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Hilbertian Metrics and Positive Definite Kernels on
Probability Measures

Matthias Hein and Olivier Bousquet

Abstract. We investigate the problem of defining Hilbertian metrics resp. positive definite kernels on proba-
bility measures, continuing the work in [1]. This type of kernels has shown very good results in text classification
and has a wide range of possible applications. In this paper we extend the two-parameter family of Hilbertian
metrics of Topsge such that it now includes all commonly used Hilbertian metrics on probability measures. This
allows us to do model selection among these metrics in an elegant and unified way. Second we investigate further
our approach to incorporate similarity information of the probability space into the kernel. The analysis provides
a better understanding of these kernels and gives in some cases a more efficient way to compute them. Finally we
compare all proposed kernels in two text and one image classification problem.

1 Introduction

Kernel Methods have shown in the last years that they are one of the best and generally applicable tools in machine
learning. Their great advantage is that positive definite (pd) kernels can be defined on every set. Therefore they
can be applied to data of any type. Nevertheless in order to get good results the kernel should be adapted as well as
possible to the underlying structure of the input space. This has led in the last years to the definition of kernels on
graphs, trees and manifolds. Kernels on probability measures also belong to this category but they are already one
level higher since they are not defined on the structures directly but on probability measures on these structures. In
recent time they have become quite popular due to the following possible applications:

e Direct application on probability measures e.g. histogram data of text [2] and colors [3].

e Given a statistical model for the data one can first fit the model to the data and then use the kernel to compare
two fits, see [2, 4]. Thereby linking parametric and non-parametric models.

e Given a bounded probability spagtone can use the kernel to compare arbitrary sets in that space, by putting
e.g the uniform measure on each set. This is extremely useful to compare data of variable length e.g. sequence
data in bioinformatics.

In this paper we consider Hilbertian metrics and pd kerneldh(X)*. In a first section we will summarize the

close connection between Hilbertian metrics and pd kernels so that in general statements for one category can be
easily transferred to the other one.

We will consider two types of kernels on probability measures. The first one is general covariant that means
that arbitrary smooth coordinate transformations of the underlying probability space will have no influence on
the kernel. Such kernels can be applied if only the probability measures itself are of interest but not the space
they are defined on. We introduce and extend a two parameter family of covariant pd kernels which encompasses
all previously used kernels of this type. Despite the great success of these general covariant kernels in text and
image classification, they have some shortcomings. For example for some applications we might have a similarity
measure resp. a pd kernel on the probability space which we would like to use for the kernel on probability
measures. In the second part we further investigate a type of kernel on probability measures which incorporates
such a similarity measure, see [1]. This will yield on the one hand a better understanding of this type of kernels and
on the other hand gives an efficient way of computing these kernels in some cases. Finally we apply these kernels
on two text and one image classification tasks, namely the Reuters, the WebKB data set and the Corell4 data set.

! ML (&) denotes the set of positive measupesn X' with ;(X) = 1



2 Hilbertian Metrics versus Positive Definite Kernels

It is a well-known fact that a pd kerné{z, y) corresponds to an inner produgt., ¢,),, in some feature space

‘H. The class of conditionally positive definite (cpd) kernels is less well known. Nevertheless this class is of great
interest since Sdikopf showed in [5] that all translation invariant kernel methods can also use the bigger class of
cpd kernels. Therefore we give a short summary of this type of kernels and their connection to Hilbertiart metrics

Definition 2.1 A real valued functionk on X x X is pd (resp. cpd) if and only ik is symmetric and
>orjcicik(zi ) > 0, foralln € N, z; € X0 = 1,..,n, and foralle; € R,i = 1,...,n, (resp. for all

g eRi=1,..,nwith) "¢ =0).

Note that every pd kernel is also cpd. The close connection between the two classes is shown by the following
lemma:

Lemma 2.1 [6] Let k be a kernel defined ds(, y) = k(x,y) — k(z, 20) — k(z0,y) + k(x0, 20), Wherez, € X.
Thenk is pd if and only ifk is cpd.

Similar to pd kernels one can also characterize cpd kernels. Namely one write all cpd kernels in thid fogh=

— ¢ — @yll, + f(z) + f(y). The cpd kernels corresponding to Hilbertian (semi)-metrics are characterized by
f(z) =0forallz € X, whereas if is pd it follows thatf (z) ~ k(z,z) > 0. We refer to [6, 3.2] and [5] for more

on this topic. We also would like to point out that for SVM's the class of Hilbertian (semi)-metrics is in a sense
more important than the class of pd kernels. Namely one can show, see [7], that the solution and optimization
problem of the SVM only depends on the Hilbertian (semi)-metric, which is implicitly defined by each pd kernel.
Moreover a whole family of pd kernels induces the same semi-metric. In order to avoid confusion we will in
general speak of Hilbertian metrics since, using Lemma 2.1, one can always define a corresponding pd kernel.
Nevertheless for the convenience of the reader we will often explicitly state the corresponding pd kernels.

3 Hilbertian Metrics and Positive Definite Kernels onR_ 3

The class of Hilbertian metrics on probability measures we consider in this paper are all based on a pointwise
comparison of the densitiggx) with a Hilbertian metric oiR ;.. Therefore Hilbertian metrics dR . are the basic
ingredient of our approach. In principle we could use any Hilbertian metrik orbut as we will explain later we
require the metric on probability measures to have a certain property. This in turn requires that the Hilbertian metric
onR, is y-homogeneods The class of;-homogeneous Hilbertian metrics &1 was recently characterized by
Fuglede:

Theorem 3.1 (Fuglede [8])A symmetric functiod : R; x Ry — Ry withd(z,y) = 0 < =z = yisa~y-
homogeneous, continuous Hilbertian metdion R, if and only if there exists a (necessarily unique) non-zero
bounded measure > 0 onR . such thatd? can be written as

d*(x,y) /ﬂh

Using Lemma 2.1 we define the corresponding class of pd kernélks,.omhere we choosey = 0. We will see
later that this corresponds to choosing the zero-measure as origin of the RKHS.

A 02
g FN) g (i) dp(\) (1)

Corollary 3.1 A symmetric functioit : R, x Ry — R, with k(z,2) = 0 <= = = 0 is a 2y-homogeneous
continuous pd kernet on R if and only if there exists a (necessarily unique) non-zero bounded symmetric
measures > 0 onR such thatk can be written as

k(ey) = /R 2OHN ) () @

2A (semi)-metricd(x, y) (A semi-metricd(z, y) fulfills the conditions of a metric except thdtz, ) = 0 does not imply
x = y.) is called Hilbertian if one can embed the (semi)-metric sgacel) isometrically into a Hilbert space. A (semi)-metric
d is Hilbertian if and only if—d?(x, y) is cpd. That is a classical result of Schoenberg.

SR, is the positive part of the real line withincluded

“A symmetric functiork is y-homogeneous (cz, cy) = c¢"k(z,y) forall ¢ € Ry



Proof: If k has the form given in (2), then it is obviously-homogeneous and sinégx, z) = r27x(R) we
havek(x,z) = 0 <= z = 0. The other direction follows by first noting th&af0, 0) = (v, v9) = 0 and then by
applying theorem 3.1, whereis the symmetrized version gfaround the origin, together with lemma 2.1 and

k(z,y) = (vg,vy) = = (—=d*(z,y) + d*(,0) + d*(y,0)) .

N =

U
At first glance Theorem 3.1, though mathematical beautiful, seems to be not very helpful from the viewpoint of
applications. But as we will show in the section on structural pd kerneMﬂX) this result will allow to
compute this class of kernels very efficiently.
Recently Topsge and Fuglede proposed an interesting two-parameter family of Hilbertian méiricf9o8]. We
will now extend the parameter range of this family. This will allow us in the next section to recover all previously
used Hilbertian metrics on probability measures from this family.

Theorem 3.2 The functiond : Ry x Ry — R defined as:

1 1 1 1
25 (2% +y*)7 — 24 (2 +47)7
dp(,y) = A ( ) ®3)

1

is a 1/2-homogeneous Hilbertian metric dh,, if o € [1,00], 8 € [3,

pointwise limit fora« — (3 is given as:

a] or § € [—oo,—1]. Moreover the

291/8 B 0N\ /P
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o{%da‘ﬁ(%y) ~ log(2) 93 ( 2 >

1
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= log + log
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. We need the following lemmas in the proof:

2 g2
Note thatd;, ; = dj,,

Lemma3.1[6,2.10] If k£ : X x X is cpd andk(z, x) < 0, Vz € X thenk” is also cpd foil0 < v < 1.
Lemma3.2Ifk: X x X — R_%iscpd, then-1/k is pd.

Proof: It follows from theorem 2.3 in [6] that ik : X x X — R_ is cpd, thenl/(t — k) is pd for allz > 0. The
pointwise limit of a sequence of cpd resp. pd kernels is cpd resp. pd if the limit exists, see e.g. [10]. Therefore
lim;_,¢ 1/(t — k) = —1/k is positive definite ik is strictly negative. O
We can now prove Theorem 3.2:

Proof: The proof for the symmetry, the limit — 3 and the parameter rande< a < o0, 1/2 < < «
can be found in [8]. We prove tha{dilﬁ iscpd forl < a < 0o, —oo < § < —1. First note that(z,y) =
—(f(x)+ f(y)) is cpd onR, for any functionf : R, — R and satisfie&(z,y) <0, Vz,y € X. Therefore by
Lemma 3.1~ (2 +y*)"/*is cpd forl < a < co. The pointwise limifim,_., —(z* +y*)"/* = —max{z, y}
exists, therefore we can include the limit= co. Next we considek(z,y) = —(z +y)/P for 1 < f < oo
which is cpd as we have shown and strictly negative if we restrict{z € R |z > 0}. Then all conditions for
lemma 3.2 are fulfilled, so that(x,y) = (z + y)~/# is pd. But then als&(z,y) = (=% + y=#)~1/Fis pd.
Moreoverk can be continuously extended@doy k(x,y) = 0 for x = 0 or y = 0. Multiplying the first part with
(2(/e=1/8) _ 1)~ and the second one with — 2(1/6=1/2))~1 and adding them gives the result. O

4 Covariant Hilbertian Metrics on M’ (X)

In this section we define Hilbertian metrics dv} (X') by comparing the densities pointwise with a Hilbertian
metric onR, and integrating these distances owér Since densities can only be defined with respect to a dom-
inating measureour definition will at first depend on the choice of the dominating measure. This dependence
would restrict the applicability of our approach. For example if we Aag: R™ and chose: to be the Lebesgue

R_={zcR|z <0}
®A measurg: dominates a measureif u(E) > 0 whenevew (E) > 0 for all setsE C X. In R" the dominating measure
w is usually the Lebesgue measure.



measure, then we could not deal with Dirac meastiesince they are not dominated by the Lebesgue measure.
Therefore we construct the Hilbertian metric such that it is independent of the dominating measure. This justifies
the term covariant since independence from the dominating measure also yields invariance from arbitrary one-to-
one coordinate transformations. In turn this also implies that all structural properties of the probability space will
be ignored so that the metric ovt!, () only depends on the probability measures. As an example take the color
histograms of images. Covariance here means that the choice of the underlying color space say RGB, HSV or CIE
Lab does not influence our metric, since these color spaces are all related by one-to-one transformations. Note
however that in practice the results will usually slightly differ due to different discretizations of the color space.

In order to simplify the notation we defingz) to be the Radon-Nikodym derivativ@lP/du)(x) * of P with

respect to the dominating measure

Proposition 4.1 Let P and @ be two probability measures ot 1 an arbitrary dominating measufef P andQ
anddg, al/2-homogeneous Hilbertian metric dh, . ThenDMl(X) defined as

D3y 0y (P.Q) = /X @2, (p(z), 4(x))du(x) )

is a Hilbertian metric onM? (X). DM;(X) is independent of the dominating measure

For a proof of this proposition, see [1]. We can now apply this principle of building covariant Hilbertian metrics on
ML (X) and use the family of 1/2-homogeneous Hilbertian metdt §onR, from the previous section. This
yields as special cases the following well-known measures on probability distributions.

D3 u(P.Q) = [ (Vola) = Val@)Pdu(o) Diou(P,Q):/\p(w)—fJ(fﬂ)\du(l‘)

1 2q(x
DhPQ) = o [, oo log( ) +aenen (s ) e
Di(r) = [ Bt

Dl‘1 is the Hellinger distance? | is the symmetricy*-measure D? ol is the total variation anoD2| is the
Jensen-Shannon d|vergence The Hellinger metric is well known in the kernel community and was for example
used in [4], the symmetrig2-metric was for a long time wrongly assumed to be pd and is new in this family due

to our extension ofi g to negative values gf. The total variation was implicitly used in SVM’s through a pd
counterpart which we will give below. The Jensen-Shannon divergence is very interesting since it is a symmetric
and smoothed variant of the Kullback-Leibler divergence. Instead of the work in [11] where they have a heuristic
approach to get from the Kullback-Leibler divergence to a pd matrix, the Jensen-Shannon divergence is a theoreti-
cally sound alternative. Note that the fami@lﬁ is designed in such a way that the maximal distancﬁgg is2,

Y «, 8. For completeness we also give the corresponding pd kerneﬂzﬂp(ﬁ(), where we take in Lemma 2.1 the

zero measure as in M’ (X). This choice seems strange at first since we are dealing with probability measures.
But the whole framework presented in this paper can easily be extended to all finite, positive meagtiréon

this set the zero measure is a natural choice of the origin.

K11(P,Q) / Vp(@)q(z)dp(x K1\—1(P,Q):/ (()Q()dﬂ(x)

) +aq(x)

-1 p(x) o q(z) -
Kin(PQ) = 5 >/p(”””0g <p<x>+q<a:>> a@)! g( @ + @ >>d“( )
Ko (P,Q) = /X min{p(z), ¢(z)}dp(z)

The astonishing fact is that we find the four previously used Hilbertian metrics resp. pd kerneld oit) as
special cases of a two-parameter family of Hilbertian metrics resp. pd kerngl$loft’). Due to the symmetry
of diw (which implies symmetry 0D<21|[3) we can even see all of them as special cases of the family restricted to

’In case oft’ = R™ and whery is the Lebesgue measure we can think(@f) as the normal density function.
8Such a dominating measure always exists taked.g= (P + Q)/2



« = 1. This on the one hand shows the close relation of these metrics and on the other hand gives us the opportunity
to do model selection in a one-parameter family. So that we can treat the four known cases and intermediate ones
in a very elegant way.

5 Structural Positive Definite Kernels

The covariant Hilbertian metrics proposed in the last section have the advantage that they only compare the prob-
ability measures, thereby ignoring all structural properties of the probability space. On the other hand there exist
cases where we have a reasonable similarity measure on the probability space, which we would like to be incorpo-
rated into the metric. As an example this is helpful when we compare probability measures with disjoint support,
since for the covariant metrics disjoint measures have always maximal distance, irrespectively how "close” or "far”
their support is. Obviously if our training set consists only of disjoint measures learning is not possible with co-
variant metrics. We have proposed in [1] a positive definite kernel which incorporates a given similarity measure,
namely a pd kernel, on the probability space. The only disadvantage is that this kernel is not invariant with respect
to the dominating measure. That means we can only define it for the sibisét’, 1) € M1 (X), that are the
measures dominated hy. On the other hand if one can define a kernel’Xdnthen one can build e.g. by the
induced semi-metric a uniform measur®n X', which is then a natural choice for the dominating measure.

Theorem 5.1 (Structural Kernel) Letk be a bounded PD kernel oti and k a bounded PD kernel OR . Then
KP.Q) = [ [ be.) biple),a(v) dua) duty) ©)
X JXx

is a pd kernel onM (X, ) x ML (X, p).

The structural kernel generalizes previous work done by Suquet, see [12], kfpére, ¢(y)) = p(z)q(y). The
advantage of this choice faris that K (P, Q) is independent of the dominating measure. In fact it is easy to see

that among the family of structural kernel§(P, Q) this kernel is the only one independent of the dominating
measure.

The structural kernel has the disadvantage that the computational cost increases dramatically, since we have to
integrate twice ove’. An implementation seems therefore only be possible for either very located probability
measures or a sharply concentrated similarity function e.g. a compactly supported radial basis furRtiokven

will now give an equivalent representation of this kernel which provides a better understanding and shows that in
some cases the computational cost can be reduced roughly to that of the covariant kernel.

Proposition 5.1 The structural kerneK (P, Q) can be equivalently written as the inner productlis\ T x R, w ®

K):
K(P.Q) = [ [ ont.NoaliR) dr(y) dott)
for some sef” with the feature map:

¢: ML(X, 1) = Lo(T x Rw®kK), P— ¢p(t,\) = /X T (x, )p(x) TN dp().

Proof:  First note that one can write every pd kernel in the formk(z,y) = (U'(z,-),I'(y. )1, (1.w) =
J7 Tz, t)L(y, t)dw(t), wherel'(z, -) € Ly(T, ) for eachz € X. In general the spacgis very big, since one can

show that such a representation always exist,ifR*, 1), see e.g. [13]. For the kernklwe have such a repre-
sentation orL» (R, ) from Corollary 3.1. Since for any finite measure sp&¥eu) one haslo (Y, p) C Li(Y, 1)

we can apply Fubini’'s theorem and interchange the integration order. The definition of the feature map then follows
easily. O

This representation has several advantages. First the funétians) tell us which properties of the measufe

are used. Second in the case whérés of the same or smaller size thahwe can decrease the computation
cost, since we now have to do only an integration dVex R instead of an integration ove¥ x X. Last this
representation is a good starting point if one wants to approximate the structural kernel. Since any discretization
of TR, or X’ or integration over smaller subsets, will nevertheless give a pd kernel in the end.

We illustrate this result with a simple example. We take= R™ andk(z,y) = k(z — y) to be a translation
invariant kernel, furthermore we takgp(z), ¢(y)) = p(z)q(y). The characterization of translation invariant
kernels is a classical result due to Bochner:



Table 1: The table shows the test errors for the covariant and structural kernels for each data set. The first column shows the
test error and the-value of the kernel with the best cross-validation error over the faaﬂfgjﬁy and penalty constants. The

next four columns provide the results for the special casel%lip The last column gives the test error for the non-covariant
L»-kernel as a comparison to covariant kernels. For the structural kernel we already hayekér@el ask|, 2 since we do

the transformatiom(x) — p(z)>.

Besta a=-—1 a:% a=1 a =00 Lo
Reut ov| 1.36 -1 | 1.36 1.42 1.36 1.79 1.08
cuters sy | 191 12| 204 1.91 1.98 1.91 -
cov| 488 16| 4.76 4.40 4.52 4.64 7.85
WebKB 1| 618 1 6.54 6.54 6.18 6.54 -
Coreljq COV| 1286 -1 128 | 2071 | 1571 | 1250 | 30.00
ore str| 20.00 -1 | 20.00 | 2857 | 20.00 | 20.36 -

Theorem 5.2 A continuous functiork(z,y) = k(z — y) is pd onR”™ if and only if k(z —y) =

Jgn €957 "¥) dw(t), wherey is a finite non-negative measure Brt

Obviously we have in this casé = R"™. Then the above proposition tells us that we are effectively computing

the following feature vector for eadh, ¢p(t) = [, €'V p(z)du(z) = Epe’'™!. Finally the structural kernel

can in this case be equivalently writen B$P, Q) = [, Epe'™! Ege’® dw(t). That means the kernel is in

this case nothing else than the inner product between the characteristic functions of the medsy(iRs,in)°.

Moreover the computational cost has decreased dramatically, since we only have to integrate-d&rinstead

of R™ x R™. Therefore in this case the kernel computation has the same computational complexity as in the
case of the covariant kernels. The calculation of the features, here the characteristic functions, can be done as a
preprocessing step for each measure.

6 Experiments

We evaluated the quality of the proposed metrics/kernels in three classification tasks. FRsiitthe text data

set. Here the documents are represented as term histograms. Following [2] we used the five most frequent classes
earn, acq, moneyFx, grain and crude. We excluded documents that belong to more than one of theses classes.
This resulted in a data set with 8085 examples of dimension 18635. Secon@hlkeB web pages data set. The
documents are also represented as term histograms. We used the four most frequentiefassdsculty, course

and project. 4198 documents remained each of dimension 24212, see [2]. For both text data sets we took the
correlation matrix in the bag of documents representation as a pd kernel on the probability space of terms. Third
the Corel image data base. We chose the categories Corell4 as in [3]. The Corell4 has 14 classes each with 100
examples. As reported in [3] the classes are very noisy, especially the bear and polar bear classes. We performed
a uniform quantization of each image in the RGB color space, taking 16 bins per color, yielding 4096 dimensional
histograms. For the Corell4 data set we took as a similarity measure on the euclidean RGB color space, the com-
pactly supported RBF kernél(z,y) = (1 — ||z — y| /dmaz)%, With dpee = 0.15.

All data sets were split into a training (80%) and a test (20%) set. The multi-class problem was solved by one-vs-all
with SVM’s. We did all experiments with the famibyiu, once for the covariant Hilbertian metrics and once for

the structural kernels. As stated in section 3 the squared md@gﬁpeare one-homogeneous. For the structural

kernels we plugged the squared densities into the pd counterpa@%qﬁelding a two-homogeneous family of

pd kernels as desired for the structural kernels.

For the penalty constant we chose fro@f = 10"k = —1,0,1,2,3,4 and for o from o =
1/2,4+1,4£2,44,+16,00. The casenx = —oo coincides witha = oo. In order to find the best parameters

for C anda we performed 10-folds cross validation. For the best parameter amamgl C' we evaluated the

test error. In order to show the results of the previously used kernels we also give the test errors for the kernels
corresponding tae = —1,1/2,1, co. The results are shown in table 1. The test errors show that model selection
among the familylli‘1 gives usually close to optimal results. Besides the test errors of the covariant kernels are

°Note thatw is not the Lebesgue measure.



always better than the non-covariaii. This indicates that for these problems only the probabilities as "geo-
metric” objects mattered. The structural kernels were always worse than the covariant ones. This could have two
reasons. Either all the similarity measures we use on the probability spaces are not suited to the problem or all the
considered problems can be solved more efficiently using only the probabilities. Nevertheless we would like to
note that the structural kernels with the-kernel, that isi’,| » were always better than thig,-kernel alone. From

this point of view the similarity information helped to improve the-kernel.

7 Conclusion

We went on with the work started in [1] on Hilbertian metrics resp. pd kerneld8n(X’). We could extend

a family of Hilbertian metrics proposed by Topsge, so that the all previously used measures on probabilities are
included now in this family. Moreover we gave an equivalent representation for our structural kerrefls @),

which on the one hand gives a more direct access to the way they capture structure of the probability measures and
on the other hand gives in some cases a more efficient way to compute it. Finally we could show that doing model
selection indi‘1 gives almost optimal results for covariant and structural kernels. In all three tasks the covariant
kernels were better than the structural ones. It remains an open problem if one can improve the results of the
structural kernels by taking other similarity kernels on the probability space.
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