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Abstract

We study clustering algorithms based on neighborhood graphs on a random sample
of data points. The question we ask is how such a graph should be constructed in or-
der to obtain optimal clustering results. Which type of neighborhood graph should
one choose, mutual k-nearest neighbor or symmetric k-nearest neighbor? What is
the optimal parameter k7 In our setting, clusters are defined as connected compo-
nents of the t-level set of the underlying probability distribution. Clusters are said
to be identified in the neighborhood graph if connected components in the graph
correspond to the true underlying clusters. Using techniques from random geometric
graph theory, we prove bounds on the probability that clusters are identified suc-
cessfully, both in a noise-free and in a noisy setting. Those bounds lead to several
conclusions. First, k& has to be chosen surprisingly high (rather of the order n than of
the order logn) to maximize the probability of cluster identification. Secondly, the
major difference between the mutual and the symmetric k-nearest neighbor graph
occurs when one attempts to detect the most significant cluster only.

Key words: clustering, neighborhood graph, random geometric graph, connected
component

1 Introduction

Using graphs to model real world problems is one of the most widely used
techniques in computer science. This approach usually involves two major
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steps: constructing an appropriate graph which represents the problem in a
convenient way, and then constructing an algorithm which solves the problem
on the given type of graph. While in some cases there exists an obvious natural
graph structure to model the problem, in other cases one has much more choice
when constructing the graph. In the latter cases it is an important question
how the actual construction of the graph influences the overall result of the
graph algorithm.

The kind of graphs we want to study in the current paper are neighborhood
graphs. The vertices of those graphs represent certain “objects”, and ver-
tices are connected if the corresponding objects are “close” or “similar”. The
best-known families of neighborhood graphs are e-neighborhood graphs and
k-nearest neighbor graphs. Given a number of objects and their mutual dis-
tances to each other, in the first case each object will be connected to all
other objects which have distance smaller than e, whereas in the second case,
each object will be connected to its k nearest neighbors (exact definitions see
below). Neighborhood graphs are used for modeling purposes in many areas
of computer science: sensor networks and wireless ad-hoc networks, machine
learning, data mining, percolation theory, clustering, computational geometry,
modeling the spread of diseases, modeling connections in the brain, etc.

In all those applications one has some freedom in constructing the neigh-
borhood graph, and a fundamental question arises: how exactly should we
construct the neighborhood graph in order to obtain the best overall result in
the end? Which type of neighborhood graph should we choose? How should
we choose its connectivity parameter, for example the parameter k in the
k-nearest neighbor graph? It is obvious that those choices will influence the
results we obtain on the neighborhood graph, but often it is completely unclear
how.

In this paper, we want to focus on the problem of clustering. We assume that
we are given a finite set of data points and pairwise distances or similarities
between them. It is very common to model the data points and their distances
by a neighborhood graph. Then clustering can be reduced to standard graph
algorithms. In the easiest case, one can simply define clusters as connected
components of the graph. Alternatively, one can try to construct minimal
graph cuts which separate the clusters from each other. An assumption often
made in clustering is that the given data points are a finite sample from
some larger underlying space. For example, when a company wants to cluster
customers based on their shopping profiles, it is clear that the customers in
the company’s data base are just a sample of a much larger set of possible
customers. The customers in the data base are then considered to be a random
sample.

In this article, we want to make a first step towards such results in a simple



setting we call “cluster identification” (see next section for details). Clusters
will be represented by connected components of the level set of the underly-
ing probability density. Given a finite sample from this density, we want to
construct a neighborhood graph such that we maximize the probability of clus-
ter identification. To this end, we study different kinds of k-nearest neighbor
graphs (mutual, symmetric) with different choices of k£ and prove bounds on
the probability that the correct clusters can be identified in this graph. One of
the first results on the consistency of a clustering method has been derived by
Hartigan [8], who proved “fractional consistency” for single linkage clustering.

The question we want to tackle in this paper is how to choose the neighbor-
hood graph in order to obtain optimal clustering results. The mathematical
model for building neighborhood graphs on randomly sampled points is a
geometric random graph, see Penrose [12] for an overview. Such graphs are
built by drawing a set of sample points from a probability measure on R, and
then connecting neighboring points (see below for exact definitions). Note that
the random geometric graph model is different from the classical Erdés-Rényi
random graph model (cf. Bollobas [4] for an overview) where vertices do not
have a geometric meaning, and edges are chosen independently of the vertices
and independently of each other. In the setup outlined above, the choice of
parameter is closely related to the question of connectivity of random geomet-
ric graphs, which has been extensively studied in the random geometric graph
community. Connectivity results are not only important for clustering, but also
in many other fields of computer science such as modeling ad-hoc networks
(e.g., Santi and Blough [14], Bettstetter [1], Kunniyur and Venkatesh [10]) or
percolation theory (Bollobas and Riordan [3]). The existing random geometric
graph literature mainly focuses on asymptotic statements about connectivity,
that is results in the limit for infinitely many data points. Moreover, it is usu-
ally assumed that the underlying density is uniform — the exact opposite of
the setting we consider in clustering. What we would need in our context are
non-asymptotic results on the performance of different kinds of graphs on a
finite point set which has been drawn from highly clustered densities.

Our results on the choice of graph type and the parameter k for cluster iden-
tification can be summarized as follows. Concerning the question of the choice
of k, we obtain the surprising result that k& should be chosen surprisingly high,
namely in the order of O(n) instead of O(logn) (the latter would be the rate
one would “guess” from results in standard random geometric graphs). Con-
cerning the types of graph, it turns out that different graphs have advantages
in different situations: if one is only interested in identifying the “most sig-
nificant” cluster (while some clusters might still not be correctly identified),
then the mutual kNN graph should be chosen. If one wants to identify many
clusters simultaneously the bounds show no substantial difference between the
mutual and the symmetric kNN graph.



2 Main constructions and results

In this section we give a brief overview over the setup and techniques we use
in the following. Mathematically exact statements follow in the next sections.

Neighborhood graphs. We always assume that we are given n data points
X1, ..., X,, which have been drawn i.i.d. from some probability measure which
has a density with respect to the Lebesgue measure in RY. As distance function
between points we use the Euclidean distance, which is denoted by dist. The
distance is extended to sets A, B C R? via dist(A, B) = inf{dist(x,y) | z €
A,y € B}. The data points are used as vertices in an unweighted and undi-
rected graph. By kNN(X;) we denote the set of the k nearest neighbors of
X; among Xi,...,X;_1,Xj11,..., X;,. The different neighborhood graphs are
defined as follows:

o c-neighborhood graph G.,s(n,<): X; and X; connected if dist(X;, X;) <,
o symmetric k-nearest-neighbor graph Ggym(n, k):

X; and X; connected if X; € kNN(X;) or X; € kNN(X;),
o mutual k-nearest-neighbor graph G (n, k):

X; and X; connected if X; € kNN(X;) and X; € kNN(X;).

Note that the literature does not agree on the names for the different kNN
graphs. In particular, the graph we call “symmetric” usually does not have a
special name.

Most questions we will study in the following are much easier to solve for
e-neighborhood graphs than for kNN graphs. The reason is that whether two
points X; and X are connected in the e-graph only depends on dist(.X;, X;),
while in the kNN graph the existence of an edge between X; and X, also
depends on the distances of X; and X; to all other data points. However, the
kNN graph is the one which is mostly used in practice. Hence we decided to
focus on kNN graphs. Most of the proofs can easily be adapted for the e-graph.

The cluster model. There exists an overwhelming amount of different def-
initions of what clustering is, and the clustering community is far from con-
verging on one point of view. In a sample based setting most definitions agree
on the fact that clusters should represent high density regions of the data
space which are separated by low density regions. Then a straight forward
way to define clusters is to use level sets of the density. Given the underlying
density p of the data space and a parameter t > 0, we define the t-level set
L(t) as the closure of the set of all points € R? with p(x) > t. Clusters
are then defined as the connected components of the t-level set (where the
term “connected component” is used in its topological sense and not in its
graph-theoretic sense).



Note that a different popular model is to define a clustering as a partition
of the whole underlying space such that the boundaries of the partition lie
in a low density area. In comparison, looking for connected components of
t-level sets is a stronger requirement. Even when we are given a complete
partition of the underlying space, we do not yet know which part of each of
the clusters is just “background noise” and which one really corresponds to
“interesting data”. This problem is circumvented by the t-level set definition,
which not only distinguishes between the different clusters but also separates
“foreground” from “background noise”. Moreover, the level set approach is
much less sensitive to outliers, which often heavily influence the results of
partitioning approaches.

The cluster identification problem. Given a finite sample from the un-
derlying distribution, our goal is to identify the sets of points which come from
different connected components of the t-level set. We study this problem in
two different settings:

The noise-free case. Here we assume that the support of the density con-
sists of several connected components which have a positive distance to each
other. Between those components, there is only “empty space” (density 0).
Each of the connected components is called a cluster. Given a finite sample
X1,..., X, from such a density, we construct a neighborhood graph G based
on this sample. We say that a cluster is identified in the graph if the
connected components in the neighborhood graph correspond to the corre-
sponding connected components of the underlying density, that is all points
originating in the same underlying cluster are connected in the graph, and
they are not connected to points from any other cluster.

The noisy case. Here we no longer assume that the clusters are separated
by “empty space”, but we allow the underlying density to be supported ev-
erywhere. Clusters are defined as the connected components of the t-level set
L(t) of the density (for a fixed parameter ¢ chosen by the user), and points not
contained in this level set are considered as background noise. A point z € R¢
is called a cluster point if x € L(t) and background point otherwise. As in the
previous case we will construct a neighborhood graph G on the given sample.
However, we will remove points from this graph which we consider as noise.
The remaining graph G will be a subgraph of the graph G, containing fewer
vertices and fewer edges than G. As opposed to the noise-free case, we now
define two slightly different cluster identification problems. They differ in the
way background points are treated. The reason for this more involved con-
struction is that in the noisy case, one cannot guarantee that no additional
background points from the neighborhood of the cluster will belong to the
graph.



We say that a cluster is roughly identified in the remaining graph G if
the following properties hold:

e all sample points from a cluster are contained as vertices in the graph, that
is, only background points are dropped,

e the vertices belonging to the same cluster are connected in the graph, that
is, there exists a path between each two of them, and

e cvery connected component of the graph contains only points of exactly one
cluster (and maybe some additional noise points, but no points of a different
cluster).

We say that a cluster is exactly identified in G if

e it is roughly identified, and

e the ratio of the number of background points and the number of cluster
points in the graph G converges almost surely to zero as the sample size
approaches infinity.

If all clusters have been roughly identified, the number of connected compo-
nents of the graph G is equal to the number of connected components of the
level set L(t). However, the graph G might still contain a significant number of
background points. In this sense, exact cluster identification is a much stronger
problem,; as we require that the fraction of background points in the graph
has to approach zero. Exact cluster identification is an asymptotic statement,
whereas rough cluster identification can be verified on each finite sample. Fi-
nally, note that in the noise-free case, rough and exact cluster identification
coincide.

The clustering algorithms. To determine the clusters in the finite sample,
we proceed as follows. First, we construct a neighborhood graph on the sample.
This graph looks different, depending on whether we allow noise or not:

Noise-free case. Given the data, we simply construct the mutual or symmetric
k-nearest neighbor graph (Gu(n, k) resp. Gsym(n, k)) on the data points, for
a certain parameter k, based on the Euclidean distance. Clusters are then the
connected components of this graph.

Noisy case. Here we use a more complex procedure:

e As in the noise-free case, construct the mutual (symmetric) kNN graph
Gt (1, k) (resp. Gsym(n, k)) on the samples.

e Estimate the density p, (X;) at every sample point X; (e.g., by kernel density
estimation).

o If p,(X;) < t', remove the point X; and its adjacent edges from the graph
(where t' is a parameter determined later). The resulting graph is denoted
by Gl (0, k, ') (vesp. GL ., (n, k,t)).

mut sym

e Determine the connected components of Gy, (n, k,t') (resp. Gy, (n, k,t')),



for example by a simple depth-first search.

e Remove the connected components of the graph that are “too small”, that is,
which contain less than dn points (where § is a small parameter determined
later).

e The resulting graph is denoted by Gie (n, k,t',6) (resp. ésym (n,k,t',0));
its connected components are the clusters of the sample.

Note that by removing the small components in the graph the method becomes
very robust against outliers and “fake” clusters (small connected components
just arising by random fluctuations).

Main results, intuitively. We would like to outline our results briefly in
an intuitive way. Exact statements can be found in the following sections.

Result 1 (Range of k£ for successful cluster identification) Under mild
assumptions, and for n large enough, there exist constants ¢y, cy > 0 such that
for any k € [c1logn, con], all clusters are identified with high probability in
both the mutual and symmetric KNN graph. This result holds for cluster iden-
tification in the noise-free case as well as for the rough and the exact cluster
identification problem (the latter seen as an asymptotic statement) in the noisy
case (with different constants cq,cs).

For the noise-free case, the lower bound on k has already been proven in Brito
et al. [5], for the noisy case it is new. Importantly, in the exact statement of
the result all constants have been worked out more carefully than in Brito
et al. [5], which is very important for proving the following statements.

Result 2 (Optimal & for cluster identification) Under mild assumptions,
and for n large enough, the parameter k which maximizes the probability of
successful identification of one cluster in the noise-free case has the form k =
cin+co, where ¢y, co are constants which depend on the geometry of the cluster.
This result holds for both the mutual and the symmetric KNN graph, but the
convergence rates are different (see Result 3). A similar result holds as well
for rough cluster identification in the noisy case, with different constants.

This result is completely new, both in the noise-free and in the noisy case. In
the light of the existing literature, it is rather surprising. So far it has been well
known that in many different settings the lower bound for obtaining connected
components in a random kNN graph is of the order k ~ log n. However, we now
can see that mazximizing the probability of obtaining connected components on
a finite sample leads to a dramatic change: k has to be chosen much higher
than log n, namely of the order n itself. Moreover, we were surprised ourselves
that this result does not only hold in the noise-free case, but can also be carried
over to rough cluster identification in the noisy setting.



For exact cluster identification we did not manage to determine an optimal
choice of k due to the very difficult setting. For large values of k, small com-
ponents which can be discarded will no longer exist. This implies that a lot
of background points are attached to the real clusters. On the other hand, for
small values of k there will exist several small components around the cluster
which are discarded, so that there are less background points attached to the
final cluster. However, this tradeoff is very hard to grasp in technical terms.
We therefore leave the determination of an optimal value of k for exact cluster
identification as an open problem. Moreover, as exact cluster identification
concerns the asymptotic case of n — oo only, and rough cluster identification
is all one can achieve on a finite sample anyway, we are perfectly happy to be
able to prove the optimal rate in that case.

Result 3 (Identification of the most significant cluster) For the opti-
mal k as stated in Result 2, the convergence rate (with respect to n) for the
identification of one fized cluster C® is different for the mutual and the sym-
metric kKNN graph. It depends

e only on the properties of the cluster C® itself in the mutual KNN graph
e on the properties of the “least significant”, that is the “worst” out of all
clusters in the symmetric KNN graph.

This result shows that if one is interested in identifying the “most significant”
clusters only, one is better off using the mutual kNN graph. When the goal is to
identify all clusters, then there is not much difference between the two graphs,
because both of them have to deal with the “worst” cluster anyway. Note
that this result is mainly due to the different between-cluster connectivity
properties of the graphs, the within-cluster connectivity results are not so
different (using our proof techniques at least).

Proof techniques, intuitively. Given a neighborhood graph on the sample,
cluster identification always consists of two main steps: ensuring that points
of the same cluster are connected and that points of different clusters are not
connected to each other. We call those two events “within-cluster connected-
ness” and “between-cluster disconnectedness” (or “cluster isolation”).

To treat within-cluster connectedness we work with a covering of the true
cluster. We cover the whole cluster by balls of a certain radius z. Then we
want to ensure that, first, each of the balls contains at least one of the sample
points, and second, that points in neighboring balls are always connected in
the kNN graph. Those are two contradicting goals. The larger z is, the easier
it is to ensure that each ball contains a sample point. The smaller z is, the
easier it is to ensure that points in neighboring balls will be connected in the
graph for a fixed number of neighbors k. So the first part of the proof consists
in computing the probability that for a given z both events occur at the same
time and finding the optimal z.



Between-cluster connectivity is easier to treat. Given a lower bound on the
distance u between two clusters, all we have to do is to make sure that edges in
the kNN graph never become longer than u, that is we have to prove bounds
on the maximal kNN distance in the sample.

In general, those techniques can be applied with small modifications both in
the noise-free and in the noisy case, provided we construct our graphs in the
way described above. The complication in the noisy case is that if we just
used the standard kNN graph as in the noise-free case, then of course the
whole space would be considered as one connected component, and this would
also show up in the neighborhood graphs. Thus, one has to artificially reduce
the neighborhood graph in order to remove the background component. Only
then one can hope to obtain a graph with different connected components
corresponding to different clusters. The way we construct the graph G ensures
this. First, under the assumption that the error of the density estimator is
bounded by e, we consider the (¢ — ¢)-level set instead of the t-level set we
are interested in. This ensures that we do not remove “true cluster points” in
our procedure. A second, large complication in the noisy case is that with a
naive approach, the radius z of the covering and the accuracy ¢ of the density
estimator would be coupled to each other. We would need to ensure that the
parameter € decreases with a certain rate depending on z. This would lead to
complications in the proof as well as very slow convergence rates. The trick
by which we can avoid this is to introduce the parameter ¢ and throw away
all connected components which are smaller than dn. Thus, we ensure that no
small connected components are left over in the boundary of the (¢ — ¢)-level
set of a cluster, and all remaining points which are in this boundary strip will
be connected to the main cluster represented by the ¢-level set. Note, that this
construction allows us to estimate the number of clusters even without exact
estimation of the density.

Building blocks from the literature. To a certain extent, our proofs
follow and combine some of the techniques presented in Brito et al. [5] and
Biau et al. [2].

In Brito et al. [5] the authors study the connectivity of random mutual k-
nearest neighbor graphs. However, they are mainly interested in asymptotic
results, only consider the noise-free case, and do not attempt to make state-
ments about the optimal choice of k. Their main result is that in the noise-
free case, choosing k at least of the order O(logn) ensures that in the limit
for n — oo, connected components of the mutual k-nearest neighbor graph
correspond to true underlying clusters.

In Biau et al. [2], the authors study the noisy case and define clusters as
connected components of the t-level set of the density. As in our case, the
authors use density estimation to remove background points from the sample,



but then work with an e-neighborhood graph instead of a k-nearest neighbor
graph on the remaining sample. Connectivity of this kind of graph is much
easier to treat than the one of k-nearest neighbor graphs, as the connectivity
of two points in the e-graph does not depend on any other points in the
sample (this is not the case in the k-nearest neighbor graph). Then, Biau et al.
[2] prove asymptotic results for the estimation of the connected components
of the level set L(t), but also do not investigate the optimal choice of their
graph parameter . Moreover, due to our additional step where we remove
small components of the graph, we can provide much faster rates for the
estimation of the components, since we have a much weaker coupling of the
density estimator and the clustering algorithm.

Finally, note that a considerably shorter version of the current paper dealing
with the noise-free case only has appeared in Maier et al. [11]. In the current
paper we have shortened the proofs significantly at the expense of having
slightly worse constants in the noise-free case.

3 General assumptions and notation

Density and clusters. Let p be a bounded probability density with respect
to the Lebesgue measure on RY. The measure on R? that is induced by the
density p is denoted by u. Given a fixed level parameter ¢ > 0, the t-level set
of the density p is defined as

L(t) ={zx e R | p(x) > t}.

where the bar denotes the topological closure (note that level sets are closed
by assumptions in the noisy case, but this is not necessarily the case in the
noise-free setting).

Geometry of the clusters. We define clusters as the connected components
of L(t) (where the term “connected component” is used in its topological
sense). The number of clusters is denoted by m, and the clusters themselves
by CO,...,C™ We set By = ©(C®), that means, the probability mass in
cluster C®.

We assume that each cluster C® (i = 1,...,m) is a disjoint, compact and
connected subset of R, whose boundary 9C® is a smooth (d — 1)-dimensional
submanifold in R? with minimal curvature radius ) > 0 (the inverse of
the largest principal curvature of dC®). For v < s, we define the collar
set ColD(v) = {x € CV ‘ dist(x,0C™) < v} and the maximal covering
radius v() = max, ..o {v | C® \ Col®(v) connected }. These quantities will
be needed for the following reasons: It will be necessary to cover the inner
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part of each cluster by balls of a certain fixed radius z, and those balls are
not supposed to “stick outside”. Such a construction is only possible under
assumptions on the maximal curvature of the boundary of the cluster. This
will be particularly important in the noisy case, where all statements about
the density estimator only hold in the inner part of the cluster.

For an arbltrary e > 0, the connected component of L(t—e¢) which contains the
cluster C9 is denoted by C”(¢). Points in the set C” (£)\ C® will sometimes
be referred to as boundary points. To express distances between the clusters,
We assume that there exists some £ > 0 such that dlSt(C( (28), c (2¢)) >

) > 0foralli,j€{l,...,m}. The numbers u¥ will represent lower bounds
on the distances between cluster C¥) and the remaining clusters. Note that
the existence of the u(') > 0 ensures that C'”) (2¢) does not contain any other
clusters apart from C® for ¢ < &. Analogously to the definition of By above

we set () = 1(C7(28)), that is the mass of the enlarged set C'”(22). These
definitions are illustrated in Figure 1. Furthermore, we introduce a lower bound

0.2
0.15
0.1
0.05
0

c® (2¢) c? (2¢)
_0.05 1 - 1 T J
0 5 10 15
X

Fig. 1. An example of our cluster definition. The clusters C), C) are defined as
the connected components of the ¢-level set of the density (here ¢ = 0.07). The

clusters are subsets of the sets C’(,l)(2e), C’@(Qe) (here for e = 0.01).

on the probability mass in balls of radius u(Y around points in C'(_i)(%)

P < inf pu (B(x,u(i))) .
zeC™ (2¢)

In particular, under our assumptions on the smoothness of the cluster bound-
ary we can set p = O (u®)tng(u)? for an overlap constant

ONW?) = inf (vol(B(z,u®)n ¥ (22))/vol(B(z,u"))) > 0.
zeC(28)

The way it is constructed, p¥ becomes larger the larger the distance of C'®

to all the other clusters is and is upper bounded by the probability mass of
the extended cluster (3.
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Example in the noisy case. All assumptions on the density and the clusters
are satisfied if we assume that the density p is twice continuously differentiable
on a neighborhood of {p = t}, for each x € {p = t} the gradient of p at x is
non-zero, and dist(C®?, CW)) =/ > u®,

FExample in the noise-free case. Here we assume that the support of the
density p consists of m connected components CV, ... C™ which satisfy the
smoothness assumptions above, and such that the densities on the connected
components are lower bounded by a positive constant ¢. Then the noise-free
case is a special case of the noisy case.

Sampling. Our n sample points X, ..., X,, will be sampled i.i.d. from the
underlying probability distribution.

Density estimation in the noisy case. In the noisy case we will estimate
the density at each data point X; by some estimate p,(X;). For convenience,
we state some of our results using a standard kernel density estimator, see
Devroye and Lugosi [6] for background reading. However, our results can easily
be rewritten with any other density estimate.

Further notation. The kNN radius of a point X; is the maximum distance
to a point in kKNN(X;). RY). denotes the minimal kNN radius of the sample

points in cluster O, whereas R() denotes the maximal kNN radius of the

sample points in C’@(Qé). Note here the difference in the point sets that are
considered.

Bin(n, p) denotes the binomial distribution with parameters n and p. Prob-
abilistic events will be denoted with curly capital letters A, B, ..., and their
complements with A°, B¢, .. ..

4 Exact statements of the main results

In this section we are going to state all our main results in a formal way. In
the statement of the theorems we need the following conditions. The first one
is necessary for both, the noise-free and the noisy case, whereas the second
one is needed for the noisy case only.

e Condition 1: Lower and upper bounds on the number of neighbors £,

(3) ) )
k> 4d+1%log (2 84 p() VOI(C(’))n),

pmax

p 2log(Bn)
2 (n—1)

k< (n - 1)min{ 240 min { ()%, (10,07} .

12



Table 1
Table of notations

p(z) density

Pn(x) density estimate in point x

t density level set parameter

L(t) t-level set of p

cW,...,C™ | clusters, i.e. connected components of L(t)

C’_i)(e) connected component of L(t — €) containing C'*)

Biy B(i) probability mass of C® and C(j)(%) respectively

pg)ax maximal density in cluster C (#)

p probability of balls of radius u(*) around points in C(_i)(2§)
k(@ minimal curvature radius of the boundary 9C(®)

Vr(ézlx maximal covering radius of cluster ol

Col® (1) collar set for radius v

u® lower bound on the distances between C¥) and other clusters
€ parameter such that dist(C(j)(Zs), C’(j)(25)) >ul foralle <&
N4 volume of the d-dimensional unit ball

k number of neighbors in the construction of the graph

o Condition 2: The density p is three times continuously differentiable with
uniformly bounded derivatives, 3y > 20, and ¢,, sufficiently small such that

u(UA(CP2e\CD)) < 572

Note that in Theorems 1 to 3 ¢, is considered small but constant and thus we
drop the index n there.

In our first theorem, we present the optimal choice of the parameter k in the
mutual kNN graph for the identification of a cluster. This theorem treats both,
the noise-free and the noisy case.

Theorem 1 (Optimal £ for identification of one cluster in the mu-
tual kNN graph) The optimal choice of k for identification of cluster C'®
in Gou(n, k) (noise-free case) resp. rough identification in G (n, k,t — €, 6)
(noisy case) is

pt
2+ 4% onll

Pmax

k=nm—-1Dr%+1,  with I.=
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provided this choice of k fulfills Condition 1.

In the noise-free case we obtain with nggisefme = L()) and for suffi-

2 4d+1 pt!;ax 44
ciently large n

. (4)
P(Cluster C% is identified in Grur(n, k:)) > 1 — 3¢~ "D nsiscpree
For the noisy case, assume that additionally Condition 2 holds and let p, be a

kernel density estimator with bandwidth h. Then there exist constants C1,Cy
such that if h?> < Cie we get with

, (4) )
Q'Efc))isy = min { P (3) ’ " Q! n 02 hd 52}
2 4d+1 Pmax 4 4 n—18 n—1

and for sufficiently large n

P(Cluster C9 roughly identified in G (n, k,t — ¢, 5)) >1-— 86_(”_1)Q<nigisy.

This theorem has several remarkable features. First of all, we can see that
both in the noise-free and in the noisy case, the optimal choice of k is roughly
linear in n. This is pretty surprising, given that the lower bound for cluster
connectivity in random geometric graphs is k ~ logn. We will discuss the
important consequences of this result in the last section.

Secondly, we can see that for the mutual kNN graph the identification of one
cluster C® only depends on the properties of the cluster C¥, but not on
the ones of any other cluster. This is a unique feature of the mutual kNN
graph which comes from the fact that if cluster C® is very “dense”, then
the neighborhood relationship of points in C'® never links outside of cluster
C@. In the mutual kNN graph this implies that any connections of C'® to
other clusters are prevented. Note that this is not true for the symmetric
kNN graph, where another cluster can simply link into C”, no matter which
internal properties C has.

For the mutual graph, it thus makes sense to define the most significant cluster
as the one with the largest coefficient Q) since this is the one which can be
identified with the fastest rate. In the noise-free case one observes that the
coefficient Q) of cluster O is large given that

o p is large, which effectively means a large distance v of C to the closest

other cluster,

e p{) /tissmall, so that the density is rather uniform inside the cluster C®..
Note that those properties are the most simple properties one would think of
when imagining an “easily detectable” cluster. For the noisy case, a similar
analysis still holds as long as one can choose the constants , h and £ small
enough.

14



Formally, the result for identification of clusters in the symmetric kNN graph
looks very similar to the one above.

Theorem 2 (Optimal k for identification of one cluster in the sym-
metric kNN graph) We use the same notation as in Theorem 1 and define
Pmin = Mili—1 p(i). Then all statements about the optimal rates for k in
Theorem 1 can be carried over to the symmetric KNN graph, provided one
replaces p with puyi in the definitions of T®, Qggisefm and Qnizisy. If Con-
dition 1 holds and the condition k < (n — 1)pmin/2 — 2log(n) replaces the
corresponding one in Condition 1, we have in the noise-free case for suffi-

ciently large n
, ©)
P(C’(Z) is identified in Gy (n, k)) >1— (m+2)e” "D oisepee

If additionally Condition 2 holds we have in the noisy case for sufficiently
large n

P(C(i) roughly identified in G gy (n, k,t — €, 5)) >1—(m+ 7)6_(”_1)9532‘%.

Observe that the constant p(¥ has now been replaced by the minimal p)
among all clusters C'Y). This means that the rate of convergence for the sym-
metric kNN graph is governed by the constant pU) of the “worst” cluster, that
is the one which is most difficult to identify. Intuitively, this worst cluster is
the one which has the smallest distance to its neighboring clusters. In contrast
to the results for the mutual kNN graph, the rate for identification of C® in
the symmetric graph is governed by the worst cluster instead of the cluster
C itself. This is a big disadvantage if the goal is to only identify the “most
significant” clusters. For this purpose the mutual graph has a clear advantage.

On the other hand as we will see in the next theorem that the difference in
behavior between the mutual and symmetric graph vanishes as soon as we
attempt to identify all clusters.

Theorem 3 (Optimal % for identification of all clusters in the mu-
tual kNN graph) We use the same notation as in Theorem 1 and define
Pmin = MiNi— p(i), DPmax = maxizl,_,’mpl(g)ax. The optimal choice of k for
the identification of all clusters in the mutual KNN graph in G pu(n, k) (noise-
free case) resp. rough identification of all clusters in Gy (n, k,t — €,8) (noisy

case) is given by

k=(n—1)0% 1, with o= _Pmin__

Pmax

15



provided this choice of k fulfills Condition 1 for all clusters C® . In the noise-
free case we get the rate

Pmin
Qnoz‘sefree = 9 Ad+1 Pmax | 4’
t

such that for sufficiently large n
P(All clusters exactly identified in Gpu(n, k)) > 1 — 3m e (W) noisepree

For the noisy case, assume that additionally Condition 2 holds for all clusters
and let p, be a kernel density estimator with bandwidth h. Then there exist
constants Cy, Cy such that if h? < Cie we get with

: Prmin n o n d 2
Qnois = ’ o) Coh
v mm{24d+1pm;(+4 n—18 n—1° 5}

and for sufficiently large n

P(All clusters roughly ident. in G (n,k,t — €, (5)) > 1—(3m+5) e~ M= DSnoisy

We can see that as in the previous theorem, the constant which now governs
the speed of convergence is the worst case constant among all the p@). In the
setting where we want to identify all clusters this is unavoidable. Of course
the identification of “insignificant” clusters will be difficult, and the overall
behavior will be determined by the most difficult case. This is what is re-
flected in the above theorem. The corresponding theorem for identification of
all clusters in the symmetric KNN graph looks very similar, and we omit it.

So far for the noisy case we mainly considered the case of rough cluster iden-
tification. As we have seen, in this setting the results of the noise-free case are
very similar to the ones in the noisy case. Now we would like to conclude with
a theorem for exact cluster identification in the noisy case.

Theorem 4 (Exact identification of clusters in the noisy case) Let p
be three times continuously differentiable with uniformly bounded derivatives
and let P, be a kernel density estimator with bandwidth h, = hy(logn/n)"/(@+4)
for some ho > 0. For a suitable constant gy > 0 set €, = go(logn/n)?/ @+,
Then there exist constants ci,co such that for n — oo and cilogn < k < con
we obtain

Cluster C9 is exactly identified in G (n, k,t — ,,06) almost surely.

Note that as opposed to rough cluster identification, which is a statement
about a given finite nearest neighbor graph, exact cluster identification is an
inherently asymptotic property. The complication in this asymptotic setting
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is that one has to balance the speed of convergence of the density estimator
with the one of the “convergence of the graph”. The exact form of the den-
sity estimation is not important. Every other density estimator with the same
convergence rate would yield the same result. One can even lower the assump-
tions on the density to p € C1(R?) (note that differentiability is elsewhere
required). Finally, note that since it is technically difficult to grasp the graph
after the small components have been discarded, we could not prove what the
optimal k in this setting should be.

5 Proofs

The propositions and lemmas containing the major proof steps are presented
in Section 5.1. The proofs of the theorems themselves can be found in Section
5.2. An overview of the proof structure can be seen in Figure 2.

Theorem 1
Theorem 2
Theorem 3

Theorem 4

Prolﬁ
‘ Lemma 3 ‘ ‘ Lemma 4 ‘ ‘ Lemma 5 ‘ Lemma 7 Lemma 9

Lemma 2

Fig. 2. The structure of our proofs. Proposition 1 deals with within-cluster con-
nectedness and Proposition 6 with between-cluster disconnectedness. Proposition 8
bounds the ratio of background and cluster points for the asymptotic analysis of
exact cluster identification.

5.1  Main propositions for cluster identification

In Proposition 1 we identify some events whose combination guarantee the
connectedness of a cluster in the graph and at the same time that there is not
a connected component of the graph that consists of background points only.
The probabilities of the events appearing in the proposition are then bounded
in Lemma 2-5. In Proposition 6 and Lemma 7 we examine the probability of
connections between clusters. The section concludes with Proposition 8 and
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Lemma 9, which are used in the exact cluster identification in Theorem 4, and
some remarks about the differences between the noise-free and the noisy case.

Proposition 1 (Connectedness of one cluster C¥) in the noisy case)

Let CY) denote the event that in G (n, k, t — ,,0) (resp. Gym (0, k,t — €5, 6))

it holds that

e all the sample points from C are contained in the graph,

e the sample points from C'¥) are connected in the graph,

e there exists no component of the graph which consists only of sample points
from outside L(t).

Then under the conditions

(1) B > 20, '
(2) e, sufficiently small such that u(Ui(C(_Z)(QEn)\C’(i)D <§/2,

(3) k > 4d+1%log (2 8 p(®) VOI(C(i)>n>,

max

k< (n = 1)24% 5 pl), min { (u®)?, (D)7},

and for sufficiently large n, we obtain
P((C{)?) < P((AD)) +P((BY)) + P(£) + P(DE)

k—1 t

L 2o 4 op(p),

< 2e

where the events are defined as follows:
o AW: the subgraph consisting of points from C'V) is connected in G'
en) (resp. G (n, k.t —e,)),

sym

(n, k,t—

e BY: there are more than dn sample points from cluster C,
o &, there are less than dn sample points in the set |J; (C(_Z)(Zén)\C(i)), and
o D,: |pn(X;) — p(Xy)| < ey for all sample points X;, i =1,...,n.

Proof. We bound the probability of C¥) using the observation that A% NBY N
. ND, C Cff) implies

P((CN)°) < P((AD)) + P((BY)) + P(ES) + P(DS). (1)

This follows from the following chain of observations. If the event D,, holds,
no point with p(X;) > t is removed, since on this event p(X;) — p,(X;) < &,
and thus p,(X;) > p(X;) — e, > t — &,, which is the threshold in the graph
G'(n,k,t —e,).

If the samples in cluster C¥ are connected in G'(n, k,t —e,) (A%), and there
are more than 6n samples in cluster C (B{™), then the resulting component of
the graph G'(n, k,t—¢,) is not removed in the algorithm and is thus contained

in G(n, k,t —e,,0).

18



Conditional on D,, all remaining samples are contained in |J; C’@(Z&:n). Thus
all non cluster samples lie in U;(C”(22,)\C?). Given that this set contains
less than dn samples, there can exist no connected component only consisting
of non cluster points, which implies that all remaining non cluster points are
connected to one of the clusters.

The probabilities for the complements of the events A%, BY and &, are
bounded in Lemmas 3 to 5 below. Plugging in those bounds into Equation (1)
leads to the desired result. a

We make frequent use of the following tail bounds for the binomial distribution
introduced by Hoeffding.

Theorem 5 (Hoeffding, [9]) Let M ~ Bin(n,p) and define « = k/n. Then,
a>p,  P(M=>k)<enielp,

<e
a<p,  P(M<k)<e il

where K (al|p) is the Kullback-Leibler divergence of (a, 1 — «) and (p,1 — p),

K(allp) = alog <Z> + (1 — a)log <1l—oz>‘

- P

In the following lemmas we derive bounds for the probabilities of the events
introduced in the proposition above.

Lemma 2 (Within-cluster connectedness (A%")) As in Proposition 1 let
AW denote the event that the points of cluster C are connected in
Gk en) (resp. G (n,k,e,)). For z € (0,4 min{u® v 1)

mut sym

d\n

P((AD)) <n By P(M > k) + N (1 _ tndid> +p(D),

where M is a Bin(n — 1,p%) n.2%)-distributed random variable and N <
(87vol(C™))/("na).

Proof. Given that D,, holds, all samples lying in cluster C® are contained in
the graph G’(n, k,e,). Suppose that we have a covering of CW\Col®(z/4)
with balls of radius 7. By construction every ball of the covering lies entirely
in C®, so that t is a lower bound for the minimal density in each ball. If
every ball of the covering contains at least one sample point and the minimal
kNN radius of samples in O is larger or equal to z, then all samples of
CO\Col™(z/4) are connected in G'(n, k, €,) given that z < 40 . Moreover,
one can easily check that all samples lying in the collar set Cool(z/4) are
connected to CM\Col®(z/4). In total, then all samples points lying in C®

are connected. Denote by F() the event that one ball in the covering with
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balls of radius z/4 contains no sample point. Formally, {Rfl?m > 2z} N (FW)e
implies connectedness of the samples lying in C) in the graph G'(n, k, &,).

Define Ny = |{j # s | X; € B(X;,2)}| for 1 < s < n. Then {Rl(fl)in <z} =
U?Zl{{NS > k}n{X, e C(i)}}. We have

P(RY, <2) < S P(N, > k| X, € CO) P(X, € C) < nByP(U > k),

s=1

where U ~ Bin(n — 1,sup,cce) p(B(z, 2)). The final result is obtained using
the upper bound sup, ) pu(B(z, 2)) < pl) naz.

For the covering a standard construction using a z/4-packing provides us with
the covering. Since z/4 < /() we know that balls of radius z/8 around the
packing centers are subsets of C® and disjoint by construction. Thus, the
total volume of the N balls is bounded by the volume of C¥Y and we get
N(z/8)%ny < vol(C™). Since we assume that D, holds, no sample lying in
C® has been discarded. Thus the probability for one ball of the covering
being empty can be upper bounded by (1 — tn,2%/44)", where we have used
that the balls of the covering are entirely contained in C® and thus the density
is lower bounded by t. In total, a union bound over all balls in the covering
yields,

P(FD) < N(1—tna2/4%)" +P(D5).
Plugging both results together yields the final result. O

In Lemma 2 we provided a bound on the probability which includes two com-
peting terms for the choice of z. One favors small z whereas the other favors
large z. The next lemma will provide a trade-off optimal choice of the radius
z in terms of k.

Lemma 3 (Choice of k for within-cluster connectedness (A%)) Ifk ful-
fills Condition (3) of Proposition 1, we have for sufficiently large n

_ k-1
4d

1
P((AD)) < 2¢ TR + P (D).

t

Proof. The upper bound on the probability of (A®)¢ given in Lemma 2 has
two terms dependent on z. The tail bound for the binomial distribution is
small if z is chosen to be small, whereas the term from the covering is small
given that z is large. Here, we find a choice for z which is close to optimal.
Define p = p{) n42¢ and o = k/(n — 1). Using Theorem 5 we obtain for

ax
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M ~ Bin(n — 1,p) and a choice of z such that p < «,
nBoP(M 2 k) < nﬁ(i)e("l)(“‘°g<2)+<1a) o (12
< nﬂ(i)e_(n_l)(alog( )+p oc)7

where we have used log(z) > (z — 1)/z for 2 > 0. Now, introduce 6 := 1,2%/«
so that p = p@) 0 a, where with p < a we get, 0 < 0p@) < 1. Then,

(2

& (tog () +optin1)
<e TN ek (2)

€ )

nBuP(M > k) < nfy e—k(log (pgixe>+epggx_1)

where we used in the last step an upper bound on the term nf3;y which holds
given k > (2 log(ﬁ(i)n))/<log(l/(ﬁpmax)) + 6pl) 1). On the other hand,

N(l —tng Zd/4d)n _ Nenlog(l—tndzd/zyi) < Ne—ntn 24 /44

where we used log(1 — x) > —x for x < 1. With ng2¢ = fa and the upper
bound on N we get using n/(n — 1) > 1,

+0 vol(C(i))8d +0 vol(C(i))Bd
Nefntndzd/4d < e,n4da+10g( T < €7k47d+10g g

to

< e Ml (3)

where the last step holds given k£ > % log (W). Upper bounding the

bound in (2) with the one in (3) requires,

to 1 1 i
24d =5 (log (pfﬁéxe) + prn)ax — 1)_

Introduce, v = 0p%) | then this is equivalent to vt/(4%) ) < (—log(y) +

max

v —1). Note, that t/(4%p%) ) < 1/4. Thus, the above inequality holds for all
d > 1 given that —log(vy) > 1 — 3v/4. A simple choice is 7 = 1/2 and thus
0 = 1/(2p%).), which fulfills #p{) < 1. In total, we obtain with the result

from Lemma 2,

k=1 _t

P((AV)) < 2¢ T L p (D) <2e s + P (D).

We plug in the choice of 8 into the lower bounds on k. One can easily find an
upper bound for the maximum of the two lower bounds which gives,
pmax

(4) ‘
k> 4d+1]% log (2 8% pl¥) vol(C'¥) n)
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The upper bound, z < 4min{u®,y, ax} translates into the following upper
bound on k, k < (n — 1)24%ng p)) min {(u( N (L) )d}. O

max max

The result of this lemma means that if we choose k > ¢; + ¢ologn with two
constants ¢, co that depend on the geometry of the cluster and the respective
density, then the probability that the cluster is disconnected approaches zero
exponentially in k.

Note that due to the constraints on the covering radius, we have to introduce
an upper bound on k£ which depends linearly on n. However, as the probability
of connectedness is monotonically increasing in k, the value of the within-
connectedness bound for this value of k is a lower bound for all larger &k as
well. Since the lower bound on k grows with logn and the upper bound grows
with n, there exists a feasible region for k if n is large enough.

Lemma 4 (Event BY) As in Proposition 1 let BY) denote the event that
there are more than on sample points from cluster C. If Bay > 0 then

P (@) <o (- oo (5°))

Proof. Let M be the number of samples in cluster C®. Then,

5((51') 5(1)”) < exp ( - ;nﬁ(i) (5%(2—)5)2>,

where we used M@ ~ Bin(n, ;) and a Chernoff bound. O

P(M@ < 5n) < P(M@ <

Lemma 5 (Event &,) As in Proposition 1 let £, denote the event that there
are less than 5n sample points in all the boundary sets C'(_J)(Zgn)\C(j) together.
I, n(CY(22,) \ CV) < 6/2, we have P(ES) < exp(—on/8).

Proof. By assumption, for the probability mass in the boundary strips we have
> 1(C9(2e,) \ C@) < §/2. Then the probability that there are at least
on points in the boundary strips can be bounded by the probability that a
Bin(n, §/2)-distributed random variable V' exceeds dn. Using a Chernoff bound
we obtain P (V' > dn) < exp(—dn/8). O

The proposition and the lemmas above are used in the analysis of within-
cluster connectedness. The following proposition deals with between-cluster
disconnectedness.

We say that a cluster C is isolated if the subgraph of G (n, k,t — £n,0)
(resp. Geym (n,k,t — €,,0)) corresponding to cluster C is not connected to
another subgraph corresponding to any other cluster CYU) with j # i. Note,
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that we assume min;—; dlst(C’ )(25n) C(,j)(an)) > u® for all g, < &
The following proposition bounds the probability for cluster isolation. This
bound involves the probability that the maximal k-nearest-neighbor radius is
greater than some threshold. Therefore in Lemma 7 we derive a bound for this
probability. Note that our previous paper [11] contained an error in the result
corresponding to Lemma 7, which changed some constants but did not affect
the main results.

Proposition 6 (Cluster isolation) Let Z\) denote the event that the sub-

graph of the samples in CY (2e,,) is isolated in Gt (n,k,t —ep,0). Then given
that ¢, < &, k < pDn/2 — 2log(Bun), we obtain

P((Z{")) < P(Ri, > u?)+P(D5) < G +P(D5).

n

Let I be the event that the subgraph of samples in oW (2e,,) is isolated in
Gsym(n k,t —n,6). Define pmin = mine_; . p” and Brnax = Max;_; mﬁ

..........

Then for e, < &,, k < pminn/2 — 210g(ﬁmaX n), we obtain

P(Z)) < P (> ) 1 p(D3) < me T () | p(pe).

Proof. We have P((Z())?) < P((Z{) | D, + P(D:). Given the
event D,,, the remaining points in Guu(n,k,t — &,,0) are samples from

C9(2e,) ( 1,...,m). By assumption we have for g, < £ that
mm];,,gZ dlst( (25n) cY (22,)) > u?. In order to have edges from samples
in CC (2€n) to any other part in émut(n k,t — e,,0), it is necessary that
RY > 4. Using Lemma 7 we can lower bound the probability of this
event. For the symmetric kNN graph there can be additional edges from sam-
ples in ¢ (2e,) to other parts in the graph if samples lying in C(f)(2€n)
are among the kNN-neighbors of samples in CY )(2€n), j # i. Let u¥ be the
distance between C@(Qé) and C’(,j)(Qé). There can be edges from samples in
C(i)(25n) to any other part in Giaym(n, k,en,0) if the following event holds:
{RY > u®} U{U,;{RY), > u“}}. Using a union bound we obtain,

max

PR 19.) < P(R2. = w0) + (R = )

With ©) < 4% and Lemma 7 we obtain the result for Gsym(n k,en,0). O

The following lemma states the upper bound for the probablhty that the
maximum k-nearest neighbor radius Rmax of samples in c (25n) used in the
proof of Proposition 6.

23



Lemma 7 (Maximal kNN radius) Let k < pn/2 — 2log(Bun). Then

P(R(i) Zu(i)> < e_nTA(@_%).

max

Proof. Define N, = |{j # s| X; € B(X,,u®)}| for 1 < s < n. Then {R®) >

Wy = U N, <k—1n X, e C”(28)}. Thus,

P(R{, >u®) < iP(NS <k-1|X, €Y (28)P(X, € CV(22)).

s=1

Let M ~ Bin(n—1, p®). Then P(N, < k—1| X, € C”(28)) <P(M < k—1).
Using the tail bound from Theorem 5 we obtain for k — 1 < p@(n — 1),

P(R > u®) <nfyP(M <k -1)
= nﬁ(") ei(nil)(%i)f%) < 67%<#7%)

where we use that log(z) > (x—1)/x, that —w/e is the minimum of z log(x/w)
attained at x = w/e and (1—1/e) > 1/2. Finally, we use that under the stated
condition on k we have log(nf3)) < [(n — 1)p®¥/2 — (k — 1)]/2.

The following proposition quantifies the rate of ezact cluster identification,
that means how fast the fraction of points from outside the level set L()
approaches zero.

Proposition 8 (Ratio of boundary and cluster points) Let N cruster
and Nyocuster be the number of cluster points and background points in
Gt (n,k,t —ep,0) (resp. ésym (n,k,t —e,,6)) and let C* denote the event
that the points of each cluster form a connected component of the graph. Let
en — 0 for n — oo and define 8 = 321", Bs). Then there exists a constant
D > 0 such that for sufficiently large n,

D _
P<NN0C'luster/NCluster > 4§5n | C;fll) S 6—%Dann + e_ng + P(sz)

Pmo{f. According to Lemma 9 we can find constants D > 0 such that
w(CP (26, )\CD) < D¢, for n sufficiently large, and set D = Y™, D®.
Suppose that D,, holds. Then the only points which do not belong to a clus-
ter lie in the set U™, C"(2¢,)\C®. Some of them might be discarded, but
since we are interested in proving an upper bound on Nyocuster that does not
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matter. Then with p = E Nyxocruster/7 < De,, and a = 2De,, we obtain with
Theorem 5 and for sufficiently small ¢,,,

P(NNoCluster > 2D5nn | Call ) S e—nK(aHp) S e—nenD(Qlog@)—l),

where K denotes the Kullback-Leibler divergence. Here we used that for p <
De,, we have K (ca||p) > K(a||De,) and with log(1+x) > z/(1+2) for x > —1
we have K (2De,||De,) > De,(2log2—1) > De, /4. Given that D,, holds and
the points of each cluster are a connected component of the graph, we know
that all cluster points remain in the graph and we have

_nB
P(NCluster = | Call ) S e s

using Theorem 5 and similar arguments to above. a

Lemma 9 Assume that p € C?(RY) with ||plloc = Pmax and that for each x in
a neighborhood of {p = t} the gradient of p at x is non-zero, then there exists
a constant D@ > 0 such that for e, sufficiently small,

M(C(_i)(%n) \ C(i)> < DWeg,.

Proof. Under the conditions on the gradient and ¢, small enough, one has
c"(2e,) € CY + Cye,B(0,1) for some constant C;. Here ” + 7 denotes set
addition, that is for sets A and B we define A+ B ={a+b|a€ A, be B}.
Since the boundary dC is a smooth (d — 1)-dimensional submanifold in R?
with a minimal curvature radius £ > 0, there exists 7; > 0 and a constant
Cy such that vol(C® + ¢,B(0,1)) < Vol(C’ )) + Cye, vol(ACW) for g, < v
(see Theorem 3.3.39 in [7]). Thus, by the additivity of the volume,

vol (C(22,) \ CV) < vol (C + C1,B(0,1)) — vol ()
= C1Cyvol (0C0)e,

Since p is bounded, we obtain, /L(C(j)<2€n> \ C@) < Oy Cy vol(OCW) prax n,
for €, small enough. Setting D@ = C| Cy vol(OC™) pyayx the result follows. O

Noise-free case as special case of the noisy one. In the noise-free case,

by definition all sample points belong to a cluster. That means

e we can omit the density estimation step, which was used to remove back-
ground points from the graph, and drop the event D,, everywhere,

e we work with L(¢) directly instead of L(t — ¢),

e we do not need to remove the small components of size smaller than dn,
which was needed to get a grip on the “boundary” of L(t —¢) \ L(t) .
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In particular, setting § = 0 we trivially have P((B%))¢) = 0 and P(&¢) = 0 for
alli=1,...,mand all n € N.

As a consequence, we can directly work on the graphs G (n, k) and Geym(n, k),
respectively. Therefore, the bounds we gave in the previous sections also hold
in the simpler noise-free case and can be simplified in this setting.

5.2 Proofs of the main theorems

Proof of Theorem 1. Given we work on the complement of the event Z() of
Proposition 6, there are no connections in Gt (n,k,t — €,0) between the sub-
graph containing the points of cluster C¥ and points from any other cluster.
Moreover, by Proposition 1 we know that the event C%) = AW NBYNE, ND,
implies that the subgraph of all the sample points lying in cluster C® is con-
nected and all other sample points lying not in in the cluster C®) are either
discarded or are connected to the subgraph containing all cluster points. That
means we have identified cluster C?. Collecting the bounds from Proposition
6 and 1, we obtain

P(Cluster C® not roughly identified in G (n,k,t —e, 5))

<P((Z)) +P((CP))
<P((Z)°) + P((AD)) + P((BY)) + P(ES) + P(D5)

k—1 t

gé“?@?ﬂﬂ)+2 TR 4267 + 3P(DY).

In the noise-free case the events BY, £, and D, can be ignored. The optimal
choice for k follows by equating the exponents of the bounds for (Z(")¢ and
(AD)e and solving for k. One gets for the optimal k,

p® p(0)
k=(n—-1)—5—+1, and arate of (n — 1) ————.
2 + 4d grl))ax 24d+1pn;ax + 4

In the noisy case, we know that for n sufficiently large we can take £ small
enough (¢ is small and fixed) such that the condition 37", 1(C CP(2e)\ CV) <
d/2 holds. It is well known that under our conditions on p there exist constants
Oy, Cy such that P(DS) < e~ @ given h? < Cie (cf. Rao [13]). Plugging
this result into the bounds above the rate of convergence is determined by the
worst exponent,

C((n=1pD k-1 k-1 ¢t § 4o
mm{ 1 — g p(i) , ng, Conh‘e }

max
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However, since the other bounds do not depend on k the optimal choice for k
remains the same. a

Proof of Theorem 2. Compared to the proof for cluster identification in the
mutual kNN graph in Theorem 1 the only part which changes is the connec-
tivity event. Here we have to replace the bound on P((Z")¢) by the bound on
P((Iél )¢) from Proposition 6. With ppi, = min,—y p we obtain

P((I)) < e (an-151) +P(D).

n

Following the same procedure as in the proof of Theorem 1 provides the result
(for both, the noise-free and the noisy case). O

Proof of Theorem 3. We set C*! = N, C% and 72! = N, ZW. By a slight
modification of the proof of Proposition 1 and pp.x = max;—1 pld)

( Call )

Z L 420 4 9P (DE)

| /\

21m € AT P + 278 + 2P (D5).

IN

By a slight modification of the proof of Proposition 6 with pyin = min;—y p(i),

p((zall ) < Zenl<<;): 1) +P(D:) < me

=1

Combining these results we obtain
P(Not all Clusters ) roughly identified in G (1, k, t — ¢, 5))

< me_T(T_ﬁ> + 3P(Ds) + 2m e AT max + 2",

The result follows with a similar argumentation to the proof of Theorem 1. O
Proof of Theorem /. Clearly we can choose gy > 0 such that h? < Ce, for a

suitable constant C' > 0. Then there exists a constant Cy > 0 with P(DS) <
e~C2nhien | Since

logny 12 /logny 42
nhie? = hgggn( Oin) e ( Oin> T = pdZlogn

we have 322, P(D¢) < oo. Moreover, let C2!' denote the event that the points
of each cluster form a connected component of the graph. Then it can be
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easily checked with Proposition 8 that we have >°° | P(Nxocuster/NCluster >
4De, /B | C¥) < co. Moreover, similar to the proof of Theorem 3 one can show
that there are constants ¢, co > 0 such that for ¢; logn < k < ¢on cluster c®
will be roughly identified almost surely as n — oo. (Note here that the bounds
on k for which our probability bounds hold are also logarithmic and linear,
respectively, in n). Thus, the event C*!' occurs almost surely and consequently
NNOCluster/NCluster — 0 almost Surely~ u

6 Discussion

In this paper we studied the problem of cluster identification in kNN graphs.
As opposed to earlier work (Brito et al. [5], Biau et al. [2]) which was only
concerned with establishing connectivity results for a certain choice of k (resp.
¢ in case of an e-neighborhood graph), our goal was to determine for which
value of k the probability of cluster identification is maximized. Our work
goes considerably beyond Brito et al. [5] and Biau et al. [2], concerning both
the results and the proof techniques. In the noise-free case we come to the
surprising conclusion that the optimal k is rather of the order of ¢-n than of the
order of logn as many people had suspected, both for mutual and symmetric
kNN graphs. A similar result also holds for rough cluster identification in
the noisy case. Both results were quite surprising to us — our first naive
expectation based on the standard random geometric graph literature had
been that k ~ logn would be optimal. In hindsight, our results perfectly make
sense. The minimal k£ to achieve within-cluster connectedness is indeed of the
order logn. However, clusters can be more easily identified the tighter they
are connected. In an extreme case where clusters have a very large distance
to each other, increasing k only increases the within-cluster connectedness.
Only when the cluster is fully connected (that is, k& coincides with the number
of points in the cluster, that is k is a positive fraction of n), connections to
other clusters start to arise. Then the cluster will not be identified any more.
Of course, the standard situation will not be as extreme as this one, but our
proofs show that the tendency is the same.

While our results on the optimal choice of k are nice in theory, in practical
application they are often hard to realize. The higher the constant k£ in the
kNN graph is chosen, the less sparse the neighborhood graph becomes, and the
more resources we need to compute the kNN graph and to run algorithms on
it. This means that one has to make a trade-off: even if in many applications
it is impossible to choose k of the order of ¢-n for computational restrictions,
one should attempt to choose k as large as one can afford, in order to obtain
the most reliable clustering results.
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When comparing the symmetric and the mutual kNN graph, in terms of the
within-cluster connectedness both graphs behave similar. But note that this
might be an artifact of our proof techniques, which are very similar in both
cases and do not really make use of the different structure of the graphs. Con-
cerning the between-cluster disconnectedness, however, both graphs behave
very differently. To ensure disconnectedness of one cluster C¥) from the other
clusters in the mutual kNN graph, it is enough to make sure that the nearest
neighbor of all points of C are again elements of C¥. In this sense, the
between-cluster disconnectedness of an individual cluster in the mutual graph
can be expressed in terms of properties of this cluster only. In the symmetric
kNN graph this is different. Here it can happen that some other cluster C'¥)
links inside C'”, no matter how nicely connected C® is. In particular, this af-
fects the setting where the goal is to identify the most significant cluster only.
While this is easy in the mutual kNN graph, in the symmetric kNN graph it is
not easier than identifying all clusters as the between-cluster disconnectedness
is governed by the worst case.

From a technical point of view there are some aspects about our work which
could be improved. First, we believe that the geometry of the clusters does not
influence our bounds in a satisfactory manner. The main geometric quantities
which enter our bounds are simple things like the distance of the clusters
to each other, the minimal and maximal density on the cluster, and so on.
However, intuitively it seems plausible that cluster identification depends on
other quantities as well, such as the shapes of the clusters and the relation of
those shapes to each other. For example, we would expect cluster identification
to be more difficult if the clusters are in the forms of concentric rings than if
they are rings with different centers aligned next to each other. Currently we
cannot deal with such differences. Secondly, the covering techniques we use
for proving our bounds are not well adapted to small sample sizes. We first
cover all clusters completely by small balls, and then require that there is at
least one sample point in each of those balls. This leads to the unpleasant side
effect that our results are not valid for very small sample size n. However, we
did not find a way to circumvent this construction. The reason is that as soon
as one has to prove connectedness of a small sample of cluster points, one
would have to explicitly construct a path connecting each two points. While
some techniques from percolation theory might be used for this purpose in
the two-dimensional setting, we did not see any way to solve this problem in
high-dimensional spaces.

In the current paper, we mainly worked with the cluster definition used in
the statistics community, namely the connected components of t-level sets. In
practice, most people try to avoid to perform clustering by first applying den-
sity estimation — density estimation is inherently difficult on small samples,
in particular in high-dimensional spaces. On the other hand, we have already
explained earlier that this inherent complexity of the problem also pays off. In
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the end, not only have we detected where the clusters are, but we also know
where the data only consists of background noise.

In the computer science community, clustering is often solved via partitioning
algorithms such as mincuts or balanced cuts. Now we have treated the case of
the level sets in this paper, discussing the graph partitioning case will be the
next logical step. Technically, this is a more advanced setting. The ingredients
are no longer simple yes/no events (such as “cluster is connected” or “clusters
are not connected to each other”). Instead, one has to carefully “count” how
many edges one has in different areas of the graph. In future work we hope to
prove results on the optimal choice of k for such a graph partitioning setting.
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