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ABSTRACT

Given a task T , a set of experts V with multiple skills and a
social network G(V,W ) reflecting the compatibility among
the experts, team formation is the problem of identifying
a team C ⊆ V that is both competent in performing the
task T and compatible in working together. Existing meth-
ods for this problem make too restrictive assumptions and
thus cannot model practical scenarios. The goal of this pa-
per is to consider the team formation problem in a realistic
setting and present a novel formulation based on densest
subgraphs. Our formulation allows modeling of many natu-
ral requirements such as (i) inclusion of a designated team
leader and/or a group of given experts, (ii) restriction of the
size or more generally cost of the team (iii) enforcing locality
of the team, e.g., in a geographical sense or social sense, etc.
The proposed formulation leads to a generalized version of
the classical densest subgraph problem with cardinality con-
straints (DSP), which is an NP hard problem and has many
applications in social network analysis. In this paper, we
present a new method for (approximately) solving the gen-
eralized DSP (GDSP). Our method, FORTE, is based on
solving an equivalent continuous relaxation of GDSP. The
solution found by our method has a quality guarantee and
always satisfies the constraints of GDSP. Experiments show
that the proposed formulation (GDSP) is useful in modeling
a broader range of team formation problems and that our
method produces more coherent and compact teams of high
quality. We also show, with the help of an LP relaxation of
GDSP, that our method gives close to optimal solutions to
GDSP.
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1. INTRODUCTION
Given a set of skill requirements (called task T ), a set of

experts who have expertise in one or more skill, along with a
social or professional network of the experts, the team forma-
tion problem is to identify a competent and highly collabo-
rative team. This problem in the context of a social network
was first introduced by [18] and has attracted recent interest
in the data mining community [15, 2, 12]. A closely related
and well-studied problem in operations research is the as-
signment problem. Here, given a set of agents and a set of
tasks, the goal is to find an agent-task assignment minimiz-
ing the cost of the assignment such that exactly one agent is
assigned to a task and every task is assigned to some agent.
This problem can be modeled as a maximum weight match-
ing problem in a weighted bipartite graph. In contrast to the
assignment problem, the team formation problem considers
the underlying social network, which for example models
the previous collaborations among the experts, while form-
ing teams. The advantage of using such a social network is
that the teams that have worked together previously are ex-
pected to have less communication overhead and work more
effectively as a team.

The criteria explored in the literature so far for measur-
ing the effectiveness of teams are based on the shortest path
distances, density, and the cost of the minimum spanning
tree of the subgraph induced by the team. Here the den-
sity of a subgraph is defined as the ratio of the total weight
of the edges within the subgraph over the size of the sub-
graph. Teams that are well connected have high density val-
ues. Methods based on minimizing diameter (largest short-
est path between any two vertices) or cost of the spanning
tree have the main advantage that the teams they yield are
always connected (provided the underlying social network
is connected). However, diameter or spanning tree based
objectives are not robust to the changes (addition/deletion
of edges) in the social network. As demonstrated in [12]
using various performance measures, the density based ob-
jective performs better in identifying well connected teams.
On the other hand, maximizing density may give a team
whose subgraph is disconnected. This happens especially
when there are small groups of people who are highly con-
nected with each other but are sparsely connected to the
rest of the graph.

Existing methods make either strong assumptions on the
problem that do not hold in practice or are not capable of in-
corporating more intuitive constraints such as bounding the
total size of the team. The goal of this paper is to consider
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the team formation problem in a more realistic setting and
present a novel formulation based on a generalization of the
densest subgraph problem. Our formulation allows model-
ing of many realistic requirements such as (i) inclusion of a
designated team leader and/or a group of given experts, (ii)
restriction on the size or more generally cost of the team (iii)
enforcing locality of the team, e.g., in a geographical sense
or social sense, etc. In fact most of the future directions
pointed out by [12] are covered in our formulation.

2. RELATED WORK
The first work [18] in the team formation problem in the

presence of a social network presents greedy algorithms for
minimizing the diameter and the cost of the minimum span-
ning tree (MST) induced by the team. While the greedy
algorithm for minimizing the diameter has an approxima-
tion guarantee of two, no guarantee is proven for the MST
algorithm. However, [18] impose the strong assumption that
a skill requirement of a task can be fulfilled by a single per-
son; thus a more natural requirement such as “at least k ex-
perts of skill s are needed for the task”cannot be handled by
their method. This shortcoming has been addressed in [12],
which presents a 2-approximation algorithm for a slightly
more general problem that can accommodate the above re-
quirement. However, both algorithms cannot handle an up-
per bound constraint on the team size. On the other hand,
the solutions obtained by all these algorithms (including the
MST algorithm) can be shown to be connected subgraphs if
the underlying social graph is connected.
Two new formulations are proposed in [15] based on the

shortest path distances between the nodes of the graph. The
first formulation assumes that experts from each skill have to
communicate with every expert from the other skill and thus
minimizes the sum of the pairwise shortest path distances
between experts belonging to different skills. They prove
that this problem is NP-hard and provide a greedy algo-
rithm with an approximation guarantee of two. The second
formulation, solvable optimally in polynomial time, assumes
that there is a designated team leader who has to communi-
cate with every expert in the team and minimizes the sum
of the distances only to the leader. The main shortcoming
of this work is its restrictive assumption that exactly one
expert is sufficient for each skill, which implies that the size
of the found teams is always upper bounded by the number
of skills in the given task, noting that an expert is allowed
to have multiple skills. They exploit this assumption and
(are the first to) produce top-k teams that can perform the
given task. However, although based on the shortest path
distances, neither of the two formulations does guarantee
that the solution obtained is connected.
In contrast to the distance or diameter based cost func-

tions, [12] explore the usefulness of the density based ob-
jective in finding strongly connected teams. Using various
performance measures, the superiority of the density based
objective function over the diameter objective is demon-
strated. The setting considered in [12] is the most general
one until now but the resulting problem is shown to be NP
hard. The greedy algorithms that they propose have ap-
proximation guarantees (of factor 3) for two special cases.
The teams found by their algorithms are often quite large
and it is not straightforward to modify their algorithms to
integrate an additional upper bound constraint on the team
size. Another disadvantage is that subgraphs that maximize

the density under the given constraints need not necessarily
be connected.

Recently [2] considered an online team formation problem
where tasks arrive in a sequential manner and teams have
to be formed minimizing the (maximum) load on any ex-
pert across the tasks while bounding the coordination cost
(a free parameter) within a team for any given task. Ap-
proximation algorithms are provided for two variants of co-
ordinate costs: diameter cost and Steiner cost (cost of the
minimum Steiner tree where the team members are the ter-
minal nodes). While this work focusses more on the load
balancing aspect, it also makes the strong assumption that
a skill is covered by the team if there exists at least one
expert having that skill.

All of the above methods allow only binary skill level, i.e.,
an expert has a skill level of either one or zero.

We point out that many methods have been developed in
the operations research community for the team formation
problem, [5, 9, 21, 20], but none of them explicitly consid-
ers the underlying social or professional connections among
the experts. There is also literature discussing the social as-
pects of the team formation [10] and their influence on the
evolution of communities, e.g., [4].

3. REALISTIC TEAM FORMATION IN SO-

CIAL NETWORKS
Now we formally define the Team Formation problem that

we address in this paper. Let V be the set of n experts and
G(V,W ) be the weighted, undirected graph reflecting the re-
lationship or previous collaboration of the experts V . Then
non-negative, symmetric weight wij ∈ W connecting two
experts i and j reflects the level of compatibility between
them. The set of skills is given by A = {a1, . . . , ap}. Each
expert is assumed to possess one or more skills. The non-
negative matrix M ∈ R

n×p specifies the skill levels of all
experts in each skill. Note that we define the skill level on
a continuous scale. If an expert i does not have skill j, then
Mij = 0. Moreover, we use the notation Mj ∈ R

n×1 for
the j−th column of M , i.e. the vector of skill levels corre-
sponding to skill j. A task T is given by the set of triples
{(aj , κj , ιj)}

p
j=1, where aj ∈ A, specifying that at least κj

and at most ιj of skill aj is required to finish the given task.

Generalized team formation problem. Given a task
T , the generalized team formation problem is defined as
finding a team C ⊆ V of experts maximizing the collabora-
tive compatibility and satisfying the following constraints:

• Inclusion of a specified group: a predetermined
group of experts S ⊂ V should be in C.

• Skill requirement: at least κj and at most ιj of skill
aj is required to finish the task T .

• Bound on the team size: the size of the team should
be smaller than or equal to b, i.e., |C| ≤ b.

• Budget constraint: total budget for finishing the
task is bounded by B, i.e.,

∑

i∈C ci ≤ B, where ci ∈
R+ is the cost incurred on expert i.

• Distance based constraint: the distance (measured
according to some non-negative, symmetric function,
dist) between any pair of experts in C should not be
larger than d0, i.e., dist(u, v) ≤ d0, ∀u, v ∈ C.
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Discussion of our generalized constraints. In con-
trast to existing methods, we also allow an upper bound
on each skill and on the total team size. If the skill ma-
trix is only allowed to be binary as in previous work, this
translates into upper and lower bounds on the number of
experts required for each skill. Using vertex weights, we can
in fact encode more generic constraints, e.g., having a limit
on the total budget of the team. It is not straightforward to
extend existing methods to include any upper bound con-
straints. Up to our knowledge we are the first to integrate
upper bound constraints, in particular on the size of the
team, into the team formation problem. We think that the
latter constraint is essential for realistic team formation.
Our general setting also allows a group of experts around

whom the team has to be formed. This constraint often
applies as the team leader is usually fixed before forming the
team. Another important generalization is the inclusion of
distance constraints for any general distance function1. Such
a constraint can be used to enforce locality of the team e.g.
in a geographical sense (the distance could be travel time)
or social sense (distance in the network). Another potential
application are mutual incompatibilities of team members
e.g. on a personal level, which can be addressed by assigning
a high distance to experts who are mutually incompatible
and thus should not be put together in the same team.
We emphasize that all constraints considered in the liter-

ature are special instances of the above constraint set.

Measure of collaborative compatiblity. In this paper
we use as a measure of collaborative compatibility a gener-
alized form of the density of subgraphs, defined as

density(C) :=
assoc(C)

volg(C)
=

∑

i,j∈C wij
∑

i∈C gi
, (1)

where wij is the non-negative weight of the edge between i
and j and volg(C) is defined as

∑

i∈C gi, with gi being the
positive weight of the vertex i. We recover the original den-
sity formulation, via gi = 1, ∀i ∈ V . We use the relation,
assoc(C) = vold(C)− cut(C, V \C), where di =

∑n

j=1 wij is

the degree of vertex i and cut(A,B) :=
∑

i∈A,j∈B wij .

Discussion of density based objective. As pointed
out in [12], the density based objective possesses useful prop-
erties like strict monotonicity and robustness. In case of the
density based objective, if an edge gets added (because of
a new collaboration) or deleted (because of newly found in-
compatibility) the density of the subgraphs involving this
edge necessarily increases resp. decreases, which is not true
for the diameter based objective. In contrast to density
based objective, the impact of small changes in graph struc-
ture is more severe in the case of diameter objective [12].
The generalized density that we use here leads to further

modeling freedom as it enables to give weights to the ex-
perts according to their expertise. By giving smaller weight
to those with high expertise, one can obtain solutions that
not only satisfy the given skill requirements but also give
preference to the more competent team members (i.e. the
ones having smaller weights).

1The distance function need not satisfy the triangle inequal-
ity.

Problem Formulation. Using the notation introduced
above, an instance of the team formation problem based on
the generalized density can be formulated as

max
C⊆V

assoc(C)

volg(C)
(2)

subject to : S ⊆ C

κj ≤ volMj (C) ≤ ιj , ∀j ∈ {1, . . . , p}

|C| ≤ b

volc(C) ≤ B

dist(u, v) ≤ d0, ∀u, v ∈ C,

Note that the upper bound constraints on the team size
and the budget can be rewritten as skill constraints and can
be incorporated into the skill matrix M accordingly. Thus,
without loss of generality, we omit the budget and size con-
straints from now on, for the sake of brevity. Moreover,
since S is required to be part of the solution, we can assume
that dist(u, v) ≤ d0, ∀u, v ∈ S, otherwise the above problem
is infeasible. The distance constraint also implies that any
u ∈ V for which dist(u, s) > d0, for some s ∈ S, cannot be a
part of the solution. Thus, we again assume wlog that there
is no such u ∈ V ; otherwise such vertices can be eliminated
without changing the solution of problem (2).

Our formulation (2) is a generalized version of the classical
densest subgraph problem (DSP), which has many applica-
tions in graph analysis, e.g., see [19]. The simplest version
of DSP is the problem of finding a densest subgraph (with-
out any constraints on the solution), which can be solved
optimally in polynomial time [13]. The densest-k-subgraph
problem, which requires the solution to contain exactly k
vertices, is a notoriously hard problem in this class and has
been shown not to admit a polynomial time approximation
scheme [16]. Recently, it has been shown that the densest
subgraph problem with an upper bound on the size is as
hard as the densest-k-subgraph problem [17]. However, the
densest subgraph problem with a lower bound constraint
has a 2-approximation algorithm [17]. It is based on solv-
ing a sequence of unconstrained densest subgraph problems.
They also show that there exists a linear programming re-
laxation for this problem achieving the same approximation
guarantee.

Recently [12] considered the following generalized version
of the densest subgraph problem with lower bound con-
straints in the context of team formation problem:

max
C⊆V

assoc(C)

volg(C)
(3)

subject to : volMj (C) ≥ κj , ∀j ∈ {1, . . . , p}

where M is the binary skill matrix. They extend the greedy
method of [17] and show that it achieves a 3-approximation
guarantee for some special cases of this problem. [8] re-
cently improved the approximation guarantee of the greedy
algorithm of [12] for problem (3) to a factor 2. The time
complexity of this greedy algorithm is O(kn3), where n is
the number of experts and k :=

∑m

j=1 kj is the minimum
number of experts required.

Direct integration of subset constraint. The subset
constraint can be integrated into the objective by directly
working on the subgraph G′ induced by the vertex set V ′ =
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V \S. Note that any C ⊂ V that contains S can be written
as C = A ∪ S, for A ⊂ V ′. We now reformulate the team
formation problem on the subgraph G′. We introduce the
notation m = |V ′|, and we assume wlog that the first m
entries of V are the ones in V ′.
The terms in problem (2) can be rewritten as

assoc(C) = assoc(A) + assoc(S) + 2 cut(A,S),

= vold(A)− cut(A, V \A) + assoc(S) + 2 cut(A,S)

= vold(A)− cut(A, V ′\A) + assoc(S) + cut(A,S)

volg(C) = volg(A) + volg(S)

Moreover, note that we can write: cut(A,S) = voldS (A),
where dSi =

∑

j∈S wij denotes the degree of vertex i re-
stricted to the subset S in the original graph. Using the
abbreviations, µS = assoc(S), νS = volg(S), assocS(A) =
vold(A)−cut(A, V ′\A)+µS+voldS (A), we rewrite the team
formation problem (2) as

max
A⊆V ′, A6=∅

assocS(A)

volg(A) + νS
(GDSP)

subject to : kj ≤ volMj (A) ≤ lj , ∀j ∈ {1, . . . , p}

dist(u, v) ≤ d0, ∀u, v ∈ A,

where for all j = 1, . . . , p, the bounds were updated as
kj = κj−volMj (S), lj = ιj−volMj (S). Note that here we al-
ready used the assumption: dist(u, s) ≤ d0, ∀u ∈ V, ∀s ∈ S.
The constraint, A 6= ∅, has been introduced for technical rea-
sons required for the formulation of the continuous problem
in Section 4.2. The equivalence of problem (GDSP) to (2)
follows by considering either S (if feasible) or the set A∗∪S,
where A∗ is an optimal solution of (GDSP), depending on
whichever has higher density.
To the best of our knowledge there is no greedy algo-

rithm with an approximation guarantee to solve problem
(GDSP). Instead of designing a greedy approximation al-
gorithm for this discrete optimization problem, we derive
an equivalent continuous optimization problem in Section 4.
That is, we reformulate the discrete problem in continuous
space while preserving the optimality of the solutions of the
discrete problem. The rationale behind this approach is that
the continuous formulation is more flexible and allows us to
choose from a larger set of methods for its solution than for
the discrete one. Although the resulting continuous problem
is as hard as the original discrete problem, recent progress
in continuous optimization [14] allow us to find a locally
optimal solution very efficiently.

4. DERIVATION OF FORTE
In this section we present our method, Formation Of Re-

alistic Teams (FORTE, for short) to solve the team for-
mation problem, which is rewritten as (GDSP), using the
continuous relaxation. We derive FORTE in three steps:

i. Derive an equivalent unconstrained discrete problem
(4) of the team formation problem (GDSP) via an ex-
act penalty approach.

ii. Derive an equivalent continuous relaxation (6) of the
unconstrained problem (4) by using the concept of Lo-
vasz extensions.

iii. Compute the solution of the continuous problem (6)
using the recent method RatioDCA from fractional
programming.

4.1 Equivalent Unconstrained Problem
A general technique in constrained optimization is to trans-

form the constrained problem into an equivalent unconstrained
problem by adding to the objective a penalty term, which
is controlled by a parameter γ ≥ 0. The penalty term is
zero if the constraints are satisfied at the given input and
strictly positive otherwise. The choice of the regularization
parameter γ influences the tradeoff between satisfying the
constraints and having a low objective value. Large val-
ues of γ tend to enforce the satisfaction of constraints. In
the following we show that for the team formation problem
(GDSP) there exists a value of γ that guarantees the satis-
faction of all constraints.

Let us define the penalty term for constraints of the team
formation problem (GDSP) as

pen(A) :=















∑p

j=1 max{0, volMj (A)− lj}
+
∑p

j=1 max{0, kj − volMj (A)}
+
∑

u,v∈A max{0, dist(u, v)− d0} A 6= ∅
0 A = ∅.

Note that the above penalty function is zero only when A
satisfies the constraints; otherwise it is strictly positive and
increases with increasing infeasibility. The special treat-
ment of the empty set is again a technicality required later
for the Lovasz extensions, see Section 4.2. For the same
reason, we also replace the constant terms µS and νS in
(GDSP) by µS unit(A) and νS unit(A) respectively, where
unit(A) := 1, A 6= ∅ and unit(∅) = 0.

The following theorem shows that there exists an uncon-
strained problem equivalent to the constrained optimization
problem (GDSP).

Theorem 1. The constrained problem (GDSP) is equiv-
alent to the unconstrained problem

min
∅6=A⊆V

volg(A) + νS unit(A) + γ pen(A)

assocS(A)
(4)

for γ > vold(V )
θ

volg(A0)+νS
assocS(A0)

, where A0 is any feasible set

of problem (GDSP) such that assocS(A0) > 0 and θ is the
minimum value of infeasibility, i.e., pen(A) ≥ θ, if A is
infeasible.

Proof. We define spvol(A) :=
volg(A)+νS unit(A)

assocS(A)
. Note

that maximizing (GDSP) is the same as minimizing spvol(A)
subject to the constraints of (GDSP). For any feasible sub-
set A, the objective of (4) is equal to spvol(A), since the
penalty term is zero. Thus, if we show that all minimizers of
(4) satisfy the constraints then the equivalence follows. Sup-
pose, for the sake of contradiction, that A∗(6= ∅, if S = ∅)
is a minimizer of (4) and that A∗ is infeasible for problem
(GDSP). Since νS ≥ 0 and gi > 0, ∀i, we have under the
given condition on γ,

volg(A
∗) + νS + γ pen(A∗)

assocS(A∗)
>

γ pen(A∗)

assocS(A∗)

≥
γ θ

maxA⊆V assocS(A)
≥

γ θ

vold(V )
>

volg(A0) + νS
assocS(A0)

,

which leads to a contradiction because the last term is the
objective value of (4) at A0. 2
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4.2 Equivalent Continuous Problem
We will now derive a tight continuous relaxation of prob-

lem (4). This will lead us to a minimization problem over
R

m, which then can be handled more easily than the original
discrete problem. The connection between the discrete and
the continuous space is achieved via thresholding. Given a
vector f ∈ R

m, one can define the sets

Ai := {j ∈ V |fj ≥ fi} , (5)

by thresholding f at the value fi. In order to go from func-
tions on sets to functions on continuous space, we make use
of the concept of Lovasz extensions.

Definition 1. (Lovasz extension) Let R : 2V → R be a
set function with R(∅) = 0, and let f ∈ R

m be ordered in
ascending order f1 ≤ f2 ≤ · · · ≤ fm. The Lovasz extension
RL : Rm → R of R is defined by

RL(f) =

m−1
∑

i=1

R(Ai+1) (fi+1 − fi) +R(V )f1.

Note that RL(1A) = R(A) for all A ⊂ V , i.e. RL is indeed an
extension of R from 2V to R

V (|V | = m). In the following,
given a set function R, we will denote its Lovasz extension
by RL. The explicit forms of the Lovasz extensions used in
the derivation will be dealt with in Section 4.3.
In the following theorem we show the equivalence for GDSP.

A more general result showing equivalence for fractional set
programs can be found in [7].

Theorem 2. The unconstrained discrete problem (4) is
equivalent to the continuous problem

min
f∈R

V ′

+

volLg (f) + νS unitL(A) + γ penL(f)

assocLS(f)
(6)

for any γ ≥ 0. Moreover, optimal thresholding of a mini-
mizer f∗ ∈ R

m
+ ,

A∗ := min
Ai={j∈V ′|f∗

j
≥f∗

i }, i=1,...,m

volg(Ai) + νS + γ pen(Ai)

assocS(Ai)
,

yields a set A∗ that is optimal for problem (4).

Proof. Let R(A) = volg(A) + νS unit(A) + γ pen(A).
Then we have

min
A⊂V ′

R(A)

assocS(A)
= min

A⊂V ′

RL(1A)

assocLS(1A)
≥ min

f∈R
V ′

+

RL(f)

assocLS(f)
,

where in the first step we used the fact that RL(f) and
assocL(f) are extensions of R(A) and assoc(A), respectively.
Below we first show that the above inequality also holds in
the other direction, which then establishes that the optimum
values of both problems are the same. The proof of the re-
verse direction will also imply that a set minimizer of the
problem (4) can be obtained from any minimizer f∗ of (6)
via optimal thresholding.

We first show that the optimal thresholding of any f ∈ R
m
+

yields a set A such that 1A has an objective value at least as

good as the one of f . This holds because

RL(f) =

m−1
∑

i=1

R(Ai+1)(fi+1 − fi) + f1R(V ′)

=

m−1
∑

i=1

R(Ai+1)

assocS(Ai+1)
assocS(Ai+1)(fi+1 − fi)

+
R(V ′)

assocS(V ′)
assocS(V

′)f1

≥ min
j=1,...m

R(Aj)

assocS(Aj)

(

m−1
∑

i=1

assocS(Ai+1)(fi+1 − fi) + assocS(V
′)f1

)

= min
j=1,...m

R(Aj)

assocS(Aj)
assocLS(f)

The third step follows from the fact that f is non-negative
(f1 ≥ 0) and ordered in ascending order, i.e., fi+1 − fi ≥
0, ∀i = 1, . . . ,m − 1. Since assocLS(f) is non-negative, the
final step implies that

RL(f)

assocLS(f)
≥ min

j=1,...m

R(Aj)

assocS(Aj)
. (7)

Thus we have

min
f∈R

V ′

+

RL(f)

assocLS(f)
≥ min

A⊂V ′

R(A)

assocS(A)
.

From inequality (7), it follows that optimal thresholding of
f∗ yields a set that is a minimizer of problem (4). 2

Corollary 1. The team formation problem (GDSP) is
equivalent to the problem (6) if γ is chosen according to the
condition given in Theorem 1.

Proof. This directly follows from Theorems 1 and 2. 2

While the continuous problem is as hard as the original
discrete problem, recent ideas from continuous optimization
[14] allow us to derive in the next section an algorithm for
obtaining locally optimal solutions very efficiently.

4.3 Algorithm for the Continuous Problem
We now describe an algorithm for (approximately) solving

the continuous optimization problem (6). The idea is to
make use of the fact that the fractional optimization problem
(6) has a special structure: as we will show in this section,
it can be written as a special ratio of difference of convex
(d.c.) functions, i.e. it has the form

min
f∈R

V
+

R1(f)−R2(f)

S1(f)− S2(f)
:= Q(f), (8)

where the functions R1, R2, S1 and S2 are positively one-
homogeneous convex functions2 and numerator and denom-
inator are nonnegative. This reformulation then allows us
to use a recent first order method called RatioDCA [14, 7].

In order to find the explicit form of the convex func-
tions, we first need to rewrite the penalty term as pen(A) =

2A function f is said to be positively one-homogeneous if
f(αx) = αf(x), α ≥ 0.
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pen1(A)− pen2(A), where

pen1(A) =
∑p

j=1volMj (A) +
∑p

j=1kj unit(A),

pen2(A) =
∑p

j=1min{lj ,volMj(A)}+
∑p

j=1min{kj ,volMj(A)}

−
∑

u,v∈Amax{0, dist(u, v)− d0}.

Using this decomposition of pen(A), we can now write down
the functions R1, R2, S1 and S2 as

R1(f) = volLρ (f) + σmax
i

{fi}

R2(f) = γ penL
2 (f)

S1(f) = volLd (f) + volLdS (f) + µS max
i

{fi}

S2(f) = cutL(f).

where ρ := g + γ
∑p

j=1 Mj , σ := νS + γ
∑p

j=1 kj , pen
L
2 (f)

denotes the Lovasz extension of pen2(A), and

volLh (f) = 〈(hi)
m
i=1, f〉 ,where h ∈ R

n,

cutL(f) = 1
2

∑m

i,j=1 wij |fi − fj |.

Lemma 1. Using the functions R1, R2, S1 and S2 defined
above, the problem (6) can be rewritten in the form (8). The
functions R1, R2, S1 and S2 are convex and positively one-
homogeneous, and R1 −R2 and S1 − S2 are nonnegative.

Proof. The denominator of (6) is given as assocLS(f) =
volLd (f) − cutL(f) + volL

dS
(f) + µS unitL(f), and the nu-

merator is given as volLg (f) + νS unitL(A) + γ penL(f). Us-
ing Prop.2.1 in [3] and the decomposition of pen(A) intro-
duced earlier in this section, we can decompose penL(f) =
penL

1 (f) − penL
2 (f). The Lovasz extension of pen1(A) is

given as penL
1 (f) =

∑p

j=1 vol
L
Mj

(f)+
∑p

j=1 kj maxi{fi}, and

let penL
2 (f) denote the Lovasz extension of pen2(A) (an ex-

plicit form is not necessary, as shown later in this section).
The equality between (6) and (8) then follows by simple
rearranging of the terms.
The nonnegativity of the functions R1 − R2 and S1 − S2

follows from the nonnegativity of denominator and numera-
tor of (6) and the definition of the Lovasz extension. More-
over, the Lovasz extensions of any set function is positively
one-homogeneous [3].
Finally, the convexity of R1 and S1 follows as they are a

non-negative combination of the convex functions maxi{fi}
and 〈(hi)

m
i=1, f〉 for some h ∈ R

n. The function S2(f) =
cutL(f) is well-known to be convex [3]. To show the con-
vexity of R2, we will show that the function pen2(A) is sub-
modular3. The convexity then follows from the fact that a
set function is submodular if and only if its Lovasz extension
is convex [3]. For the proof of the submodularity of the first
two sums one uses the fact that the pointwise minimum of a
constant and a increasing submodular function is again sub-
modular. Writing Duv := max{0, dist(u, v) − d0}, the last
sum can be written as −

∑

u,v∈A Duv = −
∑

u∈A,v∈V ′ Duv+
∑

u∈A,v∈V ′\A Duv. Using (dD)i =
∑

j Dij , we can write

its Lovasz extension as − voldD (f)+ 1
2

∑

i,j∈V ′ Dij |fi − fj | ,
which is a sum of a linear term and a convex term. 2

The reformulation of the problem in the form (8) en-
ables us to apply a modification of the recently proposed

3A set function R : 2V → R is submodular if for all A,B ⊂
V , R(A ∪B) +R(A ∩B) ≤ R(A) +R(B).

RatioDCA [14, 7], a method for the local minimization of
objectives of the form (8) on the whole R

m. Given an

RatioDCA [14] Minimization of a non-negative ratio of
one-homogeneous d.c functions over Rm

+

1: Initialization: f0 ∈ R
m
+ , λ0 = Q(f0)

2: repeat
3: f l+1 =argmin

u∈R
m
+

, ‖u‖2≤1

R1(u)+λlS2(u)−
〈

u, r2(f
l) + λls1(f

l)
〉

where r2(f
l) ∈ ∂R2(f

l), s1(f
l) ∈ ∂S1(f

l)
4: λl+1 = Q(f l+1)

5: until
|λl+1−λl|

λl < ǫ

initialization f0, the above algorithm solves a sequence of
convex optimization problems (line 3). Note that we do not
need an explicit description of the terms S1(f) and R2(f),
but only elements of their sudifferential s1(f) ∈ ∂S1(f) resp.
r2(f) ∈ ∂R2(f). The explicit forms of the subgradients are
given in the appendix. The convex problem (line 3) then
has the form

min
f∈R

m
+

λl

2

m
∑

i,j=1

wij |fi − fj |+ 〈f, c〉+ σ max
i

{fi}, (9)

where c = ρ−r2(f
l)−λls1(f

l). Note that (9) is a non-smooth
problem. However, there exists an equivalent smooth dual
problem, which we give below.

Lemma 2. The problem (9) is equivalent to

min
‖α‖

∞
≤1

αij=−αji

min
v∈Sm

1

2

∥

∥

∥

∥

PR
m
+

(

−c−
λl

2
Aα− σv

)
∥

∥

∥

∥

2

2

,

where A : RE 7→ R
V with (Aα)i :=

∑

j wij(αij − αji), PR
m
+

denotes the projection on the positive orthant and Sm is the
simplex Sm = {v ∈ R

m | vi ≥ 0,
∑m

i=1 vi = 1}.

Proof. First we use the homogenity of the objective in
the inner problem to eliminate the norm constraint. This
yields the equivalent problem

min
u∈R

n
+

σmax
i

ui +
1

2
‖u‖22 + 〈u, c〉+

λl

2

n
∑

i,j=1

wij |ui − uj |.

We derive the dual problem as follows:

min
u∈R

n
+

λl

2

n
∑

i,j=1

wij |ui − uj |+ σmaxui +
1

2
‖u‖22 + 〈u, c〉

= min
u∈R

n
+

{

max
‖α‖

∞
≤1

αij=−αji

λl

2

n
∑

i,j=1

wij (ui − uj)αij

+ max
v∈Sn

σ 〈u, v〉+
1

2
‖u‖22 + 〈u, c〉

}

= max
‖α‖

∞
≤1

αij=−αji

v∈Sn

min
u∈R

n
+

1

2
‖u‖22 +

〈

u, c+
λl

2
Aα+ σv

〉

,

where (Aα)i :=
∑

j wij(αij − αji). The optimization over

u has the solution u = PR
n
+
(−c − λl

2
Aα − σv). Plugging u

into the objective and using that 〈PR
n
+
(x), x〉 = ‖PR

n
+
(x)‖22,

we obtain the result. 2
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The smooth dual problem can be solved very efficiently us-
ing recent scalable first order methods like FISTA [6], which
has a guaranteed convergence rate of O( 1

k2 ), where k is the
number of steps done in FISTA. The main part in the calcu-
lation of FISTA consists of a matrix-vector multiplication.
As the social network is typically sparse, this operation costs
O(m), where m is the number of non-zeros of W .
RatioDCA [14], produces a strictly decreasing sequence

f l, i.e., Q(f l+1) < Q(f l), or terminates. This is a typical
property of fast local methods in non-convex optimization.
Moreover, the convex problem need not be solved to full
accuracy; we can terminate the convex problem early, if the
current f l produces already sufficent descent in Q. As the
number of required steps in the RatioDCA typically ranges
between 5-20, the full method scales to large networks. Note
that convergence to the global optimum of (8) cannot be
guaranteed due to the non-convex nature of the problem.
However, we have the following quality guarantee for the
team formation problem.

Theorem 3. Let A0 be a feasible set for the problem (GDSP)
and γ is chosen as in Theorem 1. Let f∗ denote the result
of RatioDCA after initializing with the vector 1A0

, and let
Af∗ denote the set found by optimal thresholding of f∗. Ei-
ther RatioDCA terminates after one iteration, or produces
Af∗ which satisfies all the constraints of the team formation
problem (GDSP) and

assocS(Af∗)

volg(Af∗) + νS
>

assocS(A0)

volg(A0) + νS
.

Proof. RatioDCA generates a decreasing sequence {f l}
such that Q(f l+1) < Q(f l) until it terminates [14]. We have
Q(f1) < Q(1A0

), if the algorithm does not stop in one step.
As shown in Theorem (2) optimal thresholding of f1 yields a
set Af that achieves smaller objective on the corresponding
set function. Since the chosen value of γ guarantees the
satisfaction of the constraints, Af has to be feasible. 2

5. LP RELAXATION OF GDSP
Recall that our team formation problem based on the den-

sity objective is rewritten as the following GDSP after inte-
grating the subset constraint:

max
A⊆V ′

assocS(A)

volg(A) + νS
(10)

subject to : kj ≤ volMj (A) ≤ lj , ∀j ∈ {1, . . . , p}

dist(u, v) ≤ d0, ∀u, v ∈ A

Note that here we do not require the additional constraint,
A 6= ∅, that we added to (GDSP). In this section we show
that there exists a Linear programming (LP) relaxation for
this problem. The LP relaxation can be solved optimally in
polynomial time and provides an upper bound on the op-
timum value of GDSP. In practice such an upper bound is
useful to check the quality of the solutions found by approx-
imation algorithms.

Theorem 4. The following LP is a relaxation of the Gen-
eralized Densest Subgraph Problem (10).

max
t∈R, f∈RV ′

, α∈RE′

m
∑

i,j=1

wijαij + 2
〈

dS , f
〉

+ tµS (11)

subject to : tkj ≤ 〈Mj , f〉 ≤ tlj , ∀j ∈ {1, . . . , p}

fu + fv ≤ t, ∀u, v : dist(u, v) > d0

t ≥ 0, αij ≤ fi, αij ≤ fj , ∀(i, j) ∈ E′

0 ≤ fi ≤ t, ∀i ∈ V ′, αij ≥ 0, ∀(i, j) ∈ E′

〈g, f〉+ tνS = 1.

where V ′ = V \S, E′ is the set of edges induced by V ′.

Proof. The following problem is equivalent to (10), be-
cause (i) for every feasible set A of (10), there exist corre-
sponding feasible y, X given by y = 1A, Xij = min{yi, yj},
with the same objective value and (ii) an optimal solution of
the following problem always satisfies X∗

ij = min{y∗
i , y

∗
j }.

max
y∈{0, 1}V

′
, X∈{0, 1}E

′

2
∑

i<j wijXij + 2
〈

dS , y
〉

+ µS

〈g, y〉+ νS

subject to : kj ≤ 〈Mj , y〉 ≤ lj , ∀j ∈ {1, . . . , p}

yu + yv ≤ 1, ∀u, v : dist(u, v) > d0

Xij ≤ yi, Xij ≤ yj , ∀(i, j) ∈ E′

Relaxing the integrality constraints and using the substi-
tution, Xij =

αij

t
and yi =

fi
t
, we obtain the relaxation:

max
t∈R, f∈RV ′

, α∈RE′

2
∑

i<j wijαij + 2
〈

dS , f
〉

+ tµS

〈g, f〉+ tνS

subject to : tkj ≤ 〈Mj , f〉 ≤ tlj , ∀j ∈ {1, . . . , p}

fu + fv ≤ t, ∀u, v : dist(u, v) > d0

t ≥ 0, αij ≤ fi, αij ≤ fj , ∀(i, j) ∈ E′

0 ≤ fi ≤ t, ∀i ∈ V ′, αij ≥ 0, ∀(i, j) ∈ E′

Since this problem is invariant under scaling, we can fix
the scale by setting the denominator to 1, which yields the
equivalent LP stated in the theorem. 2

Note that the solution f∗ of the LP (11) is, in general,

not integral, i.e., f∗ /∈ {0, 1}V
′

. One can use standard tech-
niques of randomized rounding or optimal thresholding to
derive an integral solution from f∗. However, the resulting
integral solution may not necessarily give a subset that sat-
isfies the constraints of (10). In the special case when there
are only lower bound constraints, i.e., problem (3), one can
obtain a feasible set A for problem (3) by thresholding f∗

(see (5)) according to the objective of (10). This is possible
in this special case because there is always a threshold f∗

i

which yields a non-empty subset Ai (in the worst case the
full set V ′) satisfying all the lower bound constraints. In our
experiments on problem (3), we derived a feasible set from
the solution of LP in this fashion by choosing the threshold
that yields a subset that satisfies the constraints and has the
highest objective value.

Note that the LP relaxation (11) is vacuous with respect
to upper bound constraints in the sense that given f ∈ R

m

that does not satisfy the upper bound constraints of the LP
(11) one can construct f̃ , feasible for the LP by rescaling f
without changing the objective of the LP. This implies that
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one can always transform the solution of the unconstrained
problem into a feasible solution when there are only upper
bound constraints. However, in the presence of lower bound
or subset constraints, such a rescaling does not yield a fea-
sible solution and hence the LP relaxation is useful on the
instances of (10) with at least one lower bound or a subset
constraint (i.e., νS > 0).

6. EXPERIMENTS
We now empirically show that FORTE consistently pro-

duces high quality compact teams. We also show that the
quality guarantee given by Theorem 3 is useful in practice
as our method often improves a given sub-optimal solution.

6.1 Experimental Setup
Since we are not aware of any publicly available real world

datasets for the team formation problem, we use, as in [12],
a scientific collaboration network extracted from the DBLP
database. Similar to [12], we restrict ourselves to four fields
of computer science: Databases (DB), Theory (T), Data
Mining (DM), Artificial Intelligence (AI). Conferences that
we consider for each field are given as follows: DB = {SIG-

MOD, VLDB, ICDE, ICDT, PODS}, T = {SODA, FOCS, STOC,

STACS, ICALP, ESA}, DM = {WWW, KDD, SDM, PKDD,

ICDM,WSDM}, AI = {IJCAI, NIPS, ICML, COLT, UAI, CVPR}.
For our team formation problem, the skill set is given by

A ={DB, T, DM, AI}. Any author who has at least three
publications in any of the above 23 conferences is considered
to be an expert. In our DBLP co-author graph, a vertex
corresponds to an expert and an edge between two experts
indicates prior collaboration between them. The weight of
the edge is the number of shared publications. Since the
resulting co-author graph is disconnected, we take its largest
connected component (of size 9264) for our experiments.
Directly solving the non-convex problem (6) for the value

of γ given in Theorem 1 often yields poor results. Hence
in our implementation of FORTE we adopt the following
strategy. We first solve the unconstrained version of problem
(6) (i.e., γ = 0) and then iteratively solve (6) for increasing
values of γ until all constraints are satisfied. In each iter-
ation, we increase γ only for those constraints which were
infeasible in the previous iteration; in this way, each penalty
term is regulated by different value of γ. Moreover, the so-
lution obtained in the previous iteration of γ is used as the
starting point for the current iteration.

6.2 Quantitative Evaluation
In this section we perform a quantitative evaluation of

our method in the special case of the team formation prob-
lem with lower bound constraints and gi = 1 ∀i (problem
(3)). We evaluate the performance of our method against
the greedy method proposed in [12], refered to as mdAlk.
Similar to the experiments of [12], an expert is defined to
have a skill level of 1 in skill j, if he/she has a publication in
any of the conferences corresponding to the skill j. As done
in [12], we create random tasks for different values of skill
size, k = {3, 8, 13, 18, 23, 28}. For each value of k we sample
k skills with replacement from the skill set A = {DB, T, DM,
AI}. For example if k = 3, a sample might contain {DB, DB,
T}, which means that the random task requires at least two
experts from the skill DB and one expert from the skill T.
In Figure 1, we show for each method the densities, sizes

and runtimes for the different skill sizes k, averaged over 10

random runs. In the first plot, we also show the optimal
values of the LP relaxation in (11). Note that this provides
an upper bound on the optimal value of (GDSP). We can
obtain feasible solutions from the LP relaxation of (GDSP)
via thresholding (see Section 5), which are shown in the
plot as LPfeas. Furthermore, the plots contain the results
obtained when the solutions of LPfeas andmdAlk are used
as the initializations for FORTE (in each of the γ iteration).

The plots show that FORTE always produces teams of
higher densities and smaller sizes compared to mdAlk and
LPfeas. Furthermore, LPfeas produces better results than
the greedy method in several cases in terms of densities and
sizes of the obtained teams. The results of mdAlk+FORTE
and LPfeas+FORTE further show that our method is able
improve the sub-optimal solutions of mdAlk and LPfeas
significantly and achieves almost similar results as that of
FORTE which was started with the unconstrained solu-
tion of (6). Under the worst-case assumption that the up-
per bound on (GDSP) computed using the LP is the optimal
value, the solution of FORTE is 94% − 99% optimal (de-
pending on k).

6.3 Qualitative Evaluation
In this experiment, we assess the quality of the teams

obtained for several tasks with different skill requirements.
Here we consider the team formation problem (GDSP) in
its more general setting. We use the generalized density ob-
jective of (1) where each vertex is given a rank ri, which
we define based on the number of publications of the cor-
responding expert. For each skill, we rank the experts ac-
cording to the number of his/her publications in the con-
ferences corresponding to the skill. In this way each expert
gets four different rankings; the total rank of an expert is
then the minimum of these four ranks. The main advantage
of such a ranking is that the experts that have higher skill
are given preference, thus producing more competent teams.
Note that we choose a relative measure like rank as the ver-
tex weights instead of an absolute quantity like number of
publications, since the distribution of the number of pub-
lications varies between different fields. In practice such a
ranking is always available and hence, in our opinion, should
be incorporated.

Furthermore, in order to identify the main area of exper-
tise of each expert, we consider his/her relative number of
publications. Each expert is defined to have a skill level of
1 in skill j if he has more than 25% of his/her publications
in the conferences corresponding to skill j. As a distance
function between authors, we use the shortest path on the
unweighted version of the DBLP graph, i.e. two experts are
at a distance of two, if the shortest path between the corre-
sponding vertices in the unweighted DBLP graph contains
two edges. Note that in general the distance function can
come from other general sources beyond the input graph,
but here we had to rely on the graph distance because of
lack of other information.

In order to assess the competence of the found teams, we
use the list of the 10000 most cited authors of Citeseer [1].
Note that in contrast to the skill-based ranking discussed
above, this list is only used in the evaluation and not in the
construction of the graph. We compute the average inverse
rank as in [12] as AIR := 1000 ·

∑k

i=1
1
Ri

, where k is the size

of the team and Ri is the rank of expert i on the Citeseer
list of 10000 most cited authors. For authors not contained
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Figure 1: Densities, team sizes and runtimes of mdAlk, our method (FORTE), a feasible point constructed
from the LP (LPfeas), and FORTE initialized with LPfeas and mdAlk, averaged over 10 trials. All versions
of (FORTE) significantly outperform mdAlk, and LPfeas both in terms of densities and sizes of the teams
found. The densities of FORTE are close to the upper bound on the optimum of the GDSP given by the LP.

on the list we set Ri = 10001. We also report the densities
of the teams found in order to assess their compatibility.
We create several tasks with various constraints and com-

pare the teams produced by FORTE, mdAlk and LPfeas
(feasible solution derived from the LP relaxation). Note that
in our implementation we extended the mdAlk algorithm
of [12] to incorporate general vertex weights, using Dinkel-
bach’s method from fractional programming [11]. The re-
sults for these tasks are shown in Table 1. We report the
upper bound given by the LP relaxation, density value, AIR
as well as number and sizes of the connected components.
Furthermore, we give the names and the Citeseer ranks of
the team members who have rank at most 1000. Note that
mdAlk could only be applied to some of the tasks and
LPfeas failed to find a feasible team in several cases.
As a first task we show the unconstrained solution where

we maximize density without any constraints. Note that
this problem is optimally solvable in polynomial time and all
methods find the optimal solution. The second task asks for
at least three experts with skill DB. Here again all methods
return the same team, which is indeed optimal since the LP
bound agrees with the density of the obtained team.
Next we illustrate the usefulness of the additional model-

ing freedom of our formulation by giving an example task
where obtaining meaningful, connected teams is not possi-
ble with the lower bound constraints alone. Consider a task
where we need at least four experts having skill AI (Task
3). For this, all methods return the same disconnected team
of size seven where only four members have the skill AI.
The other three experts possess skills DB and DM and are
densely connected among themselves. One can see from the
LP bound that this team is again optimal. This example
illustrates the major drawback of the density based objec-
tive which while preferring higher density subgraphs com-
promises on the connectivity of the solution. Our further
experiments revealed that the subgraph corresponding to the
skill AI is less densely connected (relative to the other skills)
and forming coherent teams in this case is difficult without
specifying additional requirements. With the help of subset
and distance based constraints supported by FORTE, we
can now impose the team requirements more precisely and
obtain meaningful teams. In Task 4, we require that An-
drew Y. Ng is the team leader and that all experts of the
team should be within a distance of two from each other in
terms of the underlying co-author graph. The result of our
method is a densely connected and highly ranked team of

size four with a density of 3.89. Note that this is very close
to the LP bound of 3.91. The feasible solution obtained by
LPfeas is worse than our result both in terms of density
and AIR. The greedy method mdAlk cannot be applied
to this task because of the distance constraint. In Task 5
we choose Bernhard Schoelkopf as the team leader while
keeping the constraints from the previous task. Out of the
three methods, only FORTE can solve this problem. It pro-
duces a large disconnected team, many members of which
are highly skilled experts from the skill DM and have strong
connections among themselves. To filter these densely con-
nected members of high expertise, we introduce a budget
constraint in Task 6, where we define the cost of the team
as the total number of publications of its members. Again
this task can be solved only by FORTE which produces
a compact team of four well-known AI experts. A slightly
better solution is obtained when FORTE is initialized with
the infeasible solution of the LP relaxation as shown (only
in this task). This is an indication that on more difficult
instances of (GDSP), it pays off to run FORTE with more
than one starting point to get the best results. The solution
of the LP, possibly infeasible, is a good starting point apart
from the unconstrained solution of (6).

Tasks 7, 8 and 9 provide some additional teams found by
FORTE for other tasks involving upper and lower bound
constraints on different skills. As noted in Section 5 the LP
bound is loose in the presence of upper bound constraints
and this is also the reason why it was not possible to derive
a feasible solution from the LP relaxation in these cases. In
fact the LP bounds for these tasks remain the same even if
the upper bound constraints are dropped from these tasks.

7. CONCLUSIONS
By incorporating various realistic constraints we have made

a step forward towards a realistic formulation of the team
formation problem. Our method finds qualitatively better
teams that are more compact and have higher densities than
those found by the greedy method [12]. Our linear program-
ming relaxation not only allows us to check the solution
quality but also provides a good starting point for our non-
convex method. However, arguably, a potential downside
of a density-based approach is that it does not guarantee
connected components. A further extension of our approach
could aim at incorporating“connectedness” or a relaxed ver-
sion of it as an additional constraint.
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Task FORTE mdAlk LPfeas
Task 1: Uncon-
strained
(LP bound: 32.7)

#Comps: 1 (2) Density: 32.7
AIR: 11.1
Jiawei Han (54), Philip S. Yu
(279)

#Comps: 1 (2) Density: 32.7
AIR: 11.1
Jiawei Han (54), Philip S. Yu
(279)

#Comps: 1 (2) Density: 32.7
AIR: 11.1
Jiawei Han (54), Philip S. Yu
(279)

Task 2: DB≥3
(LP bound: 29.8)

#Comps: 1 (3) Density: 29.8
AIR: 7.56
Jiawei Han (54), Philip S. Yu
(279) (+1)

#Comps: 1 (3) Density: 29.8
AIR: 7.56
Jiawei Han (54), Philip S. Yu
(279) (+1)

#Comps: 1 (3) Density: 29.8
AIR: 7.56
Jiawei Han (54), Philip S. Yu
(279) (+1)

Task 3: AI≥4
(LP bound: 16.6)

#Comps: 3 (1,3,3) Density:
16.6 AIR: 10.3
Michael I. Jordan (28), Jiawei
Han (54), Daphne Koller (127),
Philip S. Yu (279), Andrew Y.
Ng (345), Bernhard Schoelkopf
(364) (+1)

#Comps: 3 (1,3,3) Density:
16.6 AIR: 10.3
Michael I. Jordan (28), Jiawei
Han (54), Daphne Koller (127),
Philip S. Yu (279), Andrew Y.
Ng (345), Bernhard Schoelkopf
(364) (+1)

#Comps: 3 (1,3,3) Density:
16.6 AIR: 10.3
Michael I. Jordan (28), Jiawei
Han (54), Daphne Koller (127),
Philip S. Yu (279), Andrew Y.
Ng (345), Bernhard Schoelkopf
(364) (+1)

Task 4: AI≥4,
distG(u, v) ≤2,
S={Andrew Ng}
(LP bound: 3.91)

#Comps: 1 (4) Density: 3.89 AIR: 14.2
Michael I. Jordan (28), Sebastian Thrun (97), Daphne Koller
(127), Andrew Y. Ng (345)

#Comps: 1 (6) Density: 3.5
AIR: 12.5
Michael I. Jordan (28), Ge-
offrey E. Hinton (61), Sebas-
tian Thrun (97), Daphne Koller
(127), Andrew Y. Ng (345),
Zoubin Ghahramani (577)

Task 5: AI≥4,
distG(u, v) ≤2,
S={B.Schoelkopf}
(LP bound: 6.11)

#Comps: 2 (11,1) Density: 3.54 AIR: 3.94
Jiawei Han (54), Christos Faloutsos (140), Thomas S. Huang (146), Philip S. Yu (279), Zheng
Chen (308), Bernhard Schoelkopf (364), Wei-Ying Ma (523), Ke Wang (580) (+4)

Task 6: AI≥4,
distG(u, v) ≤2,
S={B.Schoelkopf},
∑

i ci ≤255
(LP bound: 2.06)

#Comps: 1 (4) Density: 1.24 AIR: 1.82
Alex J. Smola (335), Bernhard Schoelkopf (364) (+2)

LP+FORTE: #Comps: 2 (2,2) Density: 1.77 AIR: 2.73
Robert E. Schapire (293), Alex J. Smola (335), Bernhard Schoelkopf (364), Yoram Singer (568)

Task 7: 3≤DB≤6,
DM≥10,
(LP bound: 11.3)

#Comps: 1 (10) Density: 9.52 AIR: 4.96
Haixun Wang (50), Jiawei Han (54), Philip S. Yu (279), Zheng Chen (308), Ke Wang (580)
(+5)

Task 8: 2≤DB≤5,
10≤DM≤15,
5≤AI≤10
(LP bound: 10.7)

#Comps: 3 (1,12,3) Density: 7.4 AIR: 5.06
Michael I. Jordan (28), Jiawei Han (54), Daphne Koller (127), Philip S. Yu (279), Zheng Chen
(308), Andrew Y. Ng (345), Bernhard Schoelkopf (364), Wei-Ying Ma (523), Divyakant Agrawal
(591) (+7)

Task 9: AI≤2,
T≥2, |C|≤6
(LP bound: 19)

#Comps: 3 (2,2,2) Density: 6.17 AIR: 1.53
Didier Dubois (426), Micha Sharir (447), Divyakant Agrawal (591), Henri Prade (713), Pankaj
K. Agarwal (770) (+1)

Table 1: Teams formed by FORTE, mdAlk and LPfeas for various tasks. We list the number and sizes of
the found components, the (generalized) maximum density as well as the average inverse rank (AIR) based
on the Citeseer list. Finally, we give name and rank of each team member with rank at most 1000. Experts
who do not have the skill required by the task but are still included in the team are shown in italic font.
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APPENDIX

The subgradient of S1(f) is given by s1(f) = d + dS +
µSImax(f), where Imax(f) is the indicator function of the
largest entry of f . For the subgradient of R2, using Prop.
2.2. in [3], we obtain for the subgradient t(lj ,Mj) of the terms

of the form min{lj , volMj (A)},

(

t(lj ,Mj)(f)
)

i
=















0 volMj (Ai+1) > lj
lj − volMj (Ai+1) volMj (Ai) ≥ lj ,

volMj (Ai+1) ≤ lj
Mij volMj (Ai) < lj

.

Defining Duv := max{0, dist(u, v)− d0}, an element of the
subgradient of the second term of R2 is given as dD − p(f),

where (dD)i =
∑

j Dij and p(f)i ∈
{

∑m

j=1Dijuij |uij =

−uji, uij ∈ sign(fi − fj)
}

, where sgn(x) := +1, if x > 0;

-1 if x < 0; [−1, 1], if x = 0. In total, we obtain for the
subgradient r2(f) of R2(f),

r2(f) = γ
∑p

j=1t(lj ,Mj)(f)+γ
∑p

j=1t(kj ,Mj)(f)+γ(p(f)−dD).
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