
Diplomarbeit

Visualization of Web Localities

Boris Diebold

Diplomarbeit im Fach Informatik

Visualization of Web Localities

vorgelegt von

Boris Diebold

April 2001

Betreuer: Prof. Dr. Michael Kaufmann

Wilhelm-Schickard-Institut
Arbeitsbereich Paralleles Rechnen

Eberhard-Karls-Universität Tübingen
Sand 13 · 72076 Tübingen

Erklärung

Hiermit versichere ich an Eides Statt, diese Diplomarbeit selbständig verfaßt
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet
zu haben. Ferner habe ich die Arbeit noch keinem anderen Prüfungsamt
vorgelegt.

Tübingen, April 2001

Acknowledgements

I would like to thank the following institutions and individuals for supporting
this thesis by supplying Web server access log files:

Native Instruments Software Synthesis GmbH, Berlin
Simon Jarosch & StyleTec GbR, Tübingen
Ouk Magazine, Tübingen
yWorks GmbH, Saarbrücken
Lehrstuhl für Rechnerarchitektur der Universität Tübingen

I would also like to thank Prof. Dr. Michael Kaufmann for supervising
this thesis, Markus Eiglsperger and Roland Wiese for providing invaluable
advice on all kinds of problems and my labmates Keyan ”Blast” Zahedi and
Frank ”Ebay” Eppinger for bearing all my stupid questions and creating
an enjoyable work atmosphere. I am especially grateful to my parents who
always encouraged and generously supported my studies and various other
endeaveours in the last years. Most importantly, my sister and my brother-
in-law helped me keep things in perspective.
And finally to Luzi for her endless patience, love and company.

Contents

1 Introduction 7

2 Website Mapping 13
2.1 Foundations . 13

2.1.1 The World-Wide Web 13
2.1.2 Graph Theory and Graph Drawing 14

2.2 Site Maps revisited . 16
2.2.1 Automatic Generation of Sitemaps 16
2.2.2 Sitemap Design Requirements 17

2.3 Sitemap Generation Systems - State of the Art 20
2.4 The YWeb Sitemap System 26

2.4.1 Design Requirements 26
2.4.2 Architecture . 27

3 Structure Data 29
3.1 Structure Data Extraction . 29

3.1.1 Inter- and Intra-page Structure Extraction 30
3.1.2 Global Connectivity Extraction 32

3.2 Logic Domain Clustering . 33
3.2.1 Entry Page Ranking 33
3.2.2 Domain Boundary Definition 36

3.3 Related Work . 38

4 Structure Visualization 41
4.1 Force-Directed Topology Layout 41
4.2 2D Cone-Tree Layout . 43
4.3 Tree-Map Layout . 45

4.3.1 Visual Mapping . 48
4.3.2 Interactivity . 49
4.3.3 Web-based Structure Visualization 49

4.4 Related Work . 51

5

6 CONTENTS

5 Usage Data 53
5.1 Data Sources for Usage Analysis 53
5.2 Inferring User Paths from Web Server Logs 55

5.2.1 Web server access log data 55
5.2.2 Access Log Data Quality 56

5.3 Path Extraction Algorithm . 58
5.3.1 Path Model . 59
5.3.2 Data Cleaning . 60
5.3.3 Session and User Identification 61
5.3.4 Path Reconstruction 62
5.3.5 Popular Path Extraction 65

5.4 Related Work . 71

6 Usage Visualization 73
6.1 Popular User Path Layout . 73

6.1.1 Width-Restricted Path Layout 74
6.1.2 Visual Mapping . 77
6.1.3 Interactivity . 78
6.1.4 Node-Path Exploration Layout 79

6.2 Web-based Path Visualization 82
6.3 Related Work . 84

7 Conclusions and Future Work 87

A Web Locality Data Sets 93

B Software Package Description 97
B.1 Required Software Packages 97
B.2 Components . 98

B.2.1 YWebCrawler . 98
B.2.2 YWebLog . 99
B.2.3 YWeb . 100

C Document Type Definitions 105

Chapter 1

Introduction

The Web has revolutionized our conception of communication and interac-
tion. It offers new ways of business-to-business and business-to-customer
transactions, new mechanisms for person-to-person communication and new
means of discovering and obtaining information, services and products.
As the World-Wide Web is constantly evolving and embracing new technolo-
gies such as Flash, DHTML, XML, SMIL and other means of generating
content, it has mutated into an extremely ”messy” information space as
stated by [Abr97]:

”This medium is overloaded with information, polluted with redun-
dant, erroneous and low quality information, it progresses toward dis-
order according to the principle of entropy and it has no aggregate
structure which organizes distinct web localities. Furthermore, users
have no global view of the entire WWW from which to forage for
relevant pages.”

Although browsers have become a framework for a variety of add-ons, the
action of navigating the Web has not changed much since the first hypertext
documents became available over a decade ago: scroll through a page, click
on a link and jump to another page.

A variety of systems have been proposed to assist the user in navigating
the hyperspace, most noticeably by providing alternative views of Web sites
as a whole, also known as sitemaps.
As Web localities are subject to frequent change and redesign, it is especially
important to provide a system for automatic generation of such sitemaps
from various data sources instead of creating them manually. This also al-
lows the application of up-to-date usage information in order to let the visitor
take advantage of previous user navigations to distinguish possibly interest-
ing content.

7

8 CHAPTER 1. INTRODUCTION

The subject of this thesis is the design and implementation of such an auto-
mated sitemap generation system along with the development of new tech-
niques for clustering and visualization.

In order to provide a further basis and introduction to the field of Web
site mapping, we now describe problems and properties inherent in Web
navigation.

Navigating and Searching the WWW

When navigating in a hypertext environment, people easily become lost while
looking for information. The lost in hyperspace syndrome [Con87] has two
main traits: disorientation and cognitive overhead. While disorientation
refers to the tendency to lose one’s sense of location and direction in a non-
linear environment, the term cognitive overhead refers to the additional effort
and concentration which is necessary to maintain several tasks at one time:
People easily get caught up in trying to find their way and become totally
unable to concentrate on the main task.
This is due to several important short-comings of the Web as we know it:

• Lack of physical context: The covers of a printed document provide
a pysical context to what it contains. The viewer can see and feel
boundaries and sense part-to-whole relationships of each portion of the
page being viewed. Since a Web site is viewed one page at a time there
is no sense of a start and end nor of a part-to-whole of a single page.

• Lack of organizational paradigm: A printed document has a clear order
of presentation. Due to the inherent degrees of freedom in Web design,
a clear order in a Web page is difficult to convey. In addition, there is a
great dissimilarity among the possible organizational paradigms being
used.

• Lack of rhetoric of arrival: The jumping metaphor used in hypertext
navigation leaves the user with no context as where he came from. In
addition, followed links can have very different properties (internal, site
external, search engine created etc.)

• Lack of knowledge of site structure: Since browser can’t visualize inter-
page relationships, questions such as: ”Where can I go from here ?”,
”Where am I ?” or ”Which pages point to that page ?” can not be
answered directly.

9

Because of the vast amount of information available on the Net and the lim-
ited access methods available, information overload causes people to drift
into unintentional ”web-surfing”.
This is even amplified by the navigation delay experienced due to limited
download speed.

A variety of solutions have been proposed to reduce the lost in hyperspace
(LOH) syndrome. These can be categorized by the underlying navigational
paradigms that the user follows while foraging for information (although most
users use a combination of both):

Search engines (such as Google, Altavista etc.) typically use a global
inverted index over document profiles, which enables retrieval of documents
based on matching a user-issued query against the index.
If users follow the search paradigm, they navigate from the search engine
to pages within the result set to locate information, returning when they
failed and starting the search anew. Although widely used, this approach
suffers from several shortcomings that have to be taken quite serious: As
[LG99] reveals, search engines only cover about 16% of the publicly accessible
Web as of 1999, with the figure being likely to decrease during the following
years. In addition, they are heavily biased toward listing more commercial
than educational content as well as overrepresenting US-based domains. As
[LG99] put it:

”The current state of search engines can be compared to a phone book
which is updated irregularly, is biased toward listing more popular
information and has most of the pages ripped out.”

Besides being incomplete and biased, search engines suffer from non-standard
interfaces and various usability problems.

The browse paradigm, where users navigate the document space by trig-
gering links through visual features on the Web pages, is often characterized
as a form of ”hit and miss navigation”: Locating information solely via this
scheme tends to be quite tedious due to the LOH syndrome described above.
Therefore, visual navigation aids such as overview diagrams that generate
meaningful structures from a set of documents and visually represent them
have already been suggested in the hypertext era. By providing alternative
views of the hypertext topology, they reduce the complexity of the system
and allow the user to employ a larger set of navigational strategies. Besides,
topology based diagrams enable the user to generate an appropriate mental
map of the hypertext and also provide visual clues to the underlying structure
and the current location within it.

10 CHAPTER 1. INTRODUCTION

Overview diagrams or sitemaps as they are called when employed in con-
text of the Web, have traditionally focused on the visualization of a single
Web site. Recently, systems such as [TH98] have been presented, that oper-
ate on a higher level by visualizing clans of densely connected sites including
the corresponding inter-site topology thus providing a limited global naviga-
tion facility. However, as [PL98] stated, the architecture of the WWW is so
entrenched into todays systems that the problem of real, global navigation
in the Web is unlikely to be solved in the near future. Therefore, Web site
designers and administrators themselves are required to provide a navigable
environment for the users who enter their domain.

The term sitemap as introduced above, is not well defined. Often, it is
used for text-based structure descriptions of a site or for crude hand crafted
diagrams that do not deserve to be called ”map”. Others employ it for every
kind of visualization related to a Web site. The ”Atlas of Cyber-Geography”
[Dod00] presents a great wealth of such Web-related visualizations.

Taking into consideration the timeframe (longterm vs. shortterm), pur-
pose (navigation vs. analysis), preparation (manual vs. automatic), structure
(static vs. dynamic) and audience (site administrator vs. visitor), we distin-
guish between three different sitemap types:

Analysis Sitemaps

The most obvious need for site mapping probably originates from the domain
of site analysis. By comparing traffic patterns and existing link structure, the
administrator may gain valuable insight into user behaviour and preferences
that enables him to optimize the site structure and establish user profiles.
Nearly all customer relationship management (CRM) solutions for e-business
(such as Accrue’s Insight1) include a simple form of analysis sitemap although
they are more concerned with using the collected data together with the or-
der database for data mining.

Surfmaps

Surfmaps such as Y-Nansen [Gal00] act as visual browsing histories that
are often augmented by extended bookmarking capabilities. Unfortunately
most surfmaps require the user to install special software on his computer to

1http://www.accrue.com

11

record his path through the Web. This might explain the fact that their use
is currently not very wide-spread.

Navigation Sitemaps

Navigation sitemaps such as overview diagrams described above are also im-
plemented for the visitor of a particular site in order to facilitate access to
possibly interesting content. By supplying a (perhaps interactive) navigation
map, the user will be enabled to locate the desired information a lot faster
than by pure browsing and is therefore less inclined to switch to another site.
The requirements for the design of such maps are presented in 2.2.2. Since
this thesis is focused on the automatic generation of navigation sitemaps, we
will use the term sitemap as a synonym for navigation sitemap from now on.

[PL98] states that navigation sitemaps may have the positive effect of
reducing disorientation by improving spacial context and providing a sense
of extent of a particular Web site. They also may act as a visual surrogate
of the user’s short term memory.

On the other hand, maps often don’t provide inherent clues to their navi-
gational nature and are easily used as ”bubble-gum” to fix poor site design. In
practice, speed, complexity and maintenance issues as well as notorious time
constraints hinder many administrator from implementing such sitemaps.

Motivation

The purpose of this thesis is to demonstrate the feasability of automated
generation of navigation sitemaps via a prototype. The system which also
serves as a basis for further research introduces two novel navigation map
approaches. A special focus is the incorporation of usage data in the form of
access log files in order to provide an alternate view of the locality.
This work touches many diverse areas like graph drawing, human-computer
interaction, information visualization and computer networks.

This thesis is organized as follows:

In Chapter 2 we first review important terminology of Web-related topics
and graphs in general. In addition, the process of automatic generation of
Web site maps is studied followed by important design requirements for such
maps. 2.3 presents some state of the art systems for automatic site map
generation which is followed by an architectural overview and the design re-
quirements of the YWeb system proposed by us (in 2.4).

12 CHAPTER 1. INTRODUCTION

Chapter 3 presents the components for extracting structural data of a Web
locality followed by a clustering technique for structure data that identifies
logical sub-domains in a site.

In Chapter 4, we present several visualization techniques for the structural
Web site data and a Web-based implementation of a visualization for the
logical domains.

Chapter 5 focuses on the extraction and reconstruction of meaningful user
traversal path through the respective site.

In Chapter 6, we propose an interactive visualization of the locality based on
the extracted user paths and present a Web-based implementation for this
approach.

Finally, Chapter 7 evaluates the application of the system to several Web
localities and presents problems and further enhancements possible in this
context. In addition, we also give an outlook on possibly interesting research
activities in the Web mapping field.

Chapter 2

Website Mapping

In this chapter we first review important terminology of Web-related topics
and graphs in general. Later on, the process of automatic generation of Web
site maps is studied followed by important design requirements for navigation
maps. A state of the art review of sitemap generation systems provides the
basis to deduct important design requirements for our own system that is
then described on an architectural level.

2.1 Foundations

In this section,we first review important terminology of Web-related topics
and graphs in general that is used throughout the thesis.

2.1.1 The World-Wide Web

The World-Wide Web as we know it today, is the outcome of hypertext intro-
duced in the 1980s that relies on the basic idea of free, untyped connections
of associated material. The Web which can be seen as a huge, distributed
hypertext, enhanced the concept by allowing links across documents and
sites that do not have to be limited on a single topic. In addition to being
constantly evolving, the Web is known as being highly redundant and incom-
plete. As stated before, the concept of the Web does not inherently provide
any kind of structural information (except for the file-system folder structure
represented in the URLs - therefore often used by users for orientation and
navigation).

In order to clarify some often used, Web-related terms, we introduce the
following formal definitions:

13

14 CHAPTER 2. WEBSITE MAPPING

Definition 1 (Web Page) A Web page p is a single HTML text document
that may contain several embedded links and media types (pictures, sound,
applets etc.). It is uniquely defined by its Uniform Resource Locator (URL)
1, which consists of the access protocol, the domain name, an URL path and
the page filename.

The HTML source of a Web page contains various tags (such as <A>, <MAP>
or <FRAME>) that link to other content. These uni-directional hyperlinks
either point to anchors within the current Web page, to pages on the same or
different site and to server programs or embedded media types. Besides, links
can also be coded in non-HTML format like Javascript, PDF, Shockwave,
applets etc.

Definition 2 (Web Site or Web Locality) A Web locality or Web site is
a set of Web pages W = (p1, . . . , pn) defined by the same host domain name
or IP address in the respective URLs.

This definition assigns all pages available on http://www.mp3.com to the
same Web locality, while the pages available via http://artists.mp3.com

are considered to belong to another Web site. The Web pages and embed-
ded media are delivered to the user’s browser from the Web server via the
hypertext transfer protocol (HTTP)2 .
Web sites or subsections of sites can be categorized by different genres that
include shops, portals, discussion boards, communities, faqs etc. We also
distinguish between small (|W | < 1000), medium (1000 < |W | < 10000) and
large (|W | > 10000) Web localities.

According to [LG99], the publicly indexable Web contained an estimated
800 million pages as of february 1999, encompassing about 15 terabytes of
information, not including page-embedded media ! Due to the low metadata
use - only 34% of the pages use the simple ”keywords” or ”description” meta-
tags and 0.3% comply to the Dublin Core metadata standard - the vision of
the semantic Web3 is far from becoming reality.

2.1.2 Graph Theory and Graph Drawing

In the last few years, graph theoretic methods already employed in diverse
areas such as sociology, physics, communication science etc. have been ap-
plied to the Web. This is due to the fact that graph theory [Har69] serves as
a mathematical model for any system involving a binary relation.

1See RFC1738 at http://www.w3c.org/Addressing/1738.txt
2See http://www.ics.uci.edu/pub/ietf/http/rfc1945.txt
3http://www.w3.org/2001/sw/

2.1. FOUNDATIONS 15

The following section introduces definitions for some important concepts
related to this field that will be used throughout this thesis:

Definition 3 (Directed Graph or Digraph) A digraph G = (V,E) con-
sists of a finite set of vertices V and a finite set of directed edges E with
e = (u, v) 6= (v, u) ∈ E and u, v ∈ V .

Definition 4 (Path) A path p of length k from u to u′ is the sequence
< vo, . . . , vk > of vertices such that u = v0, u′ = vk and (vi−1, vi) ∈ E.
The length k is the number of edges in the path. If u′ is reachable from u via
a path p, this is denoted by u

p
 u′.

In a directed graph, a path < vo, . . . , vk > forms a cycle if v0 = vk and k ≥ 1.
A cycle of length k = 1 is called a self-loop whereas a graph with no cycles
is said to be acyclic. In a connected graph, each pair of vertices is connected
by a path.

Definition 5 (Tree) A tree is a connected, acyclic, undirected graph with
the root being a distinguished vertex v ∈ V .

Graph drawing [BETT99] addresses the problem of constructing geometric
representations or diagrams of graphs. The automatic generation of drawings
of graphs has numerous applications in diverse areas like software engineer-
ing (UML and data flow diagrams), real-time systems (petri nets), chemistry
(molecule drawings) and cartography (map schematics).
Usually, vertices are represented by points or boxes and edges as simple
curves. As a graph has infinitely many different diagrams, the usefulness of
the drawing depends on its ”readibility” which can be expressed by differ-
ent aesthetic criterias such as the display of symmetries, the minimization
of edge crossings or planarity. Thus, many graph drawing problems can be
formulated as multi-objective optimization problems (which tend to be NP-
hard) that make several trade-offs necessary.

Naturally, the Web itself can be represented as a directed graph in many
different ways. The most straightforward representation assumes that the
graph contains a node for each page u and a directed edge (u, v) if the page
u contains a hyperlink to page v. As [Hen00] points out, graph-theoretic
methods have been applied to various Web-related areas like information
retrieval, Web mining, navigation and visualization. A special property of
”web-graphs” is that they are mostly sparse: The number of edges e in
relation to the nodes n in the graph is given by |E| = O(n logn).

16 CHAPTER 2. WEBSITE MAPPING

2.2 Site Maps revisited

The following section explores the automatic sitemap generation process as
a whole while identifying key aspects and inferring design requirements for
navigation sitemaps.

2.2.1 Automatic Generation of Sitemaps

Sitemaps that serve as visual navigation aids by acting as overview diagrams
are usually generated using the following scheme: First of all, Web-related
data is collected which is then processed to extract meaningful structures
that are used in the last step for generating the sitemap diagram. We now
explain the individual steps in more detail.
Navigation sitemaps can be generated from a variety of Web-related data
sources. The widely accepted CUT model distinguishes between:

1. Content: The content refers to the real data on the respective Web
pages which usually consists of text and graphics but can contain any
other media as well. This type of data can be used to compute page
similarities or generate clusters of pages of the same topic by using text
or image classification.

2. Usage: Usage data captures the patterns of usage of Web sites via IP
addresses, page references, time and date of access and so on. It can be
used to calculate popularity metrics for Web pages, clusters of pages
or reconstruct user paths through the locality.

3. Topology: Topology data characterizes the organization of the locality
via inter-page relationships such as hyperlinks and intra-page structure
such as the HTML tag occurrence. This data type is often used for
clustering and hierarchy induction.

One of the main challenges in visualizing Web localities is not only the useful
combination of the data sources described above, but the handling of the vast
amount of available data (access data from Web server log files is usually in
the GB/month range!).
In his survey on visualization of hypermedia, [Muk99] identified two main
data simplification methods that are widely used:

a) Filtering refers to the omission of possibly irrelevant data. Dynamic
filtering methods are often used to inspect a data set at different levels
of granularity.

2.2. SITE MAPS REVISITED 17

b) Abstraction in constrast, refers to the creation of new meta-level struc-
tures from the original data for visualization and interaction. In gen-
eral, clustering is used to group objects that are similar according to a
certain metric, while hierarchization exploits the relationships between
objects to induce a kind of parent-child relationship between them.

After the data simplification step, the main task is the automatic generation
of a diagram from the resulting data that is both visually appealing and
easy to navigate. These requirements are classical topics in the area of infor-
mation visualization defined as ”the use of computer-supported, interactive,
visual representations of abstract data to amplify cognition” [CMS99].
In their survey, [HGM00] identified important differences of diagrams in in-
formation visualization as opposed to traditional graph drawing: First of all,
planarity is not a central issue. More important is in fact that the layout
should be interactive, which rules out most algorithms used in graph draw-
ing because they are computationally too expensive. Because of the repeated
diagram generation required for interactivity, the results of the employed al-
gorithms also have to be predictable (which is not the case with many ran-
domized methods that produce a slightly different layout every time) in order
to preserve the user’s mental map of the data.

The choice of the visual metaphor used for the diagram is particular
important, since it supports the user’s perceptual reasoning. Traditionally,
the node and link metaphor has been used to visualize graph-like structures.
Other metaphors include the landscape, bullseye or auditorium (see 4.4).
Section 2.2.2 summarizes and enhances the design requirements for good
navigation sitemaps.

[HGM00] especially discourages the use of 3D visualization techniques
in information visualization since these have significant problems which can
be attributed to the inherent cognitive difficulties with navigating in a three
dimensional space, such as the discrepancy of using a 2D screen and 2D input
to interact with a 3D world and the missing motion and stereo cues.

Last but not least, the technical aspects of the sitemap’s implementation
should also be considered since it has to be able to scale for a large number
of simultaneous users and has to be sufficiently fast in order to create a real
added value for the user (otherwise, he may just leave the site and search
somewhere else).

2.2.2 Sitemap Design Requirements

Taking into consideration the process described in section 2.2.1, we can
now formulate important design requirements and properties for naviga-

18 CHAPTER 2. WEBSITE MAPPING

tion sitemaps (some already stated by [PL98]) that should be kept in mind
while choosing an appropriate visual metaphor and implementing layout al-
gorithms:

Landmarks. Research on human wayfinding suggested that navigation starts
with an orientation stage where the user attempts to recognize his location
within the Web locality. Therefore, landmarks are defined as nodes that pro-
vide salient qualities. Although [MM97] empirically determined that struc-
tural landmarks are in fact poor predictors of behavioural landmarks, in our
opinion the right set of landmarks might improve navigation performance by
providing ”navigational hubs” for the users.

Hierarchical Abstraction. Hierarchical representations are useful in organiz-
ing information and reducing the number of alternatives that have to be con-
sidered during navigation. It has been shown that even in the most random
topology, users tend to impose a hierarchical structure in order to make sense
of the presented data. In their survey, [MM97] also revealed that strongly
hierarchical sites are more usable since they are perceived as smaller then
weakly hierarchical ones (given the same total size) and nodes up in the hi-
erarchy tend to be more memorable. By providing a hierarchical abstraction
of the site, the map assists the user in constructing an appropriate mental
model and hence improves his ability to interact with the system.

Dynamic Filtering. Filtering tools applied to site maps may allow the user
to control the level of detail, thus providing a scalable representation of the
site that can be adjusted to the current information need.

Multi-Attribute Representation. A Web site can be seen as a large and com-
plex data set with the basic unit of storage being a single Web page. Since
each page as well as the related structures have a variety of different proper-
ties and attributes, an appropriate multi-attribute presentation provides the
user with additional insights into the examined data. Particular interesting
is the use of multiple attributes in a single diagram that allows users not only
to locate extreme values, but also to discover patterns and relationships in
the data.

Context & Local Views. In order to maintain the user’s sense of orientation,
both the local navigation task of moving between pairs of specific nodes (as
provided by Web browsers) as well as the global navigation task which in-
volves movements between several nodes should be supported. By providing
hierarchical expand and contract features as an example, the user can obtain

2.2. SITE MAPS REVISITED 19

a sense of the extent of the system without getting too much detail, while
still having the possibility to ”drill-down” for more information.

Answer User’s Questions. A good diagram should answer popular questions
of the average user: ”Where am I ?”, ”Where have I been ?”, ”How did I
got here ?”, ”How many other users have been here ?” and ”Where can I go
from here and what options are interesting for me in particular ?”

Ease of Use. Particular important for the acceptance of sitemaps as navi-
gation aids is their inherent ease of use. The diagram and visual metaphor
should be easy to grasp by the occasional visitor and the navigational features
and interface should be designed as not to overwhelm the user. Therefore,
we suggest a minimalistic approach with regard to these topics since users
foraging for information on the Web are known to quickly leave a site and
move on to the next if they do not catch the ”information scent” (as [Pit98]
discovered, the average number of page requests per Web site by a single user
is merely 3 with a mean reading time of 30 seconds per page !).

Compact View. Navigation sitemaps, will most probably be displayed either
in or alongside the Web browser. This dramatically restricts the screen estate
available for the diagram and requires the use of space-constrained layout al-
gorithms if we don’t want to use zoom and pan navigation techniques. In
practice, we suggest using a view of about 400×400 pixels for the map display.

Further requirements are not related to the diagram itself but comprise the
technical aspects of the sitemap implementation such as:

No client-side Installation. Since users generally visit a large number of dif-
ferent Web-sites with distinctive sitemap implementations, it is essential that
the sitemap itself is completely Web-based and requires no special client-side
installation on the user’s machine. In addition, special care has to be taken
about start-up times and network bandwith required by the sitemap imple-
mentation.

Scalability. As stated before, the sitemap implementation should be highly
scalable in terms of server load and network bandwith in order to support a
large number of simultaneous accesses by visitors of the Web locality.

Ease of Deployment. The generated sitemaps should be especially easy to
integrate in the existing Web locality without requiring major changes to the
server configuration or the existing HTML code.

20 CHAPTER 2. WEBSITE MAPPING

2.3 Sitemap Generation Systems - State of

the Art

Although, there exists a large variety of navigation sitemaps (see [Dod00]),
most of them can be classified as research prototypes that have mostly been
tested on a single site, do not provide all functionality required for a real-
world automatic sitemap generation system or are not available to the public
(such as Footprints [WM97] or SiteTree [PL98] for example).

In the following system review, we therefore focus on more or less refined,
applicable navigation sitemap generation systems and turn our attention to
the system architecture as a whole as well as to the specific properties of the
resulting sitemaps.

PowerMapper

PowerMapper 4 from Electrum Ltd. is probably the most simple and straight-
forward system available. The application which is available for Windows
platforms in a price range from US $39-$99 includes a crawler module that
extracts the Web site topology as well as five sitemap generation modules:
3D buttons, page clouds, text-based table of contents, isometric map and tree
view. Depending on the visualization, pages are represented by thumbnails
of the actual Web page, which are expandable for exploration down the
hierarchy. The map itself (which can be edited before generation, see Figure
2.1) is realized via several HTML and GIF files which form a client-side image
map that can easily be integrated into the existing site by adding a single
hyperlink.

SiteBrain

SiteBrain5 is an interesting approach to the site navigation problem. By
applying their patented user interface (which consists of ”a graphical rep-
resentation of thoughts in a hyperlinked matrix”) based on ”thoughts” to
the Web, The Brain LLC provides a simple, yet elegant navigation solution
that nicely animates transition between pages via zoom, rotation etc. of the
nodes and edges. ”Thoughts” can be generated automatically from a site via

4Available from http://www.electrum.co.uk/mapper/
5Available from http://www.thebrain.com

2.3. SITEMAP GENERATION SYSTEMS - STATE OF THE ART 21

Figure 2.1: PowerMapper

Figure 2.2: SiteBrain sitemap integrated in a Web page

22 CHAPTER 2. WEBSITE MAPPING

a crawler or generated by hand or from existing ”personal brains”. The map
itself which also enables the visualization of complex webs and relationships
is realized as a highly configurable Java 1.1 applet that fits nicely into an
already existing Web page (see Figure 2.2). The price for the Windows-based
product ranges from US $295 (100 thoughts) to US $1995 and above (with
the price based on the number of thoughts).

Tree Studio

Tree Studio6 which was formerly known as Site Lens Studio is a high-end site
map solution provided by Inxight, a Xerox PARC spin-off. The simplest ver-
sion of the Windows-based system is available for US $4000, is highly config-
urable and has automatic publishing features. Their patented visualization
which is implemented as a Java 1.1 applet is based on the hyperbolic tree
[LR96] that uses non-euclidian geometry to layout very large trees uniformly
by first mapping the hierarchy onto a hyperbolic plane and then projecting
it onto a circular display region (see Figure 2.3). Since the circumference
of a circle on the hyperbolic plane grows exponentially with its radius and
hierarchies tend to do so also, they can be laid out in a uniform way. The
model provides a kind of fisheye distortion that supports smooth blending
between focus and context nodes as well as animation for transitions between
nodes.

WebToc

Although still in prototype state, WebToc7 offers a simple, yet interesting
approach for the visualization of large hierarchies and Web sites. The sitemap
which is displayed via frames in the same browser window as the explored
site, is a Java applet generated by a crawl from the specific Web locality
which is also done via a Java based software. The visualization employs an
expand/contract table (similar to a table of contents) that provides graphical
information indicating the number of elements in branches of the hierarchy
as well as individual and cumulative sizes (see Figure 2.4). The intuitive
interface extensively uses color cues and value bars in order to represent
attributes such as file types and provide a quick overview capability.

6Available from http://www.inxight.com
7Available from http://www.cs.umd.edu/hcil/webtoc/

2.3. SITEMAP GENERATION SYSTEMS - STATE OF THE ART 23

Figure 2.3: Sitemap generated by Inxight Tree Studio

Figure 2.4: Sitemap generated by WebToc

24 CHAPTER 2. WEBSITE MAPPING

Mapa

Although not a refined sitemap generation system, Mapa from Dynamic Di-
agrams8 is quite interesting due to the landscape visual metaphor being em-
ployed. A crawler first generates a hierarchy from the Web locality by ap-
plying several learned and user-defined inference rules and heuristics. The

Figure 2.5: Sitemap generated by Mapa

applet-based visualization supplies an interactive z-factor isometric map that
provides a 2.5D perspective view of the hierarchies with single Web pages de-
picted as flat 2D rectangles (see Figure 2.5). It uses the placement in virtual
space to indicate logical connections between pages with the navigation be-
ing very appealing due to extensive animation capabilities.
Unfortunately, Dynamic Diagrams has recently been acquired by a larger
company and Mapa is not available to the public anymore.

8http://www.dynamicdiagrams.com

2.3. SITEMAP GENERATION SYSTEMS - STATE OF THE ART 25

Evaluation

While evaluating a large number of sitemap systems (including the ones
previously described), it became obvious that most systems actually focus on
a single form of visualization and data simplification procedure. In addition,
the application of usage and content data as a data source for representing
the Web locality seems to be lacking, except for highly experimental systems
since nearly all approches focus on exploiting the site’s inter-page structure
and topology. Besides, all applications tend to be proprietary and are not
available cross-platform.

In his survey on information visualization in hypermedia systems, [Muk99]
indicates that the discovery of new metaphors for navigation and visualiza-
tion is vital for advances in the field of navigation sitemaps since none of the
available systems today proved to be really useful after extensive usability
studies. He also mentioned, that it is important to make the systems usable
by common computer users in order to gain more acceptance.

[Muk99] also identifies the creation of information visualization systems
that provide a library of effective data simplification and visualization tech-
niques which can be combined to generate a representation of the underlying
Web locality as a key challenge in this area. This also includes the applica-
tion of standard data exchange formats.

In consideration of the facts presented above, we propose YWeb (see 2.4)
as an open, extensible, easy-to-use sitemap generation system for small to
middle-sized Web localities that provides different visualization and data sim-
plification methods and especially focuses on exploiting the available usage
data.

26 CHAPTER 2. WEBSITE MAPPING

2.4 The YWeb Sitemap System

As stated before, the purpose of this thesis is to present a prototype system
for the automatic generation of navigation sitemaps that produces appealing,
interactive, Web-based sitemaps that can be used by visitors of a specific Web
site. In addition, new forms of visualization of structure and usage related
Web site data should be investigated.
The target group of such a system are administrators of small to middle-sized
sites that obviously (see [Ver00]) have not enough time to spend on hand-
crafted, elaborate navigation maps and want to give their Web localities an
added value by providing sitemaps to their users.

In the following section, further design requirements (in addition to the
ones established for the sitemaps itself in 2.2.2) for such a system are formu-
lated, before describing the architecture in depth.

2.4.1 Design Requirements

From the evaluation of the existing sitemap systems in section 2.3, we can
establish some important design requirements for an automated sitemap gen-
eration system.

1. Cross-platform: Naturally, the system should be available cross-plattform
in order to reach a wide audience.

2. Interactivity : Apart from supporting automated sitemap generation,
the system should be highly interactive on the administator as well
as on the user side. This includes the configurability of the various
sitemap generation methods.

3. Ease of Use: The sitemap system as well as the the resulting navigation
maps should be designed to be easy to use.

4. Robustness : The system should be robust in a way that it accepts a
large variety of input data and is not restricted to a certain application
domain or site type.

5. Independence: Certainly, the system should be independent from Web
authoring systems or server extensions, by operating on the raw data
available on most Web servers.

6. Extensibility : In order to promote extensibility and interoperability,
XML should be used for data storage and the system should be highly
modular.

2.4. THE YWEB SITEMAP SYSTEM 27

7. Pleasant Visualization: The sitemap visualization as well as the pre-
view visualization for the site administrator should be visually appeal-
ing.

8. Speed : Last but not least, speed is an issue, since the sitemap genera-
tion should be available on common machines types.

2.4.2 Architecture

The YWeb sitemap system follows a three-tier architecture (see Figure 2.6)
that can be characterized as follows.

Engine
SearchWeb Server

Map Code

Access Log

Map Data

YWebLog

YWebMap

YWeb

Layout Generation and Preview

Clustering and Structure Interaction

2.2. Layout

2.1 Clustering

1. Data Extraction

3. Web Sitemap

In
te

gr
at

io
n

SSG

Topology

SUG

Usage

YWebCrawler

Figure 2.6: YWeb sitemap system architecture

The first tier (data extraction) is concerned with gathering the raw data from
various sources on the Web and extracting relevant information that is usable
for sitemap generation. Since this is a time-consuming process, the data is
stored in an intermediate format that is later reused in the second tier. We
distinguish between two different types of data:

28 CHAPTER 2. WEBSITE MAPPING

Structural data is extracted from the Web server by crawling the Web pages
and from specific search engines by submitting special queries. This is done
by the YWebCrawler module that is also described in 3.1 and B.2.1. Upon
successful extraction, the data is stored in a XML site structure graph (SSG)
(see Appendix C).
Usage data is extracted from the server generated access logs by reconstruct-
ing user traversal paths. This is done by the YWebLog component (see 5.3
and B.2.2) that stores the result as a XML site usage graph (SUG) (see Ap-
pendix C).

The second tier (clustering and layout generation) is handled by the YWeb
component. It provides means for clustering the extracted data and se-
lecting different sitemap layout styles. The site administrator can therefore
generate a pleasant visualization via an interaction loop with the two main
sub-modules. The component also provides a one-click export of the spe-
cific sitemap as a Web-based visualization (which forms the next tier). Two
clustering methods and corresponding visualizations have been implemented.
The first method focusses on exploiting the hierarchies inherent in the URL
paths to determine logical subdomains in the Web locality, while the second
reconstructs common user traversal paths from the access log data that are
further used to provide a more usage-based site view. Although the required
input for both methods is complementary (with the first one requiring struc-
ture and the second usage data), each method will take advantage of further
data if available.

The third tier (Web-based sitemap) is the sitemap component as it is pre-
sented to the visitor. Two different types of maps have been implemented:
client-side image maps and Java applets. The map component itself is self-
contained: it includes all the code and data necessary to provide a Web-based
visualization without the first two tiers and can thus be integrated as a stand-
alone component into the Web locality.

The YWeb system itself is implemented in Java, using the y-files framework
(see B.1) that provides important features for viewing, editing, layouting and
animating graph-like structures.

Chapter 3

Structure Data

In general, the structure data available on Web sites can be classified into
inter-page and intra-page data. The inter-page structure captures the topol-
ogy of the site via the links between pages whereas the intra-page structure
refers to data associated with a single HTML page such as meta tags, size,
date etc. Since the raw structure data is too large to be presented as a whole,
clustering and abstraction has to be applied in order to extract meaningful
patterns that can be used for exploration and visualization.

In this chapter, we present an extraction method for inter-page and intra-
page data and a clustering technique based on finding logical domains in a
Web page that serves as basis for hierarchical visualization.

3.1 Structure Data Extraction

In order to gain access to a site’s structure data, a simple Web crawler was
implemented that traverses the specified Web site from a defined starting
page in breadth-first order.
Although there is a variety of free web-crawling robots available, most of
them need special libraries and are tied to a specific operating system. Thus,
the decision was made to use Java’s extensive networking library to extract
the data and save it as a site structure graph for further usage:

Definition 6 (Site Structure Graph) We define the structure graph of
a Web site W as the directed graph (which may include multi-edges) GS =
(V,E) where each v ∈ V represents a single Web page p and holds its extracted
properties like URL, size, tags, date etc. Each edge e = (u, v) ∈ E represents
a hyperlink in page u that points to page v and also contains link properties
like link title etc.

29

30 CHAPTER 3. STRUCTURE DATA

Since the URL of a respective node or page is used for lookup and identifi-
cation, we often use URL and node interchangeably to denote a node in a
graph or path that represents a single URL-identified HTML page.

Ambiguities in the URL to file mapping (e.g. different URLs pointing to
the same physical file) can occur because of soft-links in the file system: In
addition, the URLs http://www.test.de/test/index.html, http://www.
test.de/test/ and http://www.test.de/test all refer to the same file on
nearly all Web servers configurations. In order to prevent the crawler from
introducing duplicate nodes, we convert each URL that is encountered into
a canonical URL format :

Definition 7 (Canonical URL) The canonical URL for a file that can be
accessed under the following URLs: (1) /dir/index.html, (2) /dir or (3)
/dir/ is defined by (3).

Another delicate subject regarding the raw structure data extraction is the
handling of HTML frames. If a Web site uses frames, there is a difference be-
tween the links the user can follow and links in the page that the user actually
selected. Since several HTML pages can be reused by different frame-sets in
a Web page, there’s no clear notion of which page ”belongs” to which frame-
set. In fact, the intensive use of frames can produce disorientation on the user
side. Thus the use of HTML frames is discoured in the W3C web content
accessability guidelines1. Nevertheless, since still a lot of sites make heavy
use of frames (especially for online documentations generated with javadoc

and alike) we decided to treat frame-sets as normal pages in the resulting
structure graph.

3.1.1 Inter- and Intra-page Structure Extraction

A typical crawler (see [HN99]) consists of three different modules: The URL
frontier holds and schedules the extracted URLs to be visited, the download
component is responsible for fetching the page specified by the URL and
the extraction component analysis and extracts the data and URLs from the
downloaded page.

As we sequentially process each Web page p ∈ W (starting with the
main index page /index.html), the following information is extracted and
stored in the respective node in the structure graph GS: URL, content size,
content type and date can be directly obtained through the HTTP header.
The value of specific HTML tags like <Title> and <Meta> is extracted by
parsing the content of the retrieved HTML page. In order to jump from p

1http://www.w3.org/TR/WCAG10/

3.1. STRUCTURE DATA EXTRACTION 31

to the next page in the Web site, <A>, <Frame> and <Map> tags are parsed
for valid URLs which are constructed from the document base and converted
into the canonical format if necessary. Each URL encountered, that has not
yet been visited is then added to the URL frontier queue U for BFS-like
traversal. After the whole site has been traversed, the resulting structure
graph is serialized to disk using a XML format (see Appendix C). Algorithm
1 describes the crawler actions in pseudo-code.

Algorithm 1: Web Crawler
Data : Start page URL U
Result: Site structure graph GS

GS = ∅;
U ← {U};
while U 6= ∅ do

v ←firstElem(U);
p← fetch URL v from server via HTTP;
extract HTTP header information;
if file type = ”text/html” then

add new node v to GS;
add new edge e = (u, v) to GS;
parse tag information from p;
store extracted information in u and e;
for all URLs u found in p do

if u /∈ GS then U ← U ∪ u;

end
end

end

The YWebCrawler implemented for the purpose of structure extraction is
also further described in B.2.1.

Although the main crawling algorithm is quite trivial, a considerable amount
of time was spent in making the crawler robust enough for daily use. In
particular, corrupt HTML code and lazy, non-conformant protocol imple-
mentations that are accepted by most Web browser made up a big source
for special cases that had to be considered and tested. Besides, special care
had to be taken to support network timeouts and allow crawling of pages
available via the secure HTTP protocol (HTTPS, see B.1).

Pitfalls for the crawler that were not considered in the current implemen-
tation but deserve to be mentioned include:

32 CHAPTER 3. STRUCTURE DATA

URL-embedded session identifiers (see 5.1) are used by a number of sites
for visitor tracking. Unfortunately, there’s no way to automatically tell url-
embedded session identifiers from dynamic HTML URLs.
Crawler traps are a set of URLs that cause the crawler to cycle forever (in-
tentional or unintentional), caused by scripts or symbolic links.
Forms and interactive content as well as excessive use of scripting languages
such as Javascript also pose a considerable challenge for automatic Web
crawlers due to the required interactivity.

3.1.2 Global Connectivity Extraction

Another source for interesting topology information is provided by the link
databases of major search engines (such as Google2 or Altavista3). By query-
ing the database for nodes that link to the specified page (replacing the com-
mon search string by link: and the respective URL), we can gain valuable
insight about the gobal topology regarding the neighborhood of our Web
locality.

In our implementation, we use the Google search engine to query incoming
external link structure for every node n ∈ GS after the site structure graph
has been constructed. The returned page for each node contains a list of
incoming links to the query URL sorted by Google’s ranking procedure (see
[Hen00]). The result page is then parsed for a maximum user-defined number
of in-links that are added to the structure graph GS.

2http://www.google.com
3http://www.altavista.com

3.2. LOGIC DOMAIN CLUSTERING 33

3.2 Logic Domain Clustering

The graphs obtained by the structure data extraction are usually fairly large,
with the number of nodes ranging from several hundred to several thousands.
In order to obtain structures suitable for visualization, the logical domain
clustering that was first introduced by [LKVT00] for the organization of
Web query results is used.

Definition 8 (Logical Domain) A logical domain D = (p1, . . . , pn) with
pi ∈ W is a set of Web pages defined by a specific semantic relation and a
relating, syntactic structure. Every logical domain has a single domain entry
page e ∈ D which is meant to be the first page to be visited by users navigating
that domain.

As opposed to physical domains (see Definition 2) which are organized by
domain name, logical domains are organized based on functionalities such
as project, seminar, home page etc. Therefore, a logical domain can also be
seen as a set of Web pages in a physical domain which as a whole provides a
particular function or is self-contained as an atomic information unit.

Examples for logical domains are quite common: a university depart-
ment may contain a logical domain that holds information about ongoing re-
search. Other domains may be formed by the department’s user home pages
or online-manuals where the level of granularity specifies the total number of
logical domains.

The logical domain clustering can be decomposed into two phases which
will be described in the further sections. First, it identifies logical domain
entry page candidates using link structure, URL path information, document
meta-data and citation. The second phase then defines the boundary of each
logical domain and merges specific sub-domains.

3.2.1 Entry Page Ranking

In order to better understand the properties of logical domains, we identify
the following functions and give some examples:

Personal site: Personal home pages are usually located within a physical
domain. http://www-pr.informatik.uni-tuebingen.de/~eiglsper/ for
example, is the entry page for a personal Web site which by itself is indepen-
dent. Thus they are treated as logical domains.

34 CHAPTER 3. STRUCTURE DATA

Topic site: Web pages related to a particular topic are usually grouped under
a directory. This includes product showcases, online manuals, project Web
sites etc. For example, http://www-pr.informatik.uni-tuebingen.de/

yfiles/ and http://www-pr.informatik.uni-tuebingen.de/Lehre/ can
be treated as seperate logical domains.

Popular Site: It may occur that a page in a domain is more popular than
the entry page of the respective domain. Such a popular page is usually in-
dicated by a large number of external incoming links (which can be regarded
as a form of citation) and thus serves as an entry page for a new logical
sub-domain.

In order to determine the logical domain entry pages, a set of rules R =
(R1, . . . , Rn) based on page title, URL, anchor text, link structure and ci-
tation popularity is used. Each rule Ri has an associated user adjustable
scoring function Ri(p). Thus the total score R(p) of page p is given by the
sum of all scoring functions for that page:

R(p) =
∑
Ri∈R

Ri(p) (3.1)

The higher the score of a page, the more likely it is that the page is a logical
domain entry page. After all (site-internal) pages p ∈ GS have been assigned
a score, a portion of the top scored pages is used as entry page candidates
for boundary definition of the logical domains.

Table 3.1 summarizes the single rules which are now presented in more
detail. In general, we followed [LKVT00] for the rule and initial scoring
function definition, with some minor alterations and extensions.

Rule R1: If the URL ends with a user home directory of the form user/,
the URL most probably refers to an entry page of a personal Web site that
is treated as a logical domain.

Rule R2: An URL path that contains a word given in the user-defined topic
word list and is not under a user home page is probably a logical domain.
Some standard words in the topic list include faq, tutorial, research,
people etc.

Rule R3: If an URL ends with a /, there is an index page (i.e. index.html)
in that directory. Thus is it can be assumed that this URL is used as an
entry page for that specific directory.

3.2. LOGIC DOMAIN CLUSTERING 35

Rule Type Description Scoring

R1 URL "/~[^/]*/?$" +60

R2 URL "^[^~]*/(topic word)/$" +30

R3 URL "^[^~]*/$" +20

R4 URL "/cgi\-bin/" -100

R5 Title "\bhome\b" ∨ \bweb\b.*\bpage\b +10

"\bwelcome\b" +5

R6 In-link ^home$ +5

text \bgo\b.*\bhome\b +5

\breturn\b.*\bhome\b +5

R7 Out-link ^home$ -10

text \bgo\b.*\bhome\b -10

\breturn\b.*\bhome\b -10

R8 Ext-link # > 0 +20+20%

R9 Out-link # > 20 +5

Table 3.1: Ranking rules (given in grep-like regular expressions) and initial
scoring functions

Rule R4: We do not consider dynamically created pages (indicated by a cgi

or bin part in the URL) as possible candidate entry pages.

Rule R5: A page that has the phrase home, welcome or homepage in the
<Title> tag is probably a logical domain entry page.

Rule R6: A link pointing to a page with the phrase home, go home or return
home in the anchor text probably indicates that the page being pointed to is
a logical domain entry page.

Rule R7: This is the counterpart to R6. A page is unlikely to be an entry
page if it contains links that may point to a possible entry page.

Rule R8: A page is likely to be an entry page if it has external incoming
links from other physical domains. This is due to the fact that people tend
to link the domain entry page rather than a specific page. The higher the
number of external incoming links the higher to probablity of the page being
a logical domain entry page.

36 CHAPTER 3. STRUCTURE DATA

Rule R9: If a page contains more than 20 outgoing links, it most probably
serves as a domain entry page.

It has to be mentioned that the initial scoring functions and rules described
above can be extensively configured by the user to fit their specific needs
(see Figure B.4). However, we already achieved more than acceptable results
using the initial values mentioned.

3.2.2 Domain Boundary Definition

After all pages have been ranked, the boundaries of the logical domains are
identified using the URL path information. The boundary definition starts
by assigning all available pages under specific entry pages to form logic do-
mains in a bottom-up fashion. Afterwards, adjustments are made to remove
and merge small logical domains.

First, the k top-scored pages (p1, . . . , pk) ∈ GS are selected from the structure
graph to form the set of entry page candidates E :

E = {e1, . . . , ek} = {p1, . . . , pk|∀pi ∈ GS : R(pi) > R(pi+1)} (3.2)

These entry pages also define an initial set of respective logical domains D =
(D1, . . . , Dk). Next, the parent-child relationships for the logical domains are

a) b)

D0

D

p
1

3

0

D1

0

D

0

p

p
2

D

3
p

2
p

1

D

221

p

/research/p/people/

/

/people/

/

D

/research/

/research/papers/

5

20

5

2

20

5 7

Figure 3.1: Logical domain cluster trees: a) initial assignment; b) after
bottom-up merging

calculated and stored in a list. This is done using the URL path information

3.2. LOGIC DOMAIN CLUSTERING 37

in the following way: It is assumed that only pages under the same directory
root can be contained in the same logical domain, since this reflects the way
in which people organize HTML files. Thus, a page must be located under
the same directory as the entry page or in a subdirectory under the entry
page. The initial logical domains are therefore ordered hierarchically using
the URL path (the pure host directory without domain and filename) of their
entry pages: The parent pi of a page pj is defined as the the page from the
entry page set whose URL path has the longest prefix of the path of pj.

Taking Figure 3.1a) as an example, p0, p1, p2 and p3 are the entry pages
for the respective logical domains D0, D1, D2 and D3. The resulting parent-
child relationships are then given by (D0, D1), (D0, D2), (D2, D3).

The same way that the logical domains were ordered, the remaining Web
pages pj ∈ {GS \ E} are assigned to the matching logical domain via the
longest URL path prefix. The small numbers in the domains in Figure 3.1
refer to the total number of pages assigned. Since all pages share at least
one prefix, namely the root /, each page is assigned to a logical domain.

The whole logical domain clustering which has an upper bound of O(n2)
with n = |Gs| is described in pseudo-code in Algorithm 2. The final step

Algorithm 2: Logical domain clustering

Data : Site structure graph GS

Result: Hierarchical clustering of logical domains

for ∀p ∈ GS do R(p) =
∑

Ri∈RRi(p);

E ← {p1, . . . , pk|∀pi ∈ GS : R(pi) > R(pi+1)};
for ∀pj ∈ E do

pi ← p ∈ E|p.hostDir is longest prefix of pj.hostDir;
setParentChildRelation(Di, Dj);

end
for ∀pj ∈ {GS \ E} do

pi ← p ∈ E|p.hostDir is longest prefix of pj.hostDir;
Di ← Di ∪ pj;

end
DM ← {Dj ∈ D : |Dj| < minimumDomainSize};
while DM 6= ∅ do

Dj ← getDeepestDomain(DM);
Di ← getParentOf(Dj);
Di ← Di ∪Dj;
Dj ← ∅;

end

38 CHAPTER 3. STRUCTURE DATA

of the clustering consists of recursively merging the domains D ∈ D which
have less than a user-defined amount of assigned pages. Therefore, the set
of all merging candidates is calculated via

DM = {Dj ∈ D : |Dj| < minimumDomainSize} (3.3)

Then, all Dj ∈ DM are recursively merged with their respective parents Di

in a bottom-up fashion until all domains contain more pages than the user-
defined minimum domain size. The merging operation itself simply consists
of moving all pages of the child to the parent domain and removing the
domain itself afterwards (see Figure 3.1b).

Figure B.3 shows the logical domain editor which can be used to explore
the resulting hierarchical domain clusters using a tree-view. It also serves as
a basis to invoke the clustering and visualization functions.

3.3 Related Work

The first work on the structural analysis of hypertext was presented by
[BRS92] who introduced several interesting metrics: The Second-order con-
nectedness (SOC) (and Back second-order connectedness (BSOC)) of a node
is given by the number of nodes that can be reached by following at most
two links (or respective the number of nodes that can reach the node in at
most two steps). The relative out-centrality is used as a special centrality
metric that defines the central node as being the one whose distance (= path
length) to all other nodes in the hypertext is small. Global metrics comprise
compactness that indicates the interconnectedness of a hypertext and stra-
tum that describes wether there is an order for reading the hypertext. He
also identifies index and reference hypertext nodes by comparing the in- and
out-degree of a single node with the mean of node in/out-degrees.

In [BS91], the same author proposes a clustering method based on aggre-
gation. This is done by splitting the graph in connected components. The
first clustering algorithm removes the outgoing edges from index nodes and
incoming edges from reference nodes and then tries to find the biconnected
components in the undirected graph. A reduced graph is then calculated
(which forms a tree) and the algorithm iterates for each of the biconnected
components. The second algorithm takes into consideration the direction of
the links and thus operates with strongly connected components.

[MH97] uses the BSOC and SOC metric together with in/out-degree,
access frequency and depth in the hierarchy to calculate an importance metric
of a node that distinguishes it as a landmark. Using a focus and context
technique, a local context is calculated which consists of the direct neighbors

3.3. RELATED WORK 39

of the currently selected nodes while the global context consists of the shortest
paths to the landmark nodes that can reach the current node or are reachable
from this node.

[Che97] proposes a framework for structuring and visualizing hypertext
named general similarity analysis. A special graph is built from the existing
hypertext using three different proximity measures for linkage, content and
state transitions that are applied in combination to provide a similarity met-
ric for each pair of nodes that is further used as edge weight. A minimum
cost network called pathfinder network is then employed to select a subset of
the graph for further visualization.

The navigational view builder (see [MFH95]) can generate several hierar-
chies from a hypertext document by using structure and content similarities
among the nodes. Given a root node, the system partitions the graph into
branches that equal clusters according to a specified metric which are then
recursively subdivided to form a tree. The system is very interactive by
prodiving support for selecting various attributes and filtering methods.

[PP97] and [TH98] both focus on using co-citation analysis for clustering:
If node A has a link to both node B and C, it can be induced that B and C are
somehow related although they are not directly linked.

Another interesting approach is presented by [PPR96] and uses structure,
user accesses and text similarity metrics to assign pages to several categories
like head, index, content and so on. They also build one graph for each sim-
ilarity metric which is then used to calculate a spreading activation (which
is in fact a kind of flow that decays with time) through the networks from a
specified start node. As soon as the networks reach a quasi-equilibrium, the
nodes with the highest ”activation” are considered to be especially important
and are used as roots for aggregation. This approach is heavily influenced
by the theory of information foraging : The Web can be seen as an evolv-
ing ecology of information-bearing items or memes4 competing for human
attention in their information habitat. As the human user-forager hunts for
information, he tries to maximize his information gain and thus follows the
information scent through the Web.

4cultural knowledge units, analogeous to genes, that are transmitted and replicated

40 CHAPTER 3. STRUCTURE DATA

Chapter 4

Structure Visualization

In this chapter, three different visualization approaches for the extracted
structural properties of a Web site are presented.
The force-directed topology layout displays the raw topology data (see 3.1) of
a Web site as a directed graph that is layouted using a force-directed model.
Since the structure data (raw as well as the result of the logical domain
clustering) is highly hierarchical, two remotely tree-like visualizations were
studied: The 2D cone-tree layout is a variant of the traditional 3D cone-
tree visualization scheme and is used on the logical domain data as well as
bfs-processed raw structure data. The tree-map layout based upon a space-
filling 2D embedding of a tree formed by the logical domain cluster data
proved to be the most robust and navigationable solution and was thus also
implemented as Web-based sitemap.

4.1 Force-Directed Topology Layout

The first structure visualization is based upon using the site structure graph
GS (see 3.1) as a basis for visualization. In particular it enables an inspection
of the Web site (and its close surroundings) on the topology level: edges in
the graph are equivalent to hyperlinks while nodes represent single HTML
pages.

The graph is subjected to the Y -built-in force-directed layouter (see Fig-
ure 4.1) which is based upon the following approach (see also [BETT99]):
each edge e = (u, v) in the graph is modeled as a ”spring” that excerts a
force on the respective nodes u and v. The layout algorithm now iteratively
places the nodes to find the local minimum energy configuration. This ap-
proach is widely used, because it produces mostly pleasant drawings that
are highly symmetric and tends to distribute vertices evenly. As can be seen

41

42 CHAPTER 4. STRUCTURE VISUALIZATION

Figure 4.1: Force-directed topology layout of the site graph defined by a
subset of the department Web site with 537 nodes and 837 edges

in Figure 4.2, colors are assigned to reflect the different types of nodes con-
tained in GS: error nodes (red), external referrers (cyan) and normal site
nodes (yellow). Labels are also displayed for each node (URL or title) and
edge (anchor text) in the graph.

Clearly, this visualization approach was not intended to serve as basis for
navigation sitemaps. Nevertheless it proved highly valuable in order to gain
an insight into the topological nature of the respective Web sites and do some
hands-on exploration. Due to the vast amount of information displayed (the
generated structure graphs had a maximum of several thousand nodes), a
great deal of zooming operations is needed to gain valuable insight on large
graphs. In addition, the force-directed layout algorithm scales very badly
and thus can take several minutes to produce an acceptable diagram.

4.2. 2D CONE-TREE LAYOUT 43

Figure 4.2: Zoomed force-directed topology layout of the Department Web
site

4.2 2D Cone-Tree Layout

The second approach investigated the visualization of (possibly huge) hier-
archies generated by a breadth first traversal of the graph GS or the logical
domain clusters. In information visualization, cone-trees (see [CMS99]) have
been used as a three dimensional representation of hierarchical information,
where one node of a tree is located at the apex of a cone and all of its chil-
dren are arranged around the circular base of the cone. Thus, the cone-tree
can present a structure in a way that nearly the entire hierarchy is visible
without scrolling.

[CK95] have presented a 2D embedding algorithm of the traditional cone-
tree that takes care of possible cone overlaps and can effectively visualize very
large hierarchies. The algorithm itself operates in two phases. During the
first phase, the radius r of the cones and the position given by the tree level
and the angle θ are calculated in bottom-up fashion from the leaves to the
root of the tree. In the second phase, the layout is generated by traversing
the tree in top-down fashion, rendering the nodes with the assigned values.

44 CHAPTER 4. STRUCTURE VISUALIZATION

i,n

ri-1,n

ri+1,n

r

r

i-1

i

i+1

θi

i,n-1

Figure 4.3: 2D cone-tree layout (taken from [CK95])

Apart from being quite space efficient compared to the previous layout, the
algorithm performs very well since it is based on approximation.

Taking into consideration Figure 4.3, the circumference Cn for level n can
be approximated via the sum of all diameters of the cones i in level n:

Cn ≈ 2
∑
i

ri,n (4.1)

The radius rn−1 of the next cone in level n− 1 can then be estimated via

rn−1 =
Cn
2π

+ δ (4.2)

where δ refers to a user-defined factor that controls the ”density” of the
whole layout. If the arclength si occupied by cone i is approximated via
si ≈ ri−1,n + ri,n, its angle θi in respect to the center can then be expressed
via

θi =
si
rn
≈ ri−1,n + ri,n

rn
(4.3)

Figure 4.4 shows a 2D cone-tree layout of a BFS-tree generated from the
structure graph GS of a Web site. The main problem with this visualization
scheme results from the property of the displayed trees. Due to the approxi-
mation, the visualization works best for well-balanced trees with lots of child
nodes. Since neither the resulting BFS-tree nor the logical domain cluster
tree always exhibit this property, the layout easily degenerates as the tree
approaches a linear list. Together with the fact that navigation to single
nodes can sometimes be quite difficult and requires a fair amount of zoom-
ing due to vast differences in the cone size, we decided to abandon further
experimentation with this layout type.

4.3. TREE-MAP LAYOUT 45

Figure 4.4: 2D cone-tree layout of the Ouk data set (413 nodes)

4.3 Tree-Map Layout

Our next layout approach focused on finding a suitable, space-constrained
visualization for the logical domains alone, which led us to a different visual
metaphor than the traditional node and link metaphor by depicting hierarchy
through topological inclusion.

”Classical” graphs are usually composed of nodes, represented by dots or
boxes, and edges represented by straight, polygonal or curved lines which can
be either directed or undirected. Some less ”classical” graphical notations
are Venn diagrams and higraphs.
Harel [HY00] introduced the notation of a higraph that consists of blobs
(rounded-corner rectilinear shapes) possibly connected by edges that are ar-
ranged in an inclusion hierarchy. Higraphs with non-intersecting blobs and
without edges are also known as inclusion graphs or tree-maps [Shn92]. The
general tree-map algorithm is quite simple: Given an attributed tree with the

205 5

12

22222

8

a) b)

12

2

2

2

2

2

5

40

5 20

40

8

Figure 4.5: Conversion of an attributed tree a) into a tree-map b)

leaves of the tree being labeled according to a certain metric (e.g. size) as
shown in Figure 4.5a, the corresponding tree-map is constructed via a ”slice
and dice” approach as follows. First, all non-leaf node attributes are assigned

46 CHAPTER 4. STRUCTURE VISUALIZATION

the sum of their child attributes or scores in a bottom-up fashion (the root
node in Figure 4.5a will thus receive the score 100). Then, a rectangle r
is given that defines the borders of the tree-map which is then rendered by
traversing the tree from top to bottom. For each child node, the size and
position is determined by the parent rectangle that is subdivided in relation
of the child score to the parent score. The subdivision is carried out hori-
zontally for all even levels in the tree and vertically for all odd levels (or vice
versa). The tree-map node layout can thus be implemented recursively as
shown in procedure layoutNode(. . .).
The whole tree-map is rendered by a single call to the function layoutNode

Procedure layoutNode(Node n, Orientation o, Rectangle r)

paintNode(r);
for ∀m ∈childs(n) do

switch o do
case horizontal:

width← (score(m)/score(n)) ∗ r.width;
layoutNode(m, vertical, (r.x, r.y, width, r.height));
r.x← r.x+ width;

case vertical:
height← (score(m)/score(n)) ∗ r.height;
layoutNode(m, horizontal, (r.x, r.y, r.width, height));
r.y ← r.y + height;

end
end

with the parameters rootNode, horizontal, boundingRectangle) in O(n),
with n being the number of nodes in the tree. As can be seen in the resulting
map in Figure 4.5b, the visualization is space-filling and manages to place
all leave nodes in the bounding rectangle.

Compared with the traditional tree visualization via the link and node
metaphor, more information can be embedded on a constrained viewspace
because links that otherwise easily clutter the display are omitted. In ad-
dition, due to the topological inclusion, hierarchies can be identified more
easily. Just recently, new algorithms for cushion tree-maps1 have been pre-
sented, that make use of advanced shading models from computer graphics
to further enhance the identification of nested hierarchies

1”Kissenschlacht mit Disk-Inhalten”, c’t 2001, Heft 5 or http://www.win.tue.nl/
sequoiaview/

4.3. TREE-MAP LAYOUT 47

On the other hand, the size of nodes in the tree-map can be difficult to com-
pare since the score maps to the area covered by the node. A long thin node
for example can have the same total area than a boxed-shaped one, but is
considered as being smaller than the latter by the human perceptual system.
Besides, users have to be instructed to be able to interpret (left to right, top
to bottom) a tree-map if see it for the first time.

We now explore the application of tree-maps to the trees that are formed by
the hierarchy of logical domains D. First, the trees have to be converted so
that logical domains only appear in the leaf nodes by inserting meta nodes
and inserting the parent as the first child of the meta node (see Figure 4.6). In

a) b)

2D

D1

p
1

0

D2

D

p

2
p

3

D3

p

2

0D

0
p

3

3

p
1

1

D

D0

p

p

/people/ /research/

/

/research/papers/

/people/

/

/research/papers//research/

Figure 4.6: Tree conversion: a) logical domain tree; b) respective tree-map
tree

addition, we augment the node layout algorithm described above to produce
a nested tree-map by adding a user-defined offset and border when layouting
the single nodes to make the hierarchical inclusion even more conspicious.
The data used for the scoring in the logical domain nodes is explained in the
next section (4.3.1).
The last step of the logical domain tree-map layout consists of a heuristic

used for labeling the resulting tree-map nodes: Initially, the <Title> tag
entry for the respective logical domain entry page is used as label string.
The last character of the label string is then chopped off until the label fits
into the node. For pages that do not posess a <Title> tag, the URL is taken
as label string from which we iteratively chop of the first character (because
the filename is located at the end). Labels for nodes that are arranged in
horizontal order are rendered vertical (and vice versa) by inserting linefeeds
after each character.

48 CHAPTER 4. STRUCTURE VISUALIZATION

Figure 4.7: Logical domain treemap visualization of the Department data
set with color mapped from the logical domain date and size from the entry
node scores

Figure 4.7 shows the resulting tree-map for the hierarchic logical domain
clusters that was generated by starting with a vertical sub-division. Thus,
reading from top to bottom, we can identify the logical domains at depth one
from the site’s root (which is represented by the top-most node). If we select
one of these horizontal nodes, we now read from left to right to identify his
siblings (with the leftmost node indicating the parent node).

4.3.1 Visual Mapping

In general, two main visual channels are available for the tree-map nodes:
color and size. The following properties can be selected by the user to either
map to the color and/or size channel:

Node Score: The ranking value R(e) of the entry node e ∈ D.

Domain Score: The mean ranking value 1
|D|
∑

p∈D R(p) of the domain nodes.

4.3. TREE-MAP LAYOUT 49

Domain Size: |D| defined as the number of pages in the logical domain.

Domain Date: The mean date of all pages p ∈ D.

While the selected data for the node is directly assigned to the node attributes
in the tree, the color is calculated via a linear interpolation between the
maximum and minimum values available.

The mapping scheme allows the construction of navigation sitemaps that
emphase different properties of the visible clusters. Figure 4.7 for example
gives a quick overview about the most important domains by mapping the
node score to the size channel, while newer parts of the site can also easily be
recognized because they get assigned a brighter value by the color channel.

4.3.2 Interactivity

Apart from tooltips that display various information about the respective
logical domain on mouse-over events, interactivity is only available for the
sitemap creator.
The layout is highly configurable through user-definable colors (see Figure
B.5), layout sizes and borders as well as the mapping to the visual channels
as described above (see Figure B.5).
A one-click export of the designed logical domain tree-map as a Web-based
visualization (which is explained in the next section) that can be readily
added to an existing Web site is also provided.

4.3.3 Web-based Structure Visualization

Via a Web-based visualization, the previously described logical domain tree-
map layout is made available to the site visitor as a navigation sitemap.
Our intention is to display the sitemap next to the browser so that both can
be used at the same time without occluding each other (see Figure 4.8).

As stated in 2.2.2 an important design goal is the seamless integration into
the existing Web site without requiring major changes to the server configu-
ration or the existing HTML pages. We therefore simply replace the existing
root /index.html by a HTML file that spawns the navigation sitemap in a
new window next to the browser and loads the old index page in the current
window.
Since the current structure visualization does not provide a lot of interactiv-
ity to the visitor, a sitemap based on a HTML client-side imagemap was
chosen for several reasons: First, the whole layout can be easily exported as

50 CHAPTER 4. STRUCTURE VISUALIZATION

Figure 4.8: The Web-based logical domain tree-map visualization used for
exploring the Department’s Web site

a JPG or GIF graphics file from the generated diagram. Second, client-side
imagemaps do not generate any additional load on the server (except for the
network bandwith needed to transfer the picture) and thus scale very well
even for a large number of users.

A combination of Javascript and Cascading Stylesheets (CSS) is used to
implement cross-browser capable tool-tips whose positions are pre-calculated
so that they don’t occlude the mous pointer and then stored in the HTML file.
The cross-browser implementation can be considered an especially tedious
task since the employed object models (DOM used by Internet Explorer vs.
Netscape’s own object model) are far from being compatible and required a
lot of testing.

The resulting navigation sitemap is presented to the user when he visits
the site (its size being only about 100KB in total). He interacts with the
navigation map by simply letting the mouse pointer float above potential
interesting parts of the map in order to get a tooltip describing the domain’s
properties in more detail. By clicking on a logical domain, the other browser
window is instructed to load the specific entry page for that domain. Because
of the static map and the minimal interaction possibilities, the resulting nav-

4.4. RELATED WORK 51

igation sitemap can be regarded as very easy to comprehend by an occasional
visitor of the site.

4.4 Related Work

Most existing visualiziations for Web structure data are based on the tradi-
tional node and link metaphor and scale very badly for hypertext of actual
usable sizes. We now present a variety of approaches for structure visualiza-
tion although most of them are not applicable given the navigation sitemap
requirements stated in 2.2.2.

The nicheworks system ([Wil99]) presents several layout techniques that
can be used for the structure visualization of very large graphs of 10.000-
100.000 nodes in a Web context. Their circular layout simply place the
nodes randomly on the periphery of a single circle while the hexagonal grid
layout uses the grid points of a regular hexagonal grid. Both layout methods
can be interactively refined. The tree layout is inspired by a readial tree
layout where the nodes are placed with the root node in the center, then
each connected node in a circle around that. The spacing between nodes
reflects the number of nodes in the subtree originating from that node.

An even better visualization for large hierarchies induced from the Web
structure graph is the hyperbolic tree that was already presented in 2.3.

The general similarity analysis ([Che97]) presented in 3.3 uses a simple
spring model for the layout of the resulting graph for visualization (refer to
4.1) while the navigational view builder ([MFH95]) uses a 3D cone-tree like
view and a 2D tree view.

Another important visual metaphor is the landscape metaphor employed
by the MAPA system that was already presented in 2.3). Analogous to the
real world, places, roads, crossings etc. are used as means of navigation
because they are supposed to be highly familiar to the user.

[MH97] also uses the landscape metaphor by visualizing the local and
global neighborhood of landmarks via 3D VRML models. Another view
presents all landmarks of a site with 3D cubes and the relevant links between
them analog to a city landscape.

An new visual metaphor called auditorium is presented by [TH98] for
the visualization of clan graphs (a graph that groups together sets of related
sites). It consists of concentric semi-circles with the center being the site
to explore which are used to group sites into equivalence classes from most
to least important. The system also allows dynamic ordering of the sites
presented by preview thumbnails within the semi-circles depending on user
selection. Progressive relevation of greater detail like in- and out-edges is

52 CHAPTER 4. STRUCTURE VISUALIZATION

available upon user focus.
Radial layouts for whole Web sites called disk trees are used by [CPP00]

to construct time tubes that equal stacks of disk trees for various dates in
order to provide Web ecology and Web evolution visualization.

In his survey, [HGM00] also considers different focus and context ap-
proaches as a navigation technique complementary to zoom and pan. Graph-
ical fisheye views are the most popular form which uses the fisheye lens effect
in order to enlarge the area of interest (e.g. the focussed node), while showing
other portions of the image with less detail. The hyperbolic tree described
before is in fact a special application of a focus and context technique.

Chapter 5

Usage Data

Our main intention in considering usage data for the visualization of Web
localities is to provide an alternative view of the site, that reflects the actual
behaviour of the visitors. Since users have different goals, the original layout
of pages in a Web site might hide the most important or frequently used
pages in ”unlikely” places, making it inconvenient for users to retrieve them.
Thus, usage-based sitemaps can offer a form of collaborative filtering in a
sense that they make use of preferences of other people to predict the docu-
ments which may be of interest to a particular user.
In this thesis, we focus on the analysis of user paths in a sense of coherent
sequences of nodes followed by an individual, instead of single pages, since
it can be assumed that distinct, common paths map to distinct navigation
goals.

The current chapter describes an approach for extracting popular user paths
from usage data in order to be used for visualization in user-centric sitemaps.

5.1 Data Sources for Usage Analysis

Several data sources that widely differ in availability, reliability and user
acceptance are available for usage analysis. They are categorized by the lo-
cation where the data is being collected:

Client level data sources provide the most reliable usage data since the data
is collected right on the users machine. This is usually done by modified Web
browsers that collect all user interactions and thus make the reconstruction
of travelled user paths fairly easy. Another possibility is the use of remote
agent tracking systems (see [FSMF99]) which are rarely used.

53

54 CHAPTER 5. USAGE DATA

Since client level data collection requires the user to install and use special
tools, its usage is limited to research prototypes and is therefore not appli-
cable in our context.

At the proxy level, usage data is collected in between the users machine and
the Web server. As shown in Figure 5.2, a user request often travels through
various caches like corporate firewalls and proxies. Therefore some systems
use the data recorded in the proxy logs to analyze user behaviour, sometimes
combined with the need for the user to identify himself to the proxy via a
login procedure. In addition, many users access the Web through a chain
of proxies, which complicates the collection of coherent data. High-end us-
age mining and CRM systems like Accrue Insight 1 use advanced network
monitoring and analysis techniques such as packet sniffing and TCP header
analysis to infer single user behaviour from network traffic. Obviously, such
a sophisticated techniques require a special infrastructure and is very expen-
sive.

Server level data is easily collected on the Web server machine itself and
therefore does not require the user to install special software or identify him-
self (except for systems that require a membership and login procedure to
access the site content). Mostly, the Web server access log that captures all
requests the server receives is used for further analysis. Since it only records
IP addresses or hostnames for identification, several techniques were intro-
duced to facilitate the tracking of single users.
A common practice is the use of cookies that were introduced as a solution
for the problem of statelessness of the HTTP protocol: When a Web server
receives a request for a page of content, it embeds a hidden directive instruc-
tion in the header of the returned document, initiating the client computer
to store the attached identity data (known as ”cookie”) on its local disk and
associate it with the specified Web page. The next time the user’s browser
visits the same Web page or another page within the originating site, it sends
the stored cookie data back to the server along with the request for the page.
Unfortunately, the use of cookies for more precise user identification has sev-
eral drawbacks: First of all, the Web server itself has to be reconfigured to
issue cookies on every request. Second, rising awareness about privacy is-
sues has led many users to instruct their browser not to accept cookies or to
employ ”cookie-monsters” that automatically delete or obfuscate cookies as
they are stored on the client (thus making identification impossible).
A more unobtrusive and reliable technique is the use of URL-embedded ses-

1http://www.accrue.com

5.2. INFERRING USER PATHS FROM WEB SERVER LOGS 55

sion identifiers . When a user visits a Web site, the server generates the page
he requested on the fly, embedding a unique session identification string in
all URLs2. By requesting such a link, the server receives the URL and parses
the session id to assign the page request to the corresponding user. Unlike
cookies, which are persistent, this technique fails if the user re-visits a site
after he stopped browsing or switched of the computer because a new session
id is generated for every request that does not already contains a session
id in its URL. In addition, the Web server has to be reconfigured, in order
to embed and parse the identifiers. Other techniques like super cookies or
omniscient observers are mostly Java augmented 1-pixel GIFs that have to
be manually embedded in every page (see HitBox 3 or NedStat4 for example).

Level Quality Availability Unobtrusivness

Client + - -

Proxy - - +

Server - + +

Table 5.1: Comparison of different usage data sources

Table 5.1 summarizes the properties of the various data sources. Since our
main goal is to make the usage data visualization available on large variety
of machines, data availability and unobtrusiveness are our main concerns.
Thus we concentrate on server level data sources for analysis. Because we do
not want the Web administrator to be forced to make changes to the servers
configuration, we decided to use the pure access logs.

5.2 Inferring User Paths from Web Server

Logs

5.2.1 Web server access log data

In order to understand how visitors navigate a Web site, the access log file
that is stored on the server is analysed. Each time a request reaches the Web
server, one or several log entries are recording the response of the server.
Due to the nature of the HTTP protocol, a separate connection is required

2i.e. http://www.sun.com/research/;$sessionid$LT2JMAQAAAXRFAMTA1FU5YQ
3http://www.hitbox.com
4http://www.nedstad.com

56 CHAPTER 5. USAGE DATA

for every file that is requested from the server. Therefore a user’s request for
a particular page often results in several log entries since graphics, scripts,
stylesheets etc. are downloaded in addition to the HTML file. Since every
new access is appended at the end of the file, it is already ordered sequentially
by access time.

Combined Log Format

Figure 5.1 shows a sample entry of an access log in the widespread NCSA
combined log format5 which is supported for data analysis. It captures a

- - [25/Sep/2000:09:13:39 +0200] "GET /index.html HTTP/1.0" 200 8355 "http://www.yahoo.com/" "Mozilla/4.0"193.16.122.73

Referer User AgentAccess TimeIP Address/Hostname Server Request

Status Code Bytes transferred

Figure 5.1: Sample Web server access log entry

request for the file /index.html from a client with the IP address 193.16.

122.73 which is successfully transferred. The referer [sic!] and user agent

fields suggest that the user previously visited www.yahoo.com and probably
uses the Mozilla Web browser (or a derivate).

There are cases for which some of the fields are unavailable (which is
indicated by a ”-” character in the access log): users may explicitly configure
their Web browsers not to send out header information to the Web server for
privacy reasons which will result in an empty referer field. This is also the
case for requests initiated by the user via entering the destination manually
in the URL field of the browser instead of following a hyperlink or hitting
the browser’s reload button. Unfortunately the exact behaviour varies with
every browser implementation.

Other formats that do not include the referrer and user agent fields were
not considered for analysis, since they dramatically impair the chance of
user identification and path reconstruction. The same applies to formats
that record the referrer information in an extra log file, which implies the use
of delicate synchronisation methods to match the corresponding entries.

5.2.2 Access Log Data Quality

Data recorded in the access log is mostly subjected to temporal (at what
time of day do the most accesses occur ?) or statistical analysis (what are
the top 10 accessed files ?) that can be generated quite easily by gathering

5See http://httpd.apache.org/docs/mod/mod log config.html

5.2. INFERRING USER PATHS FROM WEB SERVER LOGS 57

log line based metrics. However, path analysis requires the log entries to be
grouped by user or session and single page requests by access order to obtain
meaningful paths, which can be quite a tedious task due to the nature of the
recorded data: Unfortunately the data gathered in the access logs is highly
ambigous and incomplete.

In a typical Web content transaction there may be intermediate mechanisms
that can obscure the origin and continuity of a Web browsing session (see
Figure 5.2).

Cache

Web Server

IP P1..PN

Proxy

User Machine

IP U1

Browser

Users

Figure 5.2: Chain of request during Web server access

Caches are widely used, especially in the browsing software itself (disk
and memory), to speed up loading times of previously requested content.
Unfortunately, a user request that is fulfilled by the local browser cache rather
than the Web server does not result in an access log entry. Thus, depending
on the caching level employed by the user, a large number of documents the
user requested may be missing in the collected data which makes elaborate
path reconstruction methods necessary (see 5.4).

Proxies. Another level of caching occurs at the corporate or internet ser-
vice provider (ISP) level. Typically, the HTTP requests of users are passed
through a proxy server that provides caching service, thus reducing the num-
ber of retransmission requests for popular sites.
Although techniques like cache busting (advising the browser and server not
to use cached copies), can be applied by the site administrator, defeating the
caching system is widely considered unacceptable by the network community
and is not guaranteed to work seamlessly and should therefore be neglected
as an option.

Another problem different from caching arises for user identification:
When a proxy receives an URL request that is currently not cached, it initi-
ates a HTTP request using its own IP number instead of the IP number of
the client. Thus, to the Web server, all users from a proxy-cached ISP appear
(in the access logs) to be aliased to the few IP numbers of the ISP’s proxy
servers. Therefore we can not easily establish a one-to-one mapping between

58 CHAPTER 5. USAGE DATA

user and IP address. This is even complicated by the fact that larger ISPs
(i.e. AOL) assign consecutive requests from the same client to different prox-
ies for load balancing reasons. The identification problem described above
also arises with the use of corporate firewalls and routers.

Due to the sole recordable interaction between the user and the Web server
being the request of a document it is also not obvious when a user stops a
navigation session. It is quite common that a user pauses several minutes
while browsing the Web to complete other duties, later resuming his brows-
ing session thus making it ambigious wether his behaviour should count as
a new visit or browsing session or not, which points up to the necessity of a
kind of user session grouping.

Also, depending on the site structure and access characteristics, the sheer size
of the access logs that can easily reach 1 GB/month constitutes a significant
challenge for analysis algorithms. Therefore, memory and speed efficiency
have to be considered while developing methods that are able to cope with
such high-volume input data.

We now present an approach that solves most of the problems described in
this chapter and has been successfully applied to several large access log files
(see Appendix A).

5.3 Path Extraction Algorithm

As stated before, our goal is to extract popular paths travelled by users solely
from the Web server’s access log files.

The ideal path set consists of long traversal sequences, that capture the
users’ navigations as they enter the site (or even before by considering the
external referrer) and that reflect the level of popularity of the respective
part of the Web locality.

The suggested algorithm consists of four subsequent stages that will be de-
scribed in more detail in the following sections:

1. Data Cleaning (5.3.2):
All entries that do not contribute to the path analysis are discarded.

2. User/Session Identification (5.3.3):
Identify users and sessions and group accesses.

5.3. PATH EXTRACTION ALGORITHM 59

3. Path Reconstruction (5.3.4):
Reconstruct complete paths from single accesses and extract all avail-
able paths from the data.

4. Popular Path Extraction (5.3.5):
Extract the most popular paths from all available paths.

5.3.1 Path Model

When users travel a path through a Web page, they generate clickstream
data that consists of single consecutive request entries that can be encoded
as n-grams. Thus we can make the following definition:

Definition 9 (User Path) A user path U = <p1, .., pN> is a time-ordered
list of all Web pages p1..pn with pi ∈ W that were requested by a single user
during a browsing session.

In order to facilitate the path analysis and make it more robust, [WYB98]
constructs maximum forward paths from each user path which we adopt in
this context:

Definition 10 (Maximum Forward Path) The maximum forward path
represents the largest prefix M ⊆ U of a user path U , such that ∀pi, pj ∈
M; i 6= j : pi 6= pj.

Thus the maximum forward path captures the largest subset of a user path
until the first visit to a previously requested page occurs. This model is based
on the assumption that backward navigations are only made for ease of trav-
elling but do not contribute to the main ”navigation intent” of the user. The
back-tracking case is handled by constructing a new maximum forward path
M2 that consists of the prefix ofM1 till the backtracking point and append-
ing the rest of the user path to it that is not contained in M1 and applying
that rule recursively (this is explained in more detail in 5.3.4). In Figure 5.3
the user travels the sequence U=<A,B,C,B,D>. The corresponding maximal
forward references are M1=<A,B,C> and M2=<A,B,D> which can be inter-
preted the following way: Instead of navigating through <A,B,C> in order to
visit page C and then continuing via <C,B,D> to visit page D, the user could
also have visited <A,B,C> followed by <A,B,D> to achieve the same result.
By employing the maximum forward path model, we eleminate any cycles
in the user navigation which makes the further path analysis step much easier.

60 CHAPTER 5. USAGE DATA

Navigation Path ABCBD Maximum Forward Paths ABC, ABD

C

B

D C D

B

AA

B

A

Figure 5.3: Maximum forward reference path construction

5.3.2 Data Cleaning

During this preprocessing step a large amount of data is skipped while se-
quentially analyzing the log file because it does not contribute to the analysis
or may falsify the result. The following items are discarded:

Non-HTML files. Since the main intent is to get a picture of the user’s
behaviour, it does not make sense to include file requests that the user did
not explicitly initiated or that do not contribute to the user’s navigation.
Therefore all log entries with URL filename suffixes indicating such items are
removed. The default list of suffixes includes .jpg, .gif, .ps, .css, .js etc.
and can be easily modified.

Invalid Entries. The access log also contains a large number of error re-
quests that did not result in a file being transmitted to the user. Thus we
remove all log entries containing malformed URLs (entered by the user), sta-
tus codes other than HTTP OK or a transfer size < 0 bytes. As previously
stated, not all fields of an entry may be recorded. Since accesses that do
not contain the Hostname, Request and User Agent field are of little use in
the path extraction they are discarded in the preprocessing step. The same
applies to entries that record other actions than retrieving a file via the GET

command (namely HEAD for requesting header information and PUT for send-
ing data to the server).

Accesses from internal hosts. Depending on the Web locality, many re-
quests to information such as online API documentation or tutorials originate
from users within the corresponding organization. Since they access the site
more often and intensly than the average user, these requests may dominate
the analysis and shift the result to areas of the site that are normally not of
interest to visitors from the ”outside”. Thus a host/ip filter list was imple-

5.3. PATH EXTRACTION ALGORITHM 61

mented that discards any log entries containing the corresponding string.

Accesses from Robots. According to [TK00], roughly 10% of the recorded
accesses account for robots, search engine crawlers and other software agents
that automatically index the Web, search for information etc. Many of these
robots adopt a breadth-first retrieval strategy to visit the whole Web site or
a large subset and therefore generate a large number of false (and long !)
paths in the analysis.
A simple strategy that was implemented in order to filter out these accesses
is to ban all users (ip/user agent pairs) that accessed the file /robots.txt

that is used by the site administrator to define the parts of the locality he
doesn’t want to be visited by robots via the Robots Exclusion Protocol6.
Unfortunately the protocol is only implemented by a small number of ”well-
behaving” robots which made it necessary to implement a bot filter list that
contains suspicious substrings that are likely to appear in robot names (e.g.
bot, crawl, spider, get) and compares them with the User Agent field.

5.3.3 Session and User Identification

The most simplistic assumption to make about users is that each distinct IP
address or domain name respresents a unique user. However, this is hardly
practicable if we consider the problems described in 5.2.2.
Therefore we adopted a heuristic called IP-Agent-Timeout (presented by
[PP99]) that uses a combination of the IP field, user agent information and
access time. While sequentially processing the access log, the following cases
are handled:

1. a new IP address is encountered: assume this is a new user

2. an already processed IP address is encountered:

(a) the user agent matches previous requests: assume this is the same
user

(b) the user agent does not match previous requests from the same IP
address: assume this is a new user

(c) the difference to the last access with the same IP address larger
than a defined timeout value: assume this is a new user

6see http://info.webcrawler.com/mak/projects/robots/norobots.html

62 CHAPTER 5. USAGE DATA

[Pit98] has suggested a timeout value of 25 minutes based on his survey of
interface event sequences in Web browsing sessions (with a mean time differ-
ence of 9.3 minutes between interface events plus 1.5 standard deviations).

The method described above reduces the problem of several users access-
ing a Web site through the same IP address that often use different browser
versions (or builds) and thus can be detected via the agent field.
However, the case of one user having different IP addresses is not handled.
These accesses result in paths that consist of only one node and are later
removed in a step that eleminates all single entry paths.
One method for dealing with changing machine names that occur when users
are accessing a site through load balancing proxies like AOL is known as host
munging : based upon IP class chop the suffix off the IP addresses and the
prefix off the domain names. Unfortunately this method could not be imple-
mented due to time constraints.

[PP99] presents an empirical study that demonstrates the impact of differ-
ent session identification methods (including IP, IP-Agent, IP-Agent-Timeout
and IP-Agent-Cookie-Timeout) on the path reconstruction results of a single
site. However, they fail to make a recommendation considering the reliability
of this methods.

For our goal of path analysis, session and user identification is mainly
used for determining the specific session, the next entry belongs to and not
to directly model any users. The approach is described in more detail in
Algorithm 4.

5.3.4 Path Reconstruction

The previous section described how to distinguish different users via a heuris-
tic using agent, ip and time information. We are now interested in recon-
structing meaningful maximum forward paths (see 5.3.1) from the single
accesses. While sequentially parsing the access log, we want to reconstruct a
maximum number of paths. In the current log line, we extract the time, IP ,
agent and URL information (ureq here denotes the requested URL and uref
the referrer field). We also introduce an augmented version of the maximum
forward model paths that are used to store our results:

Definition 11 (Traversal Path) We define the traversal path as the tuple
T = (M, ip, agent, t), where M is a maximum forward path, t is a list of
access times for each entry in M and ip and agent are strings containing
the corresponding ip and user agent information.

Thus, a single user browsing session may result in several traversal paths.
While sequentially stepping through the log data, a set of active traversal

5.3. PATH EXTRACTION ALGORITHM 63

paths TA = (T1, . . . , Tn) for all users is maintained. This list is updated
every step by removing the entries T with time − timeT > 25 minutes and
adding them to the result list T̂ .
Subsequently, a set of candidate traversal paths TC ⊆ TA is generated from
TA by selecting all paths that have the same IP and agent information than
the current log entry. The path reconstruction is now reduced to the problem
which path T to chose from the candidate set and where to append the new
entry.
For this task, the request-referrer access pair described above is used: There
are four principal possibilities how a new access pair (uref , ureq) can relate to
an existing traversal path T . These are also shown in Figure 5.4, along with
the resulting traversal paths. The following cases are:

1) (ureq /∈ T) ∧ (uref = lastElem(T)):
The the access pair fits at the end of the path, so we just append it.

2) (ureq /∈ T) ∧ (uref ∈ T) ∧ (uref 6= lastElem(T)):
This case is supposed to occur after a backtracking navigation. The
resulting tree is split in two paths with the same prefix (see also 5.3.1).

3) (ureq ∈ T) ∧ (uref = lastElem(T)):
If the access pair equals a backtracking navigation from the the end of
the path to a previously visited page, we just omit it and wait until
case 2) occurs.

4) (ureq /∈ T) ∧ (uref /∈ T):
If the access pair and the path T are disjunct, we generate a new
traversal path.

For every T ∈ TC , the access pair match is now calculated considering the
cases above. Since this results in many possible paths, matches for case 1) are
considered to be more ”valuable” for reconstruction (since they correspond
to a forward navigation), than 2) and 3) (which correspond to a backtrack-
ing/split navigation). And naturally, 2) and 3) are more ”valuable” than 4)
(which results in a completely new path to be generated). If there are still
any ambiguities, the path is chosen via a most recently used (MRU) policy
from the available set.
A simplified version of the path extraction which has an upper bound of
O(L2) with L being the number of log file entries is described in pseudocode
in Algorithm 4.

However, there are many subtle special cases that had to be considered
in the implementation. One example is the handling of HTML frames: As

64 CHAPTER 5. USAGE DATA

Algorithm 4: Path reconstruction

Data : access log f

Result: list of all extracted traversal paths T̂

while !eof(f) do
parseNextLogLine (f, time, ip, agent, ureq, uref);
if !filterEntry(ip, agent, ureq, uref) then

T̂ ← {T ∈ TA|time− timeT < timeout};
TA ← TA \ T̂ ;
TC ← {T ∈ TA|(ipT = ip) ∧ (agentT = agent)};
if (TC = ∅) ∨ (ip /∈ TC) ∨ (uref = ∅) ∨ isExtern(uref) then

t← createNewTraversalPath(time, ip, agent);
TA ← TA ∪ t;

else
if {T ∈ TC |ureq /∈ T} 6= ∅ then

tE ← minT∈TC{time− timeT |uref = lastElem(T)};
tM ← minT∈TC{time − timeT |uref 6= lastElem(T) ∧
uref ∈ T};
if tE 6= ∅ then

t← tE;

else
if tM 6= ∅ then

t← createSplitTraversalPath(tM);

else
t← createNewTraversalPath(time, ip, agent);

end
TA ← TA ∪ t;

end
else

continue ;

end
end
appendPathEntry(t, time, ureq, uref);

end
end

5.3. PATH EXTRACTION ALGORITHM 65

4)

1) 2)

3)

AA

B

P

B

P

B

C

A

B

C

C

B

P

DA

A

B

B

A

P

C

A

C

A

P

B

D

B

C

P

A

Figure 5.4: Path reconstruction cases with resulting traversal paths (dashed
lines indicate the referer-access pair and solid lines an already existing path).

stated before, the access log records all HTML files that are included in a
single frame. Thus we obtain a set of HTML page requests that fall into a
very small time slot for a single frame request. The implementation therefore
considers subsequent requests with a time difference below 1 second as the
result of a HTML frame and arranges them in linear order. Special care
has also been taken about the fact that the frame pages can have different,
the same, or even no referrer information which forces us to make some
unaesthetic adjustements in the path completion procedure.

5.3.5 Popular Path Extraction

After having reconstructed all available traversal paths T̂ from the access
log, the last stage of the algorithm is concerned with extracting a set of most
popular paths T̄ from T̂ that can be used for visualization. Therefore, the
extracted paths should not capture short navigation fragments that result if
we employ standard data mining methods (see 5.4). Our goal is to obtain
well traveled, long paths that capture navigations from the site entry on. We
therefore introduce the following definition:

Definition 12 (Most Popular Paths) The set of most popular paths T̄

66 CHAPTER 5. USAGE DATA

is a union of all the paths T ∈ T̂ from the extracted path set that capture
possibly long, well travelled navigation sequences starting with the user’s site
entry. Thus, it captures the areas of the Web locality that are of high interest
to the users.

Using the reconstructed traversal paths T̂ from the last stage, we first con-
struct a path graph GT̂ that captures the accumulated traversal sequences
similar to a suffix tree and which is later used for analysis.

Definition 13 (Path Graph) A path graph is a DAG defined by the triple
GT̂ = (V,E,Φ) with V,E ∈ T̂ . For every node v ∈ V , a list Φv =
{(Tpr,Φ(Tpr)) | Tpr = (p1, . . . , pm−1) ⊂ T = (p1, . . . , pm−1, pm = v, . . . , pn) ∈
T̂} is maintained with Φ(T) being the occurence of path T . Thus, the function
Φv(Tpr) : T̂ 7→ IN returns the total number of traversal paths that intersect in
node v and have the prefix Tpr. Figure 5.6 illustrates the concept of the path
graph.

Starting with GT̂ = ∅, the path graph is built as follows. Every traversal

path T ∈ T̂ is inserted into GT̂ , by adding its nodes and directed edges to
the graph if they do not exist yet. An additional edge is also created from
a meta-node called SON (start of navigation) to the first node in the path
and another one from the last path entry to EON (end of navigation). Then,
for every v ∈ T = (v1, . . . , vm−1, vm = v, . . . , vn), Φv(Tpr = (v1, . . . , vm−1)) is
incremented by one.

(<A,C>)=5

(<SON,A,B>)=2

(<A,B>)=2

(<SON,B,F>)=3

(<A,B,E>)=2

(<SON,A,B,F>)=2

(<A,B,D>)=5

(<SON,A,B,E>)=2

(<SON>)=16

(<SON,A,B,D>)=5

(<B,F>)=3

(<SON,A,C>)=5

(<A,B,F>)=2

(<SON,A>)=5

(<SON,A,B>)=5

(<SON,A,B>)=2

(<SON,A>)=11

(<SON,B>)=3

(<SON,A,B>)=2

(<SON>)=3

Traversal Paths

F
Φ

Φ
F

B

E

E

Φ Φ
D

B

Φ

Φ

ΦΦ

C

Φ

Φ

Φ

A

Φ

Φ

Φ

EON

Φ
EON

SON

Φ
EON

A

Φ
EON

C Φ
EON

F

Φ
EON

D

Φ
EON

B

Figure 5.5: A simple path graph example

During the insert operation, information that is not needed like IP, agent
and time information is ommited, since we are only interested in the actual

5.3. PATH EXTRACTION ALGORITHM 67

navigation sequenceM. In addition, we store external referrers for each node
in a structure separate from GT̂ for later use and ommit referrers that con-
tain an URL query part containing a ”?” since they mostly do not represent
static links but are the result of search engine queries that lead to our site.
Figure 5.6 presents a path graph of the Department Website containing sev-
eral hundreds of nodes. Several strategies to extract the most popular paths

Figure 5.6: Real path graph of the Department’s data set

from the path graph have been tried (see end of section). The most promis-
ing approach can be characterized as a greedy path graph traversal with an
adaptive cutoff value. Put briefly, we begin at the start of navigation meta
node and build the most popular path P by traversing the graph following
the most popular traversal choice with the prefix P thus adding each visited
node to P until EON is reached. The extracted path is then removed from the
path graph and the next most popular path is calculated using the new path
graph until GT̂ = ∅ or the number of extracted paths exceeds a certain limit.
The path set T̄ is then ordered by occurence. The whole extraction proce-
dure which is depicted in pseudo code in Algorithm 5 will now be described
in more detail.

First the successor of SON that has the largest number of traversal paths
Φn(SON) is selected as current node n. In the next step, n is appended to the
(currently empty) path P which we denote by the operation P ⊕ n. For the
current node n, all successors succ(n, P) that contain a path starting with
the prefix P are retrieved. We then use this set to calculate a cutoff value x̄
as the mean of all paths that traverse the set of nodes:

x̄ =
1

|succ(n, P)|
∑

m∈succ(n,P)

Φm(P) (5.1)

68 CHAPTER 5. USAGE DATA

If the total number of paths with prefix P that traverse n and go directly to
the EON node is larger than x̄, we chose n = EON as our new path traversal
step. Otherwise, the successor node with the maximum number of path
traversals is chosen:

n = arg max
m∈succ(n,P)

{Φm(P)} (5.2)

The procedure above is repeated until we reach the EON node. Then, the
constructed path P represents the most popular path extracted from GT̂

and is therefore added to our list of most popular paths T̄ .
In the next step, GT̂ is modified by removing P . Therefore, the whole graph
is examined to find all paths that have the prefix P which are stored in the set
D. For every path T ∈ D, Φn(Tp) is decreased by Φ(T) for each node touched
and Tp is successively assigned the whole sub-path range (T1, . . . , Tn−1, Tn =
T). If necessary, respective nodes and edges in the graph are also removed.
By selecting all paths D with a prefix P for deletion, we collapsed all derivates
of P onto this path. Thus, if the total sum of the occurences of all deleted
paths is larger than the occurence of the popular path P , we have to adjust

Φ(P) =
∑
T∈D

Φ(T) (5.3)

to reflect this fact. The whole path extraction procedure is then started anew
till the graph GT̂ is empty. During the last step, the result set T̄ is ordered

by path occurence, such that i < j for Φ(Pi) > Φ(Pj) with Pi, Pj ∈ T̂ .
Figure 5.5 provides a very simplified example of some extracted traversal
paths T̂ and the resulting path graph. The most popular paths will be
T̄1 =(<A,B,D>, Φ(T̄1) = 5), T̄0 =(<A,B>, Φ(T̄0) = 6) and T̄2 =(<A,C>,
Φ(T̄2) = 5).
The implemented cutoff idea is based on the assumption that for a given
position n in the most popular path P , the ”popularity” or significance of the
next node choice can be assessed by comparing the number of path traversals
with the mean traversals of all options. Although this method is quite robust,
it often results in very similar popular paths that mostly follow the main
route in the site. In order to gain popular paths that are widely spread over
the site, we adjust the cutoff value to be below x̄ for shorter paths (thus
considering more path options there) and to approach the original value as
the path length |P | increases. Thus, we now use the slightly modified cutoff
value x̃ instead of x̄ that is calculated via:

x̃ = x̄ ∗
(

1− 1

(β ∗ |P |) + 1

)
, β ∈]0,∞[(5.4)

5.3. PATH EXTRACTION ALGORITHM 69

Since the number of extracted paths |T̄ | is highly dependant on the specific
site structure, but we want it to be in a certain range, we introduce the
variable β in the formula above in order to make the path extraction adaptive
(Figure 5.7 shows the cutoff modification function for different values of β).

The path extraction algorithm is then supplemented by an outer loop
that inspects the popular path set T̄ . If the number of popular paths is not
in the user defined range |T̄ | ∈ [minPaths, maxPaths], we adjust β by adding
∆β if |T̄ | > maxPaths (and substracting otherwise). The default values are
β = 1.0, ∆β = 0.1 with the desired range of popular paths being [50, 100].
The inner loop of the path extraction algorithm (see Algorithm 5) also runs
in O(L2) (see before), if we consider O(T̂) = O(L).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Path length |P|

1.0
2.0

10.0
0.5
0.1

Figure 5.7: Cutoff modification function for different values of β

Finally, the whole popular path set T̄ including the external referrers is
serialized to disk using a straight-forward XML file format (see AppendixC)
and can then be used for usage visualization in YWeb which is described in
the next chapter.

Other extraction strategies

Another basic extraction strategy was implemented that tried to obtain most
popular paths simply by selecting the paths Pi ∈ T̂ with the highest number
of traversals Φ(Pi). However, this always resulted in very short prefix-like
paths that crowded about the same space of the Web locality.

A further approch tried to rank each path by assigning a weight that
captures the divergence of the actual usage from a model that would regard

70 CHAPTER 5. USAGE DATA

Algorithm 5: Popular Path Extraction

Data : list of all reconstructed paths T̂

Result: ordered list of most popular paths T̄

GT̂ = ∅;
for ∀ T ∈ T̂ do insert T into GT̂ ;

T̄ ← ∅;
while |T̄ | /∈ [minPaths,maxPaths] do

GT̂ ← restore original GT̂ ;
β ← β ±∆β;
T̄ ← ∅;
while GT̂ 6= ∅ do

P ← ∅;
n← arg max

m∈childs(SON){Φm(SON)};
while n 6= EON do

P ← P ⊕ n;
x̄← 1

|succ(n, P))|

∑
m∈succ(n, P) Φm(P) ;

x̃← x̄ ∗
(

1− 1
(β∗|P |)+1

)
;

if ΦEON(P) > x̃ then
n← EON;

else
n← arg max

m∈succ(n, P){Φm(P)};

end
end
T̄ ← T̄ ∪ P ;
D ← find all paths with prefix P in GT̂ ;
for ∀ T ∈ D do remove T from GT̂ ;
if
∑

T∈D Φ(T) > Φ(P) then Φ(P)←
∑

T∈D Φ(T);

end
T̄ ← ∀Pi, Pj ∈ T̄ ; i < j : Φ(Pi) > Φ(Pj);

end

5.4. RELATED WORK 71

the link following as a normal distribution:

W (P) =
Φ(P)

E(Φ(P))
=

Φ(P)
∏

n∈P outDegree(n)

Φ(n1 ∈ P)
(5.5)

Unfortunately, the results were heavily distorted for paths leading through
nodes of especially high out-degree (for example Javadoc navigation frames
!).

5.4 Related Work

There is a great amount of access log analyzers available to the interested
user via the Web. Unfortunately, most of them just focus on calculating sim-
ple statistics based on questionable metrics such as hits or page views which
are quite ambigous as has been explained before and are thus less interesting
in our context.

In the recent years, the data mining community has also embraced the Web as
a target for knowledge discovery in the sense of Web content mining and Web
usage mining. Publications such as [MS99] contain a wealth of information
on this subject, but they are focussed on finding association rules in the
access data that are used to make predictions like: 90% of the users that
accessed (A,B) will access (D,E). Although this kind of analysis may be
useful for understanding specific navigation properties, it is not suitable for
visualization.

Even fewer systems tackle the problem of extracting user paths that can
be used for visualization. Speedtracer ([WYB98]) for example, a Web usage
mining and analysis tool by IBM, uses the maximum forward path model
described here, but focusses on finding frequenctly occuring consecutive sub-
sequences. These however, do not necessarily capture large navigation paths
starting with the user’s site entry.

[CPP00] uses a notion of longest repeating subsequences (LRS) similar to
the maximum forward sequences for path analysis. However, they obtain
their data from cookie-enhanced log files that are more accurate than the
plain ones used here.

Other path extraction prototypes like [PPR96] use the site’s topology to
make guesses about the best candidate path to append the current entry to.

72 CHAPTER 5. USAGE DATA

Chapter 6

Usage Visualization

In this chapter, we focus on a visualization for the paths that was designed
in such a way that the user can quickly grasp the usage of the site as a whole
and gain an answer to the following questions: Where did most people enter
the site ? Where did they travel in the site ? Where did they come from
? Since the visualization is based almost entirely on the site’s access data,
we can describe it as a form of usage based layout (UBL) that provides an
alternative representation compared to the structure-based logical domains
previously described.
In contrast to most existing sitemaps, we also exploit the direct neighbor-
hood of the site in order to provide a further contextual cue for the user.
In addition, interactive techniques for dynamic filtering and querying are
presented for this layout together with Web-based implementation based on
Java’s applet technology.

6.1 Popular User Path Layout

The basis for user path layout is the site path model.

Definition 14 (Site Path Model) The site path model M = (T̄M , C) con-
sists of a prefix of the popular path set T̄M ⊂ T̄ , T̄M =

⋃
i<γM

Ti ∈ T̄ with γM
being user-defined. C denotes a set of configuration constants for the layout
that will be introduced throughout the text.

The basic idea is that the site administrator or creator of the usage-based
map selects an appropriate range of the most popular paths and an appro-
priate appearance via the layout configuration. The model M which is later
also used in the Web-based visualization generates a view that can then be

73

74 CHAPTER 6. USAGE VISUALIZATION

interactively explored by the user. Following the well-known model-view-
controller paradigm, we calculate a new model graph GM from M and C
after every user interaction, that is then layouted, labeled and colored.

The main part of the popular user path layout consists of the graph (the
view) induced by the visible paths T̄L,

GM
def
= T̄L =

⋃
i<γL

Ti ∈ T̄M (6.1)

with γL = |T̄L| being the maximum number of visible paths in the lay-
out. Since we want the whole path layout to fit into a limited screen estate
of CWidth × CHeight, the resulting graph GM is then subjected to a width-
restricted path layout, labeling and coloring. Depending on the node selected
by the user, a subgraph of GM is calculated for highlighting and external re-
ferrer nodes are added on top of the previous layout. The single layout steps
described above are now further explained in the subsequent sections.

6.1.1 Width-Restricted Path Layout

The main part of the layout is used to display the user paths in the model
via the graph GM . Since the union of the popular user paths through a Web
site shows a highly hierarchical property, an appropriate layout style had to
be chosen:
The well-known Sugiyama layout (see [BETT99])is often used for the hierar-
chical visualization of digraphs because it is highly intuitive. The approach
consists of the following three phases:
In a preprocessing step, the input digraph G = (V,E) is made acyclic by
temporarily reversing a subset of its edges.
During the layer assignment phase, V is partitioned into subsets L(G) =
{L1, . . . , Lh} such that for every edge (u, v) ∈ E with u ∈ Li and v ∈ Lj
the constraint i > j is satisfied. In a further step, ”dummy vertices” are
inserted as follows: Each edge (u, v) of span i − j > 1 is replaced with a
path (u = v1, . . . , vk = v). Afterwards, every vertex v ∈ Li from the layered
digraph is assigned the same y-coordinate yi. The subsequent crossing reduc-
tion phase then orders the vertices within each layer L to reduce the number
of edge crossings. Finally, the horizontal coordinate assignment phase calcu-
lates an x-coordinate for each vertex such that the edge length is minimized.

The current Sugiyama implementation in the y-files framework that uses the
polyline drawing convention, produces pleasant layouts when applied to the
path graph GM . However it does not optimize for the layout size which of-
ten results in huge graphs that can only be explored using zoom and pan.

6.1. POPULAR USER PATH LAYOUT 75

Therefore, the following changes were made to the existing implementation
of the algorithm:

In the first phase, the layering based on topological sorting was replaced by
a layering method to minimize the width W = max1≤i≤h |Li| of the largest
layer: If we assume that the size of the dummy nodes is considerably smaller
than the space occupied by the real nodes, Widthdummy � Widthreal, (which
is true in most cases since the size of the dummy nodes equals the width of
the edges in the drawing), the coffman-graham-layering also described in
[BETT99] can be used to obtain a width-minimized layering. The algorithm
takes a reduced digraph Gred and the maximum number of real nodes per
layer W as input and produces a layering of G with width at most W . The
reduced digraph Gred is obtained via the algorithm presented in [Meh84] that
calculates the reflexive, transitive closure G∗ = (V,E∗) where E∗ = {(i, j) ∈
E|i j} via the closure of the reduced graph G∗ = G∗red.

Thereafter, the first phase of the coffmann-graham-layering is executed:
the vertices u ∈ V are ordered by assigning a positive integer label θ(u)
to each vertex, starting with the sources in the graph. After the labels
1, 2, . . . , k− 1 have been assigned, the next vertex v is chosen such that: (1)
no labels have been assigned to v yet, (2) labels have been assigned for all of
its predecessors u with (u, v) ∈ E and (3) the set of labels of the predecessors
of v {θ(u)|(u, v) ∈ E} is minimized in lexicographic order.

The second phase of the coffmann-graham-layering fills the layer with
vertices, ensuring that no layer gets more than W vertices. The algorithm
proceeds from the bottom layer L1 to top layer Lh in the following fashion:
For layer Lk, we chose a vertex that has not been placed yet and for which
all successors have been placed in one of the layers L1, . . . , Lk. In case of a
tie, the vertex with the largest label is selected. If there are no such vertices
or the layer is full (|Lk| = W), the next layer Lk+1 is selected.
It has been shown ([BETT99]) that the resulting height h of the layering has
an upper bound of h ≤ (2− 1

W
)hmin with hmin being the minimum possible

layout height of the graph without any width restrictions.

The next modification affects the third phase of the sugiyama layout. In the
current Y implementation, an integer linear program (ILP) is used to solve
the following optimization problem that tries to minimize the space used by
each layer and draw the edges as vertical as possible.
Let Cn be the x-coordinate of vertex n ∈ V , De = |Cu−Cv| with e = (u, v) ∈
E be the difference in the x-coordinates of nodes u and v respectively and
w(v) = CNodeWidth the width of vertex v in pixels units. The objective func-
tion of the ILP can then be formulated as

76 CHAPTER 6. USAGE VISUALIZATION

min
∑

De ,∀e ∈ E (6.2)

with the following set of constraints:

0 < Cn <∞, ∀n ∈ V ; 0 < De <∞, ∀e ∈ E (6.3)

Cv − Cu ≤ De, ∀e ∈ E; Cu − Cv ≤ De, ∀e ∈ E (6.4)

∀L ∈ L(G) : ∀i, j ∈ L : π(i) = π(j) + 1 :

Ci − Cj ≥
w(i)

2
+
w(j)

2
+ δr = dij (6.5)

While (6.3) restricts the x-coordinate, (6.4) minimizes the x distance between
connected nodes in separate layers. With δr = CRealNodeDist being the minimal
node distance, (6.5) minimizes the space occupied by the nodes in each layer
L (where π(i) denotes the index of node i).

In order to use this algorithm with the coffmann-graham-layering, the
following modifications were introduced:
First of all, since the drawer did not take into account the (small, but existent)
size of the dummy nodes, (6.5) was adjusted to take care of the four different
cases regarding the sequence of dummy nodes (Vd) and real nodes (Vr):

Ci − Cj ≥ dij =

2w(j) + 2w(i) + δd : i ∈ Vd ∧ j ∈ Vd

2w(j) + w(i)
2

+ δd : i ∈ Vr ∧ j ∈ Vd
w(j)

2
+ 2w(i) + δd : i ∈ Vd ∧ j ∈ Vr

w(i)
2

+ w(j)
2

+ δr : i ∈ Vr ∧ j ∈ Vr

(6.6)

Here, δd = CDummyNodeDist denotes the minimal distance between the dummy
nodes, which otherwise are likely to be placed on the same position.
The second adjustment is the restriction of the x-coordinates Cn by the size
of the largest layer (since otherwise, the LP solver did not minimize the
position correctly !). Thus the first part of equation (6.3) is replaced by:

0 < Cn < max
L∈L(G)

 ∑
(i,j)∈L

dij

 ,∀n ∈ V (6.7)

The aesthetic appearance of the resulting layout (see Figure 6.1) is greatly
determined by the maximum number of nodes per layer W and the overall

6.1. POPULAR USER PATH LAYOUT 77

available layout size CWidth×CHeight. For a mostly pleasant initial configura-
tion, we estimate W via

W =

⌊
CWidth′

CNodeWidth + CRealNodeDist
∗ (1− Cη)

⌋
(6.8)

where CWidth′ is the adjusted width taking into consideration a suitable border
and Cη ∈ [0, 1] is an additional node spacing modifier which influences the
”density” of the layout: If the maximum possible number of nodes per layer
was chosen, the layout would result in a rectangular equidistant grid that
makes it very difficult to identify tree-like properties in the graph.

In the unlikely case that the ILP can not be solved, because of a break-
down in the assumption Widthdummy � Widthreal (which may occur if W
is too small and thus, far too many dummy nodes are inserted), the user is
notified to change the configuration C accordingly.
As mentioned in [BETT99], the problem of finding a layering with minimum
width subject to having minimum height is NP-complete. Here, we only focus
on finding a minimum width layering since the horizontal space constraint
is probably more present as the map is going to be displayed next to the
browser. Thus, after the width restricted layout is completed, we compare
the resulting graph height with CHeight and notify the user if it is not possible
to embed the model graph with the settings C.

The path layout described above is only calculated once for the largest model
graph GM with γL = γM . For all γL < γM we use the pre-calculated node
and edge positions. This has the drawback that the layout still occupies the
same space when the user reduces the number of paths displayed (see 6.1.3).
On the other hand, using fixed node positions greatly improves the user’s
ability to preserve his mental map of the site and makes the visualization
more responsive to interaction events.

6.1.2 Visual Mapping

In addition to calculating node and edge positions, the appearance of the
nodes and edges is chosen to reflect a mapping of information to various
visual attributes like color and shape.

As can be seen in Figure 6.1, the shape of the nodes is used to distinguish
between internal (round rectangles) and external (round) pages. The color of
the nodes does not imply a particular information whereas the thickness of
the border serves as a flag for available META information for the respective
page.
The shape of the edges is also used to distinguish between internal (solid)

78 CHAPTER 6. USAGE VISUALIZATION

and external (dotted) user paths. Since we want the color of the edges
to visualize the aggregate traversals of the particular link, we enhance the
previous traversal definition from the last chapter as follows:

Φ(e) =
∑

{P∈T̄L|e∈P}

Φ(P) ,∀e ∈ GM (6.9)

Now the traversals Φ(e) of a particular edge is given by the accumulated
traversals of all visible paths that contain this edge. The edge color is then
calculated via a linear interpolation between the current edge traversals and
the maximum edge traversal value in the graph:

Color(e) =
Φ(e)

maxe∈GM{Φ(e)}
∗ (CColorHigh − CColorLow) (6.10)

Finally, a special highlighting color and edge shape is used to display paths
selected by the user.
The whole mapping is highly configurable as can be seen in the screenshots
in Appendix B.2.3.

6.1.3 Interactivity

Concerning the interactivity of the layout, we distinguish between two dif-
ferent user types:

Sitemap Creator

First, the sitemap creator has a wide range of possibilities to modify the
appearance of the layout via the site path model editor (see Figure B.6). As
stated before, he creates and modifies the site path model M that the user
will later be able to explore. This includes the selection of the maximum
number of nodes in the model which directly affects the maximum number
of paths γM from which the model is built.
By modifying the layout configuration C, the appearance of the layout can
be altered ranging from size and colors to density (B.7). He also has the
possibility to export the sitemap and generate the necessary HTML code to
include it into his Web presence via a single mouse click.

Sitemap user

Second, the interactivity for the sitemap user was developed for easy explo-
ration of the site path model M . It mainly consists of three elements that
are also available to the sitemap creator:

6.1. POPULAR USER PATH LAYOUT 79

1. Path Display Adjustement: The user can dynamically adjust the num-
ber of paths γL that are used to construct the layout graph GM from
the model. Since the feedback from the layout is presented in under 1
sec., this feature can be used to interactively explore the most popular
paths and link traversals at different levels of granularity (see Figure
6.1).

2. Node-Path Exploration: A further exploration of user paths is available
by clicking on a specific node. The layout is then modified to emphase
the subgraph induced by all paths through this node. In a second step,
additional nodes and edges are added to provide information about ex-
ternal referrers leading to the selected node and the first node of the
most popular path through it, thus providing useful context informa-
tion about the user behaviour. The details of this layout augmentation
are described in 6.1.4.

3. Tooltips: Some information of like URL, title, meta tags etc. are made
available on mouse-over events by displaying a tooltip next to the cor-
responding node.

6.1.4 Node-Path Exploration Layout

During this step, the previously generated, static path layout of GM is aug-
mented by a dynamic component that depends on user interaction.
The user selects a node Ns ∈ GM in order to explore its neighborhood via
the popular paths taken by other users that lead through that node.

Thus in the first part of the layout augmentation, a subgraph Gs ⊆ GM is
calculated as follows: A set of paths T̄s = {Ti ∈ T̄L|Ns ∈ Ti} is defined
by all visible paths that include the selected node. This set induces a sub-
graph Gs = {n, e ∈ GM |n, e ∈ T̄s} that contains only the nodes and edges
of the “important” paths. In order to emphase the neighborhood Gs created
by this operation, the complement GM \ Gs is modified by using an alpha-
blending technique: The RGB color values of the corresponding nodes, edges
and labels are adjusted by a linear interpolation between the original and
the background values.

The purpose of the second layout augmentation is to provide the user with a
context about the traveled paths that goes beyond the scope of the examined
Web locality: By displaying the most prominent external referrer nodes that
lead to the selected node Ns and the entry node of the most popular path

80 CHAPTER 6. USAGE VISUALIZATION

Tp, the user receives some sort of semantic context for the part of the Web
presence he currently explores.
The most popular path Tp of the selected path set is calculated via

Tp = arg max
Ti∈T̄s
{Φ(Ti)} (6.11)

We also define Np as the first node of the path Tp. Then, two sets of external
referrers that were determined during the log analysis phase are formed. Rp

represents the referrer nodes that are leading to the node Np, while Rs is
formed by all referrers leading to the selected node Ns. In case of Np = Ns,
only one set Rp = Rs is created.
The layout of GM from the last step is now extended to include these new
nodes via a simple placement algorithm. The two sets are cropped to a size
defined by the sitemap creator by removing the less visited nodes. Then the
width W of the bounding box for Rp and Rs is calculated via

W (Rp) = W (Rs) = |Rp/s| ∗ CNodeWidth + (|Rp/s| − 1) ∗ CRealNodeDist (6.12)

The initial horizontal placement positionX for the referer boxes is right above
the respective node since we want to minimize the edge length: X(Rs) =
X(Ns) and X(Rp) = X(Np). The position is then adjusted if it lies beyond
the layout bounds. If the boxes intersect, we move Rs into the direction of
the smallest overlap. We prefer Rs since we want the referrers of the most
popular path entry node Np to be displayed as close to the node as possible
for aesthetic reasons. If one of the referrer boxes still intersects with the
layout bounds, we shift them both together by the same value such that no
overlaps exist.
The vertical position of the nodes is then given by Y (Rs) = Y (Rp) =
CY LayoutStart − CNodeHeight − CLayerDist. Finally, edges between each node
n ∈ Rs/p and Ns/p are inserted into GM and the edge colors are calculated
via the scheme described in 6.1.2.

Afterwards, the most popular path of the set T̄s is highlighted using a special
color and line style (see Figure 6.1).
The resulting graph is finally labeled via a greedy maximum independent set
labeling provided by the y-files framework, that has been extended to discard
candidate label positions that are not contained in the total layout bounds.
The label text is determined via the heuristic presented in 4.3.
Figure 6.1 shows the complete path layout as it is generated by Algorithm 6.
The initial layout generation is quite slow, due to the LP being NP-complete.
In practice, this doesn’t pose a problem since we only treat graphs with less
than 50 nodes here. The second part runs in interactive rates and has an
upper bound of O(n), with n being the number of nodes in the layout.

6.1. POPULAR USER PATH LAYOUT 81

Figure 6.1: Popular path layout of the Department’s site with a node selected

82 CHAPTER 6. USAGE VISUALIZATION

Algorithm 6: Simplified version of the popular user path layout

Data : Popular user path set T̄

Result: Popular path layout

γM ← get number of paths selected by map creator;
GM ← T̄M ←

⋃
i<γM

Ti ∈ T̄ ;
while user interaction available do

γL ← get number of paths selected by user;
GM ← T̄L ←

⋃
i<γL

Ti ∈ T̄M ;
calculate width-restricted layout for GM ;
Ns ← get node selected by user;
if Ns 6= ∅ then

T̄s ← {Ti ∈ T̄L|Ns ∈ Ti};
Gs ← {n, e ∈ GM |n, e ∈ T̄s};
retrieve calculated layout positions;
calculate edge colors;
fade colors of GM \Gs;
Tp ← arg maxTi∈T̄s{Φ(Ti)};
Np ← first node of Tp;
Rp ← get referers to Np;
Rs ← get referers to Ns;
calculate positions for Rp, Rs and insert into GM ;

end
render GM with colors and layout positions;

end

6.2 Web-based Path Visualization

After an appropriate site path model M has been chosen by the map creator,
it is serialized to disk using an own XML format (see Appendix C).

Since the interactivity of the layout does not permit the use of pre-
calculated image maps as in 4.3.3, there are basically two options to make
the path visualization layout available to the user on the Web if we do not
want him to install special software:

1. Server-generated image maps are client-side image maps that are gen-
erated on the server as the user interacts with the map. Technically,
this can be realized by using a servlet engine with the installed Web
server. Unfortunately, this collides with our constraint that the visu-
alization should not require significant changes to the server setup. In
addition, depending on the number of users, the process for generating

6.2. WEB-BASED PATH VISUALIZATION 83

the maps can generate considerable load and thus does not scale very
well.

2. Applets in constrast are executed on the client machine and are sup-
ported by all common browser types. The drawback is that the whole
map application and data has to be sent to the user first which can
result in considerable network traffic and a start-up delay before the
visualization can be used.

Considering the facts above, the decision was made to provide the Web-based
path visualization via an applet solution. The YWeblet was implemented

Figure 6.2: The YWeblet used for exploring the department Web site

using the Java 1.2 API which currently makes the one-time installation of
the required plug-in necessary. Nevertheless, special care was taken to make
the migration to version 1.1 (which does not require a plug-in) fairly easy,
if desired. The layout and site path model code used is in fact the same
that is employed in the YWeb application itself, with some added wrapper
classes. The whole sitemap is of course delivered in a JAR archive in order
to preserve download time. Figure 6.2 shows a screenshot of the applet in
use alongside the Web browser.

The interactivity features do not differ a lot from the ones described in
6.1.3. The path display adjustement as well as the node-path exploration is

84 CHAPTER 6. USAGE VISUALIZATION

made available too, while tooltips have been discarded in favor of a status
area at the bottom of the applet. By clicking on a node in the layout, the
other browser window is instructed to load the specific Web-page.

6.3 Related Work

Compared with the field of hypertext and Web structure visualization, there
have been only a few publications touching the visualization of user paths
in a Web environment. Some work has been done on the visualization of
single user paths as a graphical history and browsing feature (see [Gal00]
for an overview), but this is quite different from the approach of using the
accumulated paths of all users for usability analysis and navigation.

The earliest visualization for access logs WebViz ([PB94]) does not dis-
tinguish between paths, but presents a usage graph which is drawn via a
randomized scheme using the ”depth” in the unix file hierarchy and a space
partitioning heuristic. The graph itself represents the whole site, with the
transition frequency between nodes being mapped on the edge width. The
system also allows a visualization of the traffic patterns over time.

In a recent paper ([CPP00]), the same authors use dome trees to visualize
large Web sites and allow the overlay display of single user paths. They also
introduce a usage-based layout that is operates on building a tree using the
site structure and a priority-based traversal based on usage data that is
later displayed as dome or disk tree. This method has a sharp focus on site
analysis and is not suitable as single user navigation help since the amount of
displayed information is overwhelming and requires a great deal of interface
events.

[CS99] presents a 3D visualization tool called VISVIP that can be used
by site administrators to explore paths traveled by individual subjects. The
path data is not extracted from the access logs, but recorded by an instru-
mented browser during usability experiments. For visualization, a 2D layout
using a force-directed algorithm is used, with the path of the subject being
superimposed on the drawing via a spline. The third dimension is occu-
pied by a bar for each node, representing the time the user spent on each
node. They also provide an animated representation of progress along a path
through the Web site.

INsite [FSMF99] uses the connectivity matrices defined by the aggregates
of several user paths through clusters of pages for presentation. Unfortu-
nately, this compact form of visualization is hard to interpret for users that
are not familiar with the respective site.

The only system that also supplies a Web-based visualization for aggre-

6.3. RELATED WORK 85

gate user paths is Footprints [WM97], which is a set of tools that explores
interaction history to generate several of layouts for site navigation that are
based on a physical-world metaphor. Their path map depicts typical paths
through the current document in a stair-step fashion. This is done via a
Java applet that encodes the degree of use as lines of varying width through
the single nodes that should be thought of like cities, with the paths being
highways through the nodes.

Unfortunately most of the systems described above are research proto-
types that are not available to the public and have been tested only on a
very limited data set.

86 CHAPTER 6. USAGE VISUALIZATION

Chapter 7

Conclusions and Future Work

We have presented an automatic navigation sitemap generation system that
fulfills all of our self-imposed design requirements established in 2.4.1. Nev-
ertheless, there is still a lot of work do be done in terms of robustness,
interactivity and visualization.
However, in comparison to most systems described in 2.3, our prototype can
be considered to be novel in respect to the following features:

1. Real cross-plattform capability by solely relying on the Java and y-files
API.

2. Open system through XML data exchange standards and code avail-
ability.

3. New structure-based navigation sitemap approach by using logical do-
mains as the basis of visualization and interaction in navigation sitemaps.

4. New usage-based navigation sitemap approach by using popular user
paths through the locality as the basis for visualization and interaction.

5. Large Web localities supported with up to 15.000 nodes.

6. Robustness by using a variety of different Web site types for testing
(as opposed to only educational type sites used by most research pro-
totypes).

We now present some of the results and problems concerning the data ex-
traction, the clustering/structuring, the visualization and the Web site map
tier (see 2.6):

87

88 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Data Extraction

Regarding the structure extraction tier, the simple YWebCrawler is currently
taking up to several hours for a large site of several thousand nodes in order
to extract structural data from the Web locality. This could of course be
improved by providing a real multi-threaded implementation. In the current
version, the crawler also does not support the crawling of hyperlinks embed-
ded in Javascript and other scripting languages. Nevertheless, it proved to
be highly reliable concerning the crawling of dynamically generated HTML
pages as long as no interactive content like forms etc. was encountered.

The YWeblog popular path extraction component provided the source for
useful insight into the site’s usage. In order to further improve its reliability,
techniques like IP and host munging should be employed. Besides, we did
not yet present metrics to actually assess the quality of the extracted paths.
This was done by manually examining the log files and inferring the user
patterns and popular paths through correlation with the site structure.
Nevertheless, the path extraction was successfully used, with access log data
files > 1GB taking about half an hour to complete.

Concerning the server access logs as a data source, it has to be men-
tioned however that reliable usage data will be harder to come by in the
future due to the increasing use of anonymizer services (such as crowd prox-
ies or SafeWeb1). Also, future implementations of the IPv6 protocol will
support the dynamic change of IP addresses during accesses, thus making
identification even more complicated.

Clustering

Currently, only the logical domain component uses some kind of clustering
technique for data aggregation. We observed that the empirically determined
scoring functions work surprisingly well for a large variety of different sites.
Nevertheless, it could be worth while to establish presets for different genres
of sites such as academic, personal or commercial ones in order to improve its
accuracy. Another interesting approach would be the use of adaptive tech-
niques such as machine learning for determining a suitable standard config-
uration. Both tasks however will require a large number of Web localities to
be sampled in order to obtain general results.
Due to its straight forward clustering procedure, the logical domain assign-
ment takes less than five minutes even for the largest site examined.

1http://www.safeweb.com

89

Layout and Visualization

The logical domain tree-map layout proved to be highly interesting during
informal usability studies mostly because of its ease of use and speed of
interaction. However, it could still be improved in order to provide further
interactivity by zooming into selected logical domains, making it possible to
alter the level of granularity or use dynamic filtering techniques. Another
approach would be to present several pre-calculated domain maps to the
visitor that were generated according to different metrics in order to support
distinct navigation tasks like finding the newest content on a site, finding the
largest sub-content, the hottest product etc. Some work regarding a more
visual appealing layout could also be done, especially in respect to vertical
labeling.

On the other hand, the popular path layout provided a first excursion
into the realm of usage based layouts. It proved to be of special interest
by providing information about the close external neighborhood where users
actually travel from to this site by visualizing the external referrers. Another
highly valued feature is the dynamic filtering technique that allows the user
to select a level of granularity by modifying the number of visible paths.

The quality of layout of the graph induced by the selected popular paths
is hard to assess since there is (to our knowledge) no other visualization avail-
able that uses the same data in this context. For an immediate improvement
however, the coffmann graham layering could be adjusted to consider the size
of the dummy nodes. Another interesting width restricted layering method
that considers the dummy nodes is also presented in [BELM00]. During im-
plementation, several short-comings of the y-files, especially the fixed draw
order regarding nodes and edges proved to be challenging in providing visu-
ally appealing layouts.

It has to be stated that both layout generation methods actually take less
than a minute, with the popular path layout being available at interactive
rates after the calculation of the initial layout.

Web-based Sitemaps

The most appealing features of the Web-based sitemaps are the high config-
urability and the fast ”one-click” generation and export that are especially
important for the ”casual” site administrator.
Still, a lot of work could be done in order to preserve more bandwith and
reduce the startup times of the visualization, especially in respect to the path
layout applet. The migration to Java 1.1 compatible API functions should
also be considered since it is supported by every browser type. However, in

90 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

this context, the y-files framework would first have to be migrated because
it makes extensive use of Java 1.2 collection classes.

Future Work

Several important topics for future work on the navigation sitemap genera-
tion system as a whole can be identified: First of all, the problem of URL
ambiguity through soft links has to be resolved by calculating a fingerprint
(for example the MD5 hash) of the specific page. In addition, new techniques
for the handling of HTML frames have to be investigated that perhaps use a
kind of clustering technique in order to group pages together that are related
by one HTML frame. Another important topic for research is the support
for crawling dynamically generated content that includes interactive items
like forms etc. which is certainly a challenge for itself.
Concerning the usage data extraction, metrics will have to be developed
and evaluated that assess the actual quality of the extracted paths and the
resulting popular user paths in order to compare different path reconstruc-
tion methods. The system itself offers a great deal of further possibilities in
increasing interactivity during the sitemap construction process. As an ex-
ample, visual editing procedures like manually deleting and inserting logical
domains could be added.

On the sitemap and visualization side, formal usability tests should be
conducted in order to determine their real value to the end user. In ad-
dition, new visual metaphors could be investigated that allow the user to
assess which parts of the page he already visited and present pages that are
of possible interest to him by including a recommendation system based on
clustered user sessions. Besides, the further use of animation techniques is
proposed in order to make the layouts more immersive and visually appealing.

Regarding the field of Web site mapping as a whole, the following topics are
especially interesting for investigation:
First, new visual metaphors and clustering approaches will have to be de-
veloped in order to gain further insight into useful and navigationable rep-
resentations for Web localities. Particular interesting could be the applica-
tion of techniques from social network analysis ([Zah01]) for the analysis of
intra- and inter-site structure. Another hot topic is the visualization of time-
dependant data e.g. the evolution of site structures or traffic through time
([CPP00]).

91

With the advent of Web sites providing automated services for other
sites and software agents via the Web (see Microsoft’s .NET framework2),
the Web is evolving towards a huge distributed computing platform. More
powerful visualization techniques will be needed in order to cope with the
growing complexity of the resulting semantic Web and the ever increasing
volume of inter- and intra-site data.

2http://msdn.microsoft.com/net/

92 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Appendix A

Web Locality Data Sets

The evaluation of the presented algorithms was conducted on a SUN Ultra-
Sparc 10 with 300 MB of memory, using five highly diverse Web locality data
sets that will now be described in order to present their different properties.

Ouk Magazine

The Ouk Magazine1 Web site is a ”net-mag” of monthly appearing Ouk
Magazines for electronic music enthusiasts. Most of the site contains the
actual monthly issues, while a small part is reserved for a discussion group
and news announcements. The locality itself is quite small with currently
about 400 pages and 700 hyperlinks and does not include advanced features
like frames or Javascript. The corresponding access logs that were used for
analysis range from 5 to 8 MB per month.

Parallel Computing Group

The University of Tübingen Parallel Computing Group Web site2 is a typi-
cal academic locality that does not include much manually created content.
In fact, a huge part of the site consists of JavaDoc-generated class docu-
mentations for the group’s graph visualization framework called y-files that
extensively uses HTML frames. The whole site therefore contains about 2000
pages in a whole. The access log data used for path analysis was actually
quite small with about 3 MB/month.

93

94 APPENDIX A. WEB LOCALITY DATA SETS

Department of Computer Architecture

The University of Tübingen’s Dept. of Computer Architecture Web site3 is
an advanced academic site that also contains a large online tutorial about
the SNNS software as well as several online books (these were not included in
the analysis). The site which makes extensive use of frames contains about
4400 nodes and 11204 edges and provides about 60 MB of access log data
per month.

Simon V’s Homepage

Simon V’s Homepage Web site4 is an ambitious artist homepage that provides
a lot of music and picture downloads as well as several discussion boards. It
can be categorized as highly dynamic because it makes heavy use of scripting
mechanisms and generates most pages on the fly. It consists of about 1300
pages with 12000 hyperlinks and provides about 4 MB of access log data per
month.

Native Instruments Software Synthesis GmbH

The Native Instruments Web site5 is a bilingual (english/german), commer-
cial locality that consists of several product displays, a large community, trial
downloads and of course an online shop.
The site is only about 800 nodes and 4000 edges in extent, but provides 1.5
GB of access log data per month. It makes heavy use of Javascript and does
require the HTTPS protocol for some pages.

1http://www.ouk.de
2http://www-pr.informatik.uni-tuebingen.de
3http://www-ra.informatik.uni-tuebingen.de
4www.simonv.com
5http://www.native-instruments.de

95

Figure A.1: Ouk Magazine Web site and sample sitemaps

Figure A.2: Parallel Computing Group Web site and sample sitemaps

Figure A.3: Dept. of Computer Architecture Web site and sample sitemaps

96 APPENDIX A. WEB LOCALITY DATA SETS

Figure A.4: Simon V’s Homepage Web site and sample sitemaps

Figure A.5: Native Instruments Web site and sample sitemaps

Appendix B

Software Package Description

B.1 Required Software Packages

The following software is required by various parts of the YWeb system:

Y-Files Framework

Y-Files1 is a freely available, powerful library for viewing, editing, layouting
and animating graph-like structures developed at the Parallel Computing
Group at the University of Tübingen. The library is written in Java and
runs on every computer with a Java2 VM properly installed.

Apache Xerces XML parser

Xerces2 is a freely available, powerful XML parser that is used for loading
the various SUG and SSG file formats.

Java Secure Sockets Extension (J2SEE)

The Java Secure Sockets Extension3, available for Windows and Solaris type
machines is required in order to enable the crawling of sites via the secure
HTTPS protocol which is suggested when analyzing online shops.

1http://www-pr.informatik.uni-tuebingen.de/yfiles/
2http://xml.apache.org/xerces-j/
3http://java.sun.com/products/jsse/

97

98 APPENDIX B. SOFTWARE PACKAGE DESCRIPTION

B.2 Components

The YWeb Sitemap Generation System mainly consists of three seperate
software components: The YWebCrawler is used for extracting the struc-
tural properties of the specific Web locality, while the YWebLog component
extracts and analyzes usage data. Finally, the YWeb component itself pro-
vides an interactive application for exploring the data and generating suitable
navigation sitemaps based on structure and usage.

B.2.1 YWebCrawler

Figure B.1: Crawler (top) and Google link extraction (bottom) dialogs

B.2. COMPONENTS 99

B.2.2 YWebLog

Figure B.2: Log input (top) and analysis (bottom) dialogs

100 APPENDIX B. SOFTWARE PACKAGE DESCRIPTION

B.2.3 YWeb

B.2. COMPONENTS 101

Figure B.3: YWeb application operating in logical domain mapping mode
with the logical domain browser and editor displayed to the right

102 APPENDIX B. SOFTWARE PACKAGE DESCRIPTION

Figure B.4: Logical domain clustering dialogs

Figure B.5: Logical domain mapping configuration dialogs

Figure B.6: Popular path layout editor, build and export dialogs

B.2. COMPONENTS 103

Figure B.7: Popular path layout mapping configuration dialogs

104 APPENDIX B. SOFTWARE PACKAGE DESCRIPTION

Appendix C

Document Type Definitions

Site Structure Graph (SSG.DTD)

<!-- SITESTUCTUREGRAPH DTD v1.2 -->

<!ELEMENT SITESTRUCTUREGRAPH (NODELIST,EDGELIST)>

<!ELEMENT NODELIST (NODE*)>

<!ELEMENT EDGELIST (EDGE*)>

<!-- NODE -->

<!ELEMENT NODE (URL,CSIZE,CDATE?,CTYPE,EXTRN,ELINK?,MDESC?,MKEYS?,TITLE?)>

<!ATTLIST NODE

NODEID ID #REQUIRED

TYPE CDATA #REQUIRED>

<!-- GENERIC NODE ELEMENTS -->

<!ELEMENT URL (#PCDATA)>

<!ELEMENT CSIZE (#PCDATA)>

<!ELEMENT CTYPE (#PCDATA)>

<!ELEMENT CDATE (#PCDATA)>

<!ELEMENT EXTRN (#PCDATA)>

<!ELEMENT ELINK (#PCDATA)>

<!-- HTML NODE ELEMENTS -->

<!ELEMENT TITLE (#PCDATA)>

<!ELEMENT MKEYS (#PCDATA)>

<!ELEMENT MDESC (#PCDATA)>

<!-- EDGE -->

<!ELEMENT EDGE (NAME)>

<!ATTLIST EDGE

EDGEID ID #REQUIRED

SOURCE IDREF #REQUIRED

DEST IDREF #REQUIRED>

<!-- EDGE ELEMENTS -->

<!ELEMENT NAME (#PCDATA)>

105

106 APPENDIX C. DOCUMENT TYPE DEFINITIONS

Site Usage Graph (SUG.DTD)
<!-- SITE USAGE GRAPH DTD v1.1 -->

<!ELEMENT SITEUSAGEGRAPH (NODELIST,EDGELIST,(PATHLIST?))>

<!ELEMENT NODELIST (NODE*)>

<!ELEMENT EDGELIST (EDGE*)>

<!ELEMENT PATHLIST (PATH*)>

<!-- NODE -->

<!ELEMENT NODE (URL,EXTRN,HITS)>

<!ATTLIST NODE

NODEID ID #REQUIRED>

<!-- GENERIC NODE ELEMENTS -->

<!ELEMENT URL (#PCDATA)>

<!ELEMENT EXTRN (#PCDATA)>

<!ELEMENT HITS (#PCDATA)>

<!-- EDGE -->

<!ELEMENT EDGE (HITS)>

<!ATTLIST EDGE

EDGEID ID #REQUIRED

SOURCE IDREF #REQUIRED

DEST IDREF #REQUIRED>

<!-- PATH PATH -->

<!ELEMENT PATH (TRAV,NODES)>

<!ELEMENT TRAV (#PCDATA)>

<!ELEMENT NODES (NR*)>

<!ELEMENT NR (#PCDATA)>

Site Path Model (SPM.DTD)
<!-- SITE PATH MODEL DTD v1.1 -->

<!ELEMENT SITEPATHMODEL (CONFIG,NODELIST,REFERERLIST,PATHLIST)>

<!ELEMENT NODELIST (NODE*)>

<!ELEMENT REFERERLIST (EDGE*)>

<!ELEMENT PATHLIST (PATH*)>

<!ELEMENT CONFIG (LAYOUTWIDTH,LAYOUTHEIGHT,LAYOUTBORDER,NODESPACING,

MAXIMUMREFERERNODE,LABELCHARS,REMOVENODEOVERLAPS,

USEURLLABELS,BACKGROUND_C,NODE_C,EDGES_C,EDGEE_C,

HIGH_C,LABEL_C,FADE)>

<!-- CONFIG ELEMENTS -->

<!ELEMENT LAYOUTWIDTH (#PCDATA)>

<!ELEMENT LAYOUTHEIGHT (#PCDATA)>

<!ELEMENT LAYOUTBORDER (#PCDATA)>

<!ELEMENT NODESPACING (#PCDATA)>

<!ELEMENT MAXIMUMREFERERNODE (#PCDATA)>

<!ELEMENT LABELCHARS (#PCDATA)>

<!ELEMENT REMOVENODEOVERLAPS (#PCDATA)>

<!ELEMENT USEURLLABELS (#PCDATA)>

<!ELEMENT BACKGROUND_C (#PCDATA)>

<!ELEMENT NODE_C (#PCDATA)>

<!ELEMENT EDGES_C (#PCDATA)>

107

<!ELEMENT EDGEE_C (#PCDATA)>

<!ELEMENT HIGH_C (#PCDATA)>

<!ELEMENT LABEL_C (#PCDATA)>

<!ELEMENT FADE (#PCDATA)>

<!-- NODE -->

<!ELEMENT NODE (TITLE,URL,HITS*,MKEYS*,MDESC*)>

<!ATTLIST NODE NODEID ID #REQUIRED>

<!-- GENERIC NODE ELEMENTS -->

<!ELEMENT URL (#PCDATA)>

<!ELEMENT TITLE (#PCDATA)>

<!ELEMENT HITS (#PCDATA)>

<!ELEMENT MKEYS (#PCDATA)>

<!ELEMENT MDESC (#PCDATA)>

<!-- REFERERS -->

<!ELEMENT REFERERS (NODES)>

<!ATTLIST REFERERS SRCID ID #REQUIRED>

<!-- PATH PATH -->

<!ELEMENT PATH (TRAV,NODES)>

<!ELEMENT TRAV (#PCDATA)>

<!ELEMENT NODES (NR*)>

<!ELEMENT NR (#PCDATA)>

108 APPENDIX C. DOCUMENT TYPE DEFINITIONS

List of Figures

2.1 PowerMapper . 21
2.2 SiteBrain sitemap integrated in a Web page 21
2.3 Sitemap generated by Inxight Tree Studio 23
2.4 Sitemap generated by WebToc 23
2.5 Sitemap generated by Mapa 24
2.6 YWeb sitemap system architecture 27

3.1 Logical domain cluster tree . 36

4.1 Force-directed topology layout 42
4.2 Zoomed force-directed topology layout 43
4.3 2D cone-tree layout schema 44
4.4 2D cone-tree layout of the ouk data set 45
4.5 Conversion of an attributed tree into a tree-map 45
4.6 Logical domain tree conversion 47
4.7 Logical domain treemap for the Department data set 48
4.8 Web-based logical domain tree-map 50

5.1 Sample Web server access log entry 56
5.2 Chain of request during Web server access 57
5.3 Maximum forward reference path construction 60
5.4 Path reconstruction cases . 65
5.5 A simple path graph example 66
5.6 Real path graph of the Department’s data set 67
5.7 Cutoff modification function 69

6.1 Popular path layout . 81
6.2 The YWeblet used for exploring the department Web site . . . 83

A.1 Ouk Magazine Web site and sample sitemaps 95
A.2 Parallel Computing Group Web site and sample sitemaps . . . 95
A.3 Dept. of Computer Architecture Web site and sample sitemaps 95
A.4 Simon V’s Homepage Web site and sample sitemaps 96

109

110 LIST OF FIGURES

A.5 Native Instruments Web site and sample sitemaps 96

B.1 Crawler and Google link extraction dialogs 98
B.2 Log input and analysis dialogs 99
B.3 YWeb application operating in logical domain mapping mode 101
B.4 Logical domain clustering dialogs 102
B.5 Logical domain mapping configuration dialogs 102
B.6 Popular path layout editor, build and export dialogs 102
B.7 Popular path layout mapping configuration dialogs 103

List of Algorithms

1 Web Crawler . 31
2 Logical domain clustering . 37
3 layoutNode(Node n, Orientation o, Rectangle r) 46
4 Path reconstruction . 64
5 Popular Path Extraction . 70
6 Simplified version of the popular user path layout 82

111

112 LIST OF ALGORITHMS

Bibliography

[Abr97] D. Abrams. How People use WWW Bookmarks. In Procceedings
of the ACM Conference on Computer-Human Interaction, 1997.

[BELM00] J. Branke, P. Eades, S. Leppert, and M. Middendorf. Width
Restricted Layering of Acyclical Digraphs with Consideration of
Dummy Nodes. Technical Report No 403, Insitute AIFB, Uni-
versity of Karlsruhe, 2000.

[BETT99] G. Battista, P. Eades, R. Tamassia, and I. Tollis. Graph Drawing
- Algorithms For The Visualization of Graphs. Prentice Hall,
1999.

[BRS92] R. Botafogo, E. Rivlin, and B. Shneiderman. Structural Analysis
of Hypertexts: Identifying Hierarchies and Useful Metrics. ACM
Transactions on Information Systems, 10(2):142–180, April 1992.

[BS91] R. Botafogo and B. Shneiderman. Identifying Aggregates in Hy-
pertext Structures. In Proceedings of the third annual ACM con-
ference on Hypertext, pages 63–74, San Antonio, TX USA, 1991.

[Che97] C. Chen. Structuring and Visualising the WWW by Generalised
Similarity Analysis. In Proceedings of the Eigth ACM Conference
on Hypertext and Hypermedia, pages 177–186, Southhampton,
UK, 1997.

[CK95] J. Carriere and R. Kazman. Interacting with Huge Hierarchies:
Beyond Cone Trees. In Proceedings of the IEEE Information
Visualization Conference ’95, pages 74–81, 1995.

[CMS99] S. Card, J. Mackinley, and B. Shneiderman. Readings in Informa-
tion Visualization - Using Vision to Think. Morgan Kaufmann
Publishers, 1999.

[Con87] J. Conklin. Hypertext: An Introduction and Survey. IEEE Com-
puter, 20:17–41, 1987.

113

114 BIBLIOGRAPHY

[CPP00] E. Chi, P. Pirolli, and J. Pitkow. The Scent of a Site: A Sys-
tem for Analyzing and Predicting Information Scent, Usage, and
Usability of a site. In CHI 2000 - Human Factors in Computing
Systems, pages 161–168, NYC, USA, 2000.

[CS99] J. Cugini and J. Scholtz. VISVIP: 3D Visualization of Paths
through Web Sites. In Proceedings of the International Work-
shop on Web-Based Information Visualization, pages 259–263,
Florence, Italy, 1999.

[Dod00] M. Dodge. Cyber-Geography Research. Centre for Advanced Spa-
tial Analysis, University College London, Octobre 2000. Available
at http://www.cybergeography.org [as of 11-03-2000].

[FSMF99] A. Faisal, C. Shahabi, M. McLaughlin, and F.Betz. INsite: In-
troduction to a generic paradigm for interpreting user-web space
interaction. In Proceedings of the second international workshop
on Web information and data management, pages 53–58, Kansas
City, MO USA, 1999.

[Gal00] Martin Gall. Y-Nansen: Tool zur graphischen Darstellung
benutzerbedingter Internet-Histographien (Surf-Maps). Mas-
ter’s thesis, University Tübingen, WSI Computer Science Dept.,
February 2000.

[Har69] F. Harary. Graph Theory. Addison-Wesley, 1969.

[Hen00] M. Henzinger. Web Information Retrieval - an Algorithmic Per-
spective. In Algorithms-ESA 2000: Proceedings of the 8th annual
European Symposium, LNCS 1879, pages 1–8, Saarbrücken, Ger-
many, September 2000.

[HGM00] I. Herman and M. Marshall G. Melançon. Graph Visualization
and Navigation in Information Visualisation: A Survey. IEEE
Transactions on Visualization & Computer Graphics, 6:24–43,
2000.

[HN99] A. Heydon and M. Najork. Mercator: A Scalable, Extensible
Web Crawler. World Wide Web, 2(4):219–229, December 1999.

[HY00] D. Harel and G. Yashchin. An Algorithm for Blob Hierarchy
Layout. In Proceedings of the 2000 ACM Conference on Advanced
Visual Interfaces, pages 29–40, Palermo, Italy, May 2000.

BIBLIOGRAPHY 115

[LG99] S. Lawrence and C. Giles. Accessibility of Information on the
Web. Nature, 400:107–109, 1999.

[LKVT00] W. Li, O. Kolak, Q. Vu, and H. Takano. Defining Logical Do-
mains in a Web Site. In Proceedings of the 2000 ACM Hypertext
Conference, pages 123–132, San Antonio, TX, August 2000.

[LR96] L. Lamping and R. Rao. The Hyperbolic Browser: A focus +
context technique for visualizing large hierarchies. Journal of
Visual Languages and Computing, 1:33–55, 1996.

[Meh84] K. Mehlhorn. Data Structures and Algorithms 2: Graph Algo-
rithms and NP-Completeness, pages 7–10. EATCS, Monographs
on Theoretical Computer Science. Springer Press, 1984.

[MFH95] S. Mukherjea, J. Foley, and S. Hudson. Visualizing Complex Hy-
permedia Networks through Multiple Hierarchical Views. In Con-
ference proceedings on Human Factors in Computing Systems,
pages 331–337, Denver, CO USA, 1995.

[MH97] S. Mukherjea and Y. Hara. Focus+Context Views of World-Wide
Web Nodes. In Proceedings of the Eigth ACM Conference on
Hypertext and Hypermedia, pages 187–196, Southhampton, UK,
1997.

[MM97] D. Modjeska and A. Marsh. Structure and Memorability of Web
sites. Working Paper in the Department of Industrial Engineer-
ing, University of Toronto, 1997.

[MS99] B. Masand and M. Spiliopoulou, editors. International WE-
BKDD99 WorkShop: Web Usage Analysis and User Profiling,
Lecture Notes in Artificial Intelligence (LNCS 1836), 1999.

[Muk99] S. Mukherjea. Information Visualization for Hypermedia Sys-
tems. ACM Computing Surveys, 31(4), December 1999.

[PB94] J. Pitkow and K. Bharat. WebViz: A Tool For World-Wide Web
Access Log Analysis. In Advance Proceedings First International
World-Wide Web Conference, pages 271–277, Geneva, Switzer-
land, 1994.

[Pit98] James E. Pitkow. Summary of WWW characterizations. Com-
puter Networks and ISDN Systems, 30(1-7):551–558, 1998.

116 BIBLIOGRAPHY

[PL98] C. Pilgrim and Y. Leung. Designing WWW Site Map Systems.
In Proceedings of the 10th International Workshop on Database
& Expert Systems Applications, pages 253–258, Florence, Italy,
1998.

[PP97] J. Pitkow and P. Pirolli. Life, Death and Lawfulness on the Elec-
tronic Frontier. In Conference Proceedings on Human Factors
in Computing Systems (CHI), pages 383–390, Atlanta, GA USA,
1997.

[PP99] P. Pirolli and J. Pitkow. Distribution of Surfers Paths through
the Wold Wide Web: Empirical Characterizations. World Wide
Web, 2(1-2):29–45, 1999.

[PPR96] P. Pirolli, J. Pitkow, and R. Rao. Silk from a Sow’s Eear: Extract-
ing Usable Structures from the Web. In Conference proceedings
on Human factors in computing systems, pages 118–125, Vancou-
ver, Canada, 1996.

[Shn92] B. Shneiderman. Tree visualization with tree-maps: A 2-D space-
filling approach. ACM Transactions on Graphics, 11(1):92–99,
1992.

[TH98] L. Terveen and W. Hill. Finding and Visualizing Inter-site Clan
Graphs. In Proceedings of the ACM Conference on Human-
Computer Interaction, pages 448–455, 1998.

[TK00] P. Tan and V. Kumar. Modeling of Web Robot Navigational
Patterns. In Proceedings of the WebKDD 2000: Web Mining for
E-Commerce, pages Boston, MA, USA, August 2000.

[Ver00] D. Verton. Big-Name Web Sites Lack Basic Guidelines.
Computerworld, Octobre 2000. Available at http://www.

computerworld.com [as of 11-03-2000].

[Wil99] G. Wills. NicheWorks — interactive visualization of very large
graphs. Journal of Computational and Graphical Statistics,
8(2):190–204, 1999.

[WM97] A. Wexelblatt and P. Maes. Footprints: History-Rich Tools
for Information Foraging. In Proceedings of the Conference for
Computer-Assisted Information Retrieval, pages 75–84, 1997.

BIBLIOGRAPHY 117

[WYB98] K. Wu, P. Yu, and A. Ballmann. Speedtracer: A Web usage
mining and analysis tool. IBM Systems Journal, 37(1), 1998.

[Zah01] Keyan Zahedi. Analysis and Visualisation of Social Networks.
Master’s thesis, University Tübingen, WSI Computer Science
Dept., April 2001.

