which is cpd as we have shown and strictly negative if we restrictk to {x ∈ R |x > 0}. Then all conditions for
lemma 3.2 are fulfilled, so thatk(x, y) = (x + y)−1/β is pd. But then alsok(x, y) = (x−β + y−β)−1/β is pd.
Moreoverk can be continuously extended to0 by k(x, y) = 0 for x = 0 or y = 0. Multiplying the first part with
(2(1/α−1/β) − 1)−1 and the second one with(1− 2(1/β−1/α))−1 and adding them gives the result. �

4 Covariant Hilbertian Metrics on M1
+(X )

In this section we define Hilbertian metrics onM1
+(X ) by comparing the densities pointwise with a Hilbertian

metric onR+ and integrating these distances overX . Since densities can only be defined with respect to a dom-
inating measure6 our definition will at first depend on the choice of the dominating measure. This dependence
would restrict the applicability of our approach. For example if we hadX = Rn and choseµ to be the Lebesgue

5R− = {x ∈ R |x < 0}
6A measureµ dominates a measureν if µ(E) > 0 wheneverν(E) > 0 for all setsE ⊂ X . In Rn the dominating measure

µ is usually the Lebesgue measure.
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measure, then we could not deal with Dirac measuresδx since they are not dominated by the Lebesgue measure.
Therefore we construct the Hilbertian metric such that it is independent of the dominating measure. This justifies
the term covariant since independence from the dominating measure also yields invariance from arbitrary one-to-
one coordinate transformations. In turn this also implies that all structural properties of the probability space will
be ignored so that the metric onM1

+(X ) only depends on the probability measures. As an example take the color
histograms of images. Covariance here means that the choice of the underlying color space say RGB, HSV or CIE
Lab does not influence our metric, since these color spaces are all related by one-to-one transformations. Note
however that in practice the results will usually slightly differ due to different discretizations of the color space.
In order to simplify the notation we definep(x) to be the Radon-Nikodym derivative(dP/dµ)(x) 7 of P with
respect to the dominating measureµ.

Proposition 4.1 LetP andQ be two probability measures onX , µ an arbitrary dominating measure8 of P andQ
anddR+ a 1/2-homogeneous Hilbertian metric onR+. ThenDM1

+(X ) defined as

D2
M1

+(X )(P,Q) :=
∫
X

d2
R+

(p(x), q(x))dµ(x) , (4)

is a Hilbertian metric onM1
+(X ). DM1

+(X ) is independent of the dominating measureµ.

For a proof of this proposition, see [1]. We can now apply this principle of building covariant Hilbertian metrics on
M1

+(X ) and use the family of 1/2-homogeneous Hilbertian metricsd2
α|β on R+ from the previous section. This

yields as special cases the following well-known measures on probability distributions.

D2
1
2 |1

(P,Q) =
∫
X

(
√

p(x)−
√

q(x))2dµ(x), D2
∞|1(P,Q) =

∫
X
|p(x)− q(x)|dµ(x)

D2
1|1(P,Q) =

1
log(2)

∫
X

p(x) log
(

2p(x)
p(x) + q(x)

)
+ q(x) log

(
2q(x)

p(x) + q(x)

)
dµ(x),

D2
1|−1(P,Q) =

∫
X

(p(x)− q(x))2

p(x) + q(x)
dµ(x)

D 1
2 |1

is the Hellinger distance,D2
1|−1 is the symmetricχ2-measure,D2

∞|1 is the total variation andD2
1|1 is the

Jensen-Shannon divergence. The Hellinger metric is well known in the kernel community and was for example
used in [4], the symmetricχ2-metric was for a long time wrongly assumed to be pd and is new in this family due
to our extension ofd2

α|β to negative values ofβ. The total variation was implicitly used in SVM’s through a pd
counterpart which we will give below. The Jensen-Shannon divergence is very interesting since it is a symmetric
and smoothed variant of the Kullback-Leibler divergence. Instead of the work in [11] where they have a heuristic
approach to get from the Kullback-Leibler divergence to a pd matrix, the Jensen-Shannon divergence is a theoreti-
cally sound alternative. Note that the familyd2

α|β is designed in such a way that the maximal distance ofD2
α|β is 2,

∀α, β. For completeness we also give the corresponding pd kernels onM1
+(X ), where we take in Lemma 2.1 the

zero measure asx0 in M1
+(X ). This choice seems strange at first since we are dealing with probability measures.

But the whole framework presented in this paper can easily be extended to all finite, positive measures onX . For
this set the zero measure is a natural choice of the origin.

K 1
2 |1

(P,Q) =
∫
X

√
p(x)q(x)dµ(x), K1|−1(P,Q) =

∫
X

p(x)q(x)
p(x) + q(x)

dµ(x)

K1|1(P,Q) =
−1

log(2)

∫
X

p(x) log
(

p(x)
p(x) + q(x)

)
+ q(x) log

(
q(x)

p(x) + q(x)

)
dµ(x),

K∞|1(P,Q) =
∫
X

min{p(x), q(x)}dµ(x)

The astonishing fact is that we find the four previously used Hilbertian metrics resp. pd kernels onM1
+(X ) as

special cases of a two-parameter family of Hilbertian metrics resp. pd kernels onM1
+(X ). Due to the symmetry

of d2
α|β (which implies symmetry ofD2

α|β) we can even see all of them as special cases of the family restricted to

7In case ofX = Rn and whenµ is the Lebesgue measure we can think ofp(x) as the normal density function.
8Such a dominating measure always exists take e.g.M = (P + Q)/2
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α = 1. This on the one hand shows the close relation of these metrics and on the other hand gives us the opportunity
to do model selection in a one-parameter family. So that we can treat the four known cases and intermediate ones
in a very elegant way.

5 Structural Positive Definite Kernels

The covariant Hilbertian metrics proposed in the last section have the advantage that they only compare the prob-
ability measures, thereby ignoring all structural properties of the probability space. On the other hand there exist
cases where we have a reasonable similarity measure on the probability space, which we would like to be incorpo-
rated into the metric. As an example this is helpful when we compare probability measures with disjoint support,
since for the covariant metrics disjoint measures have always maximal distance, irrespectively how ”close” or ”far”
their support is. Obviously if our training set consists only of disjoint measures learning is not possible with co-
variant metrics. We have proposed in [1] a positive definite kernel which incorporates a given similarity measure,
namely a pd kernel, on the probability space. The only disadvantage is that this kernel is not invariant with respect
to the dominating measure. That means we can only define it for the subsetM1

+(X , µ) ⊂ M1
+(X ), that are the

measures dominated byµ. On the other hand if one can define a kernel onX , then one can build e.g. by the
induced semi-metric a uniform measureµ onX , which is then a natural choice for the dominating measure.

Theorem 5.1 (Structural Kernel) Letk be a bounded PD kernel onX and k̂ a bounded PD kernel onR+. Then

K(P,Q) =
∫
X

∫
X

k(x, y) k̂(p(x), q(y)) dµ(x) dµ(y) (5)

is a pd kernel onM1
+(X , µ)×M1

+(X , µ).

The structural kernel generalizes previous work done by Suquet, see [12], wherek̂(p(x), q(y)) = p(x)q(y). The
advantage of this choice for̂k is thatK(P,Q) is independent of the dominating measure. In fact it is easy to see
that among the family of structural kernelsK(P,Q) this kernel is the only one independent of the dominating
measure.
The structural kernel has the disadvantage that the computational cost increases dramatically, since we have to
integrate twice overX . An implementation seems therefore only be possible for either very located probability
measures or a sharply concentrated similarity function e.g. a compactly supported radial basis function onRn. We
will now give an equivalent representation of this kernel which provides a better understanding and shows that in
some cases the computational cost can be reduced roughly to that of the covariant kernel.

Proposition 5.1 The structural kernelK(P,Q) can be equivalently written as the inner product inL2(T ×R, ω⊗
κ):

K(P,Q) =
∫

T

∫
R

φP (t, λ)φQ(t, λ) dκ(λ) dω(t)

for some setT with the feature map:

φ : M1
+(X , µ) → L2(T × R, ω ⊗ κ), P → φP (t, λ) =

∫
X

Γ(x, t)p(x)(1+iλ)dµ(x).

Proof: First note that one can write every pd kernel in the form :k(x, y) = 〈Γ(x, ·),Γ(y, ·)〉L2(T,ω) =∫
T

Γ(x, t)Γ(y, t)dω(t), whereΓ(x, ·) ∈ L2(T, µ) for eachx ∈ X . In general the spaceT is very big, since one can

show that such a representation always exists inL2(RX , µ), see e.g. [13]. For the kernelk̂ we have such a repre-
sentation onL2(R, κ) from Corollary 3.1. Since for any finite measure space(Y, µ) one hasL2(Y, µ) ⊂ L1(Y, µ)
we can apply Fubini’s theorem and interchange the integration order. The definition of the feature map then follows
easily. �
This representation has several advantages. First the functionsΓ(x, t) tell us which properties of the measureP
are used. Second in the case whereT is of the same or smaller size thanX we can decrease the computation
cost, since we now have to do only an integration overT × R instead of an integration overX × X . Last this
representation is a good starting point if one wants to approximate the structural kernel. Since any discretization
of T, R, orX or integration over smaller subsets, will nevertheless give a pd kernel in the end.
We illustrate this result with a simple example. We takeX = Rn andk(x, y) = k(x − y) to be a translation
invariant kernel, furthermore we takêk(p(x), q(y)) = p(x)q(y). The characterization of translation invariant
kernels is a classical result due to Bochner:
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Table 1: The table shows the test errors for the covariant and structural kernels for each data set. The first column shows the
test error and theα-value of the kernel with the best cross-validation error over the familyd2

α|1 and penalty constantsC. The
next four columns provide the results for the special cases ind2

α|1. The last column gives the test error for the non-covariant
L2-kernel as a comparison to covariant kernels. For the structural kernel we already have theL2-kernel asK1|1/2 since we do
the transformationp(x) → p(x)2.

Bestα α = −1 α = 1
2 α = 1 α = ∞ L2

Reuters cov 1.36 -1 1.36 1.42 1.36 1.79 1.98
str 1.91 1/2 2.04 1.91 1.98 1.91 –

WebKB cov 4.88 16 4.76 4.40 4.52 4.64 7.85
str 6.18 1 6.54 6.54 6.18 6.54 –

Corel14 cov 12.86 -1 12.86 20.71 15.71 12.50 30.00
str 20.00 -1 20.00 28.57 20.00 20.36 –

Theorem 5.2 A continuous functionk(x, y) = k(x − y) is pd on Rn if and only if k(x − y) =∫
Rn ei〈t,x−y〉dω(t), whereµ is a finite non-negative measure onRn

Obviously we have in this caseT = Rn. Then the above proposition tells us that we are effectively computing
the following feature vector for eachP , φP (t) =

∫
Rn ei〈x,t〉p(x)dµ(x) = EP ei〈x,t〉. Finally the structural kernel

can in this case be equivalently written asK(P,Q) =
∫

Rn EP ei〈x,t〉EQei〈x,t〉dω(t). That means the kernel is in
this case nothing else than the inner product between the characteristic functions of the measures inL2(Rn, ω)9.
Moreover the computational cost has decreased dramatically, since we only have to integrate overT = Rn instead
of Rn × Rn. Therefore in this case the kernel computation has the same computational complexity as in the
case of the covariant kernels. The calculation of the features, here the characteristic functions, can be done as a
preprocessing step for each measure.

6 Experiments

We evaluated the quality of the proposed metrics/kernels in three classification tasks. First theReuters text data
set. Here the documents are represented as term histograms. Following [2] we used the five most frequent classes
earn, acq, moneyFx, grain andcrude. We excluded documents that belong to more than one of theses classes.
This resulted in a data set with 8085 examples of dimension 18635. Second theWebKB web pages data set. The
documents are also represented as term histograms. We used the four most frequent classesstudent, faculty, course
andproject. 4198 documents remained each of dimension 24212, see [2]. For both text data sets we took the
correlation matrix in the bag of documents representation as a pd kernel on the probability space of terms. Third
theCorel image data base. We chose the categories Corel14 as in [3]. The Corel14 has 14 classes each with 100
examples. As reported in [3] the classes are very noisy, especially the bear and polar bear classes. We performed
a uniform quantization of each image in the RGB color space, taking 16 bins per color, yielding 4096 dimensional
histograms. For the Corel14 data set we took as a similarity measure on the euclidean RGB color space, the com-
pactly supported RBF kernelk(x, y) = (1− ‖x− y‖ /dmax)2+, with dmax = 0.15.
All data sets were split into a training (80%) and a test (20%) set. The multi-class problem was solved by one-vs-all
with SVM’s. We did all experiments with the familyd2

α|1, once for the covariant Hilbertian metrics and once for

the structural kernels. As stated in section 3 the squared metricsd2
α|1 are one-homogeneous. For the structural

kernels we plugged the squared densities into the pd counterparts ofd2
α|1 yielding a two-homogeneous family of

pd kernels as desired for the structural kernels.
For the penalty constant we chose fromC = 10k, k = −1, 0, 1, 2, 3, 4 and for α from α =
1/2,±1,±2,±4,±16,∞. The caseα = −∞ coincides withα = ∞. In order to find the best parameters
for C andα we performed 10-folds cross validation. For the best parameter amongα andC we evaluated the
test error. In order to show the results of the previously used kernels we also give the test errors for the kernels
corresponding toα = −1, 1/2, 1,∞. The results are shown in table 1. The test errors show that model selection
among the familyd2

α|1 gives usually close to optimal results. Besides the test errors of the covariant kernels are

9Note thatω is not the Lebesgue measure.
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always better than the non-covariantL2. This indicates that for these problems only the probabilities as ”geo-
metric” objects mattered. The structural kernels were always worse than the covariant ones. This could have two
reasons. Either all the similarity measures we use on the probability spaces are not suited to the problem or all the
considered problems can be solved more efficiently using only the probabilities. Nevertheless we would like to
note that the structural kernels with theL2-kernel, that isK1| 12

were always better than theL2-kernel alone. From
this point of view the similarity information helped to improve theL2-kernel.

7 Conclusion

We went on with the work started in [1] on Hilbertian metrics resp. pd kernels onM1
+(X ). We could extend

a family of Hilbertian metrics proposed by Topsøe, so that the all previously used measures on probabilities are
included now in this family. Moreover we gave an equivalent representation for our structural kernels onM1

+(X ),
which on the one hand gives a more direct access to the way they capture structure of the probability measures and
on the other hand gives in some cases a more efficient way to compute it. Finally we could show that doing model
selection ind2

α|1 gives almost optimal results for covariant and structural kernels. In all three tasks the covariant
kernels were better than the structural ones. It remains an open problem if one can improve the results of the
structural kernels by taking other similarity kernels on the probability space.
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