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Preface

PETER SCHROEDER-HEISTER, GERHARD HEINZMANN,
WILFRID HODGES, PIERRE EDOUARD BOUR

The 14th International Congress of Logic, Methodology and Philosophy
of Science was held in July, 19th — 26th, 2011 in Nancy, the historic capital
of Lorraine and birthplace of Henri Poincaré. We were very honored that
the President of the French Republic, Monsieur Nicolas Sarkozy, generously
agreed his patronage.

The LMPS congresses represent the current state of the art and offer
new perspectives in its fields. There were 900 registered participants from
56 different countries. They filled 115 sessions consisting of 391 individual
talks (among them 6 plenary lectures and 49 invited lectures), 22 symposia
(among them 4 special invited symposia), and 13 affiliated meetings and
associated events such as 6 public talks—in all nearly 600 papers. These
figures reflect the fact that LMPS is not only a place for scientific commu-
nication at the highest level, but also a forum for individual and collective
research projects to reach a wide international audience.

Concerning the program, there were two innovations:

(a) For the first time in the LMPS history, the Nancy congress had a special
topic: Logic and Science Facing the New Technologies. It illuminated
issues of major significance today: their integration in society. These
questions were of great importance not only to LMPS participants, but
to our professional and sponsoring partners likewise. Correspondingly,
a section of the congress was entirely devoted to “Methodological and
Philosophical Issues in Technology”. With 16 individual lectures (three
invited) and two symposia this special topic made a grand entrance.

(b) We put much emphasis on symposia in the ‘non-invited’ part of the
program. In addition to four symposia with invited speakers which
we organized ourselves, and 13 affiliated symposia related to various
topics of congress, for which their respective organizers were responsible,
we issued a call for contributed symposia in addition to the call for
contributed papers, giving researchers the chance to apply as a group
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of up to 6 people for a short symposium on a selected topic. This call
resulted in 18 contributed symposia, some of which were of exceptionally
high quality.

The papers of this volume are a selection of invited plenary talks and
invited talks given in particular sections. Even though not every invited
speaker submitted a paper, most of these sections are represented in this
volume. The detailed program of the congress is presented in appendix A.

A selection of contributed papers will appear in issue 18-3 (2014) and
19-1 (2015) of Philosophia Scientie. The titles of all contributed papers
and symposia are listed in appendix B.

We are indebted to many persons and institutions for their integrated ef-
forts to realize this meeting. First and foremost we would like to thank the
members of our respective committees, the Local Organizing Committee,
and the General Program Committee including its Senior Advisors and Ad-
visors. They all have worked very hard during the past four years, setting
up an outstanding and attractive program and staging it in a comfortable
surrounding that would make the congress a scientifically and socially en-
joyable event. It has been a great pleasure to work with our colleagues and
staff in these committees.

We also thank the Executive Committee of the DLMPS for its constant
support and encouragement. Claude Debru (Académie des Sciences, Paris)
helped us, amongst many other things, with his knowledge of French in-
stitutions, for which we are very grateful. Special thanks are also due to
the University Nancy 2 and its Presidents, Francois Le Poultier and Martial
Delignon, as well as to the Deans of Nancy’s Faculty of Law, Olivier Cachard
and Eric Germain, who willingly let us occupy their splendid lecture halls
and facilities. Without the generous financial support of the University of
Lorraine, of local, national and international organizations, this meeting
would not have been possible. To all these partners we express our warm
gratitude.

Special thanks also go to the reviewers who helped us by friendly reading
the contributions. And, last but not least we would like to thank the editor
of College Publications, Dov M. Gabbay, for overseeing the publication of
this volume, Jane Spurr, for managing the publication process, and Sandrine
Avril, who worked on the BTEX layout of this volume.

Peter Schroeder-Heister, Gerhard Heinzmann,
Wilfrid Hodges, Pierre Edouard Bour
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DLMPS — Tarski’s Vision and Ours

WILFRID HODGES

This paper is an edited and updated version of my Presidential Address
at the Fourteenth International Congress of Logic, Methodology and Phi-
losophy of Science at Nancy in 2011, in which I reviewed the history and
present status of DLMPS as an organisation, and looked to its future.

The title is the title I gave for my talk. Naming individuals enriches
history, and Tarski is a natural person to name, both because of his very
articulate views about the reasons for doing logic, and also because of his
broad and lasting personal influence. In Chapter 10 ‘Logic and Methodol-
ogy, Center Stage’ of their book, Feferman & Feferman (2004) give a very
readable account of Tarski’s role in the setting up of DLMPS. But there is a
danger that by naming Tarski I diminished the contributions of many other
people whose interests combined to shape DLMPS; I hope the paper itself
will set the balance straight.

For help of various sorts I thank Anne Fagot-Largeault, Efthymios Nico-
laidis, Thomas Piecha, Peter Schroeder-Heister, Paul van Ulsen, Henk
Visser, Jan Wolenski, and the DLMPS Executive Committee of 2008-11.
But none of them should be held responsible for views expressed below.

1 What happened fifty years ago

DLMPS, or to give it its full title, the Division of Logic, Methodology and
Philosophy of Science, held its first International Congress in 1960 at Stan-
ford University, California. Starting with the Third International Congress
at Amsterdam in 1967, these congresses have taken place every four years.
So the 2011 Congress is the nearest thing we have to a celebration of the
first half-century of DLMPS congresses.

The editors of the Proceedings of the 1960 Stanford Congress (Ernest
Nagel, Patrick Suppes and Alfred Tarski) wrote in their preface (Nagel
et al. 1962, vi)

This was the first International Congress for Logic, Methodology
and Philosophy of Science since the International Union of the
History of Science and the International Union of the Philosophy
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of Science established the International Union of the History
and Philosophy of Science on June3, 1955. The congresses of
a related character held prior to the formation of IUHPS were
mainly devoted to the philosophy of science. The title of the
1960 Congress reflects its broader coverage; it was in fact the
first international congress to include a large number of papers
on both mathematical logic and the methodology and philosophy
of science.

The editors refer to the establishment of [IUHPS, the International Union of
the History and Philosophy of Science. In fact DLMPS came into existence
as one of the two Divisions of [IUHPS, creating a splatter of acronyms as in
Figure 1 below. Let me run through this Figure.

National International
members members

Figure 1. DLMPS in the ICSU family in 1955

1.1 Upwards from ICSU

At the top is UNESCO, the United Nations Educational, Scientific and
Cultural Organization, which was born in 1946. During the Second World
War there had been discussions between countries on the Allied side with a
view to setting up supranational organisations after the war. The creation
of the United Nations in 1945 was one result of these discussions. Another
was UNESCO, which was attached to the United Nations and thus became
funded by and answerable to the national governments ratifying the United
Nations Charter. The original plan was for UNESCO to support just Edu-
cation and Culture; Joseph Needham and Julian Huxley successfully argued
that Science should be included too (Greenaway 1996, 71f.).
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ICSU, the International Council of Scientific Unions, had existed since
1931 as an international alliance of scientific organisations. It had grown
out of collaborations between the scientific academies of some European
countries, together with some international scientific projects such as global
distance measurements or the establishment of standards. Because of these
mixed origins it had two kinds of member: ‘national adhering organisations’
like the Royal Society, and international scientific unions like the Interna-
tional Union of Pure and Applied Chemistry. The aims of ICSU in 1931
were (in summary):

(1) to coordinate member organisations,
(2) to direct other international scientific activity,
(3) to promote science in countries through their national academies.

At the outset the members of ICSU were forty national members and eight
international unions (Greenaway 1996, chap. 3).

In 1946 UNESCO and ICSU formally recognised each other. This meant
in practice that UNESCO could call on ICSU for scientific expertise, and
ICSU could call on UNESCO for money for the kinds of venture likely to
appeal to the United Nations. These arrangements still stand; for example
Rio+20, the 2012 United Nations Conference on Sustainable Development
held in Rio de Janeiro, had a strong input from UNESCO and ICSU to-
gether.

1.2 Downwards from ICSU

The next step down from ICSU in the diagram is IUHPS, the International
Union of History and Philosophy of Science. There had been an Interna-
tional Academy of the History of Science as early as 1928. When UNESCO
came into being, Needham and others felt that an International Union of
the History of Science would be a valuable addition to ICSU. So UNESCO
negotiated with the International Academy to convert it into the TUHS,
which duly became a member of ICSU in 1947 (Halleux & Severyns 2003).

In 1946, responding to a suggestion of Jézef Bocheniski who pointed to the
recently-formed Association for Symbolic Logic and its associated Journal
of Symbolic Logic, Ferdinand Gonseth (a Swiss mathematician with inter-
ests in philosophy of science and the foundations of mathematics) launched
the ‘International Society of Logic and Philosophy of Sciences’ with an as-
sociated journal Dialectica. His chief colleagues in this were Paul Bernays,
Karl Popper and Karl Diirr. At about the same time, Stanislas Dockx (a
Belgian philosopher of science) set up an ‘International Academy of Phi-
losophy of Science’. When Gonseth and Dockx became aware that the
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International Academy of the History of Science had been converted into a
member of ICSU, they decided to pool their efforts so as to create an In-
ternational Union of the Philosophy of Science (TIUPS), which would apply
to ICSU for membership. So they called a meeting of interested parties in
Brussels in July 1949, where plans were made to set up the IUPS. Besides
representatives of UNESCO and ICSU, and Robert Feys representing the
Association for Symbolic Logic, the meeting included the logicians Evert
Beth and L. E. J. Brouwer together with several leading European philoso-
phers of science. The inaugural meeting of IUPS took place in Paris in
October 1949. Sometime between July and September 1949, presumably
under pressure from ICSU which wanted to avoid a proliferation of smaller
unions, it was agreed that ITUHS and IUPS should amalgamate into a single
union. In September the executive of IUHS appointed three delegates, and
in October TUPS responded with its own three delegates (Gonseth, Dockx
and Raymond Bayer), to meet in Paris in 1950 to draw up statutes for a
combined IUHPS. In fact it took until 3 June 1955—the date quoted in (1)
above—to agree the form of IUHPS, and the new union was admitted to
ICSU in August 1955.

The previous paragraph is based on the detailed first-hand account by
Dockx (1977). Dockx was writing in honour of Gonseth, and he chose not
to mention one embarrassing event. In 1952 there was a coup in IUPS;
Gonseth, Dockx and Bayer were all removed from the executive commit-
tee, and presumably from the committee to negotiate with IUHS. The new
executive consisted of Albert Chatelet, Arend Heyting, Hans Reichenbach,
Bochenski and two participants in the July 1949 meeting: Feys and Jean-
Louis Destouches. Feys in correspondence gave two reasons for the coup:
Gonseth’s group wanted to steer UNESCO funds to their own pet projects,
and ‘they were interested in rather literary forms of “Philosophy of Sci-
ence”’. Given the commitments made by Gonseth and Dockx in 1949,
neither of these two points are likely to have had much direct impact on the
negotiations with TUHS. But we know that the Association for Symbolic
Logic was unwilling to throw its weight behind the new union until after
the coup, so that the coup may have removed a logjam in the negotiations.
There was also a perception on the philosophy side that Petre Sergescu,
Executive Secretary of IUHS from 1947 till his death in 1954, was against
having a combined union. (Van Ulsen (2007), who gives the Feys quotation.)

According to the formula agreed in 1955, IUHS became the Division of
History of Science (DHS), IUPS became the Division of Logic, Methodology
and Philosophy of Science (DLMPS), and the two divisions together formed
the International Union of the History and Philosophy of Science (TUHPS),
which became a member of ICSU replacing TUHS.
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In Nancy I said that both Divisions seemed to have lost their copies of the
IUHPS Statutes by the late 1990s if not earlier—which rather nullified the
six years that it had taken to draw up the Statutes in the first place. By 1999
the two Divisions had begun a series of attempts to draw up a Joint Mem-
orandum of Agreement covering various points of collaboration that should
really have been covered in the [TUHPS Statutes. But in May 2013 Benedikt
Loewe discovered a copy of the Statutes, written in French and dated 1962,
in an old box containing documents of the German National Committee of
the DLMPS. Moves are under way for the two Divisions to agree an updated
version of them which will cover the current agreements on collaboration
between the Divisions. There is a version online at http://iuhps.net.

Thanks to Benedikt’s happy discovery I can replace my previous partial
text of the IUHPS Statutes on the aims of the joint Union by a full statement
as in the 1962 Statutes:

(1) établir des rapprochements entre les historiens et philosophes des
sciences et entre les institutions, sociétés, revues, etc. consacrées a
ces disciplines ou a des disciplines connexes ;

(2) rassembler les documents utiles au développement de 1'Histoire des
Sciences et de la Logique, la Méthodologie et la Philosophie des
Sciences ;

(3) prendre toutes les mesures qu’on croira nécessaires ou utiles pour le
développement, la diffusion et I'organisation des études et recherches
dans les domaines de I'Histoire des Sciences, de la Philosophie des
Sciences et des disciplines connexes ;

(4) organiser les Congres Internationaux d’Histoire des Sciences et les
Congres Internationaux de Philosophie des Sciences, ainsi que des Col-
loques Internationaux ;

(5) contribuer au maintien de 1'unité de la science en général et & I’établis-
sement de liens entre les différentes branches du savoir humain ;

(6) s’efforcer de favoriser le rapprochement entre historiens, philosophes,
savants, soucieux des problemes de méthode et de fondement que
posent leurs disciplines respectives.

This is similar to the aims stated in the DLMPS Statutes on the web at
(Status-DLMPS 2011)

We should briefly bring Figure 1 up to date. In 1987 DLMPS changed the
name ‘National Members’ to ‘Ordinary Members’ because of some political
sensitivities. In 1998 ICSU changed its name to ‘The International Council
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for Science’, but kept the old acronym. At its General Assembly in Beijing
in 2005, DHS added ‘and Technology’ at the end of its name and became
DHST. And finally in 2011 DLMPS joined CIPSH, the Conseil International
de la Philosophie et des Sciences Humaines, which in turn is affiliated to
UNESCO. In some loose sense CIPSH is to the Humanities as ICSU is to the
Sciences. Our sister division DHST had joined CIPSH some years earlier.

2 Pennies from heaven

The institutional structures by themselves don’t give many clues about the
motivations driving the whole machine. The motivations that chiefly con-
cern us here are money and scientific research. Again it will be helpful to
begin the discussion with diagrams (Figures 2 and 3 overleaf). The finan-
cial situation today is very different from what it was fifty years ago, so
we need diagrams to illustrate both the old situation and the new. These
diagrams should be read only as broad indications; one can too easily alter
the numbers by adjusting the classifications.

We start with the funds that come to DLMPS from ICSU. UNESCO,
which gets its money from countries in the United Nations, makes regular
subventions to ICSU. The United States, although it withdrew from funding
UNESCO in 1984 and resumed in 2003, continued to make substantial con-
tributions to the ICSU grant fund separately through its National Science
Foundation. The US withdrew funding from UNESCO again in 2012, and
it remains to be seen how this affects the funding of ICSU (and CIPSH,
which is in a similar position to ICSU).

For several decades, ICSU passed on a large part of these subventions
as grants to its member unions without close scrutiny. But in 1996 an
external assessment (ICSU 2007) recommended that ICSU should be more
strategic in its allocations. As a result, since 2002 ICSU has awarded grants
by competition and peer review, and only for international multidisciplinary
ventures in certain announced priority areas. These changes had a dramatic
effect on the funding of Unions, as Figure 2 shows for DLMPS. In fact the
only grant from ICSU that came to IUHPS since 2002 and before 2014
was a sum in 2004 to allow DHST to set up databases of bibliographical
and archival sources. Figure 3 shows the effect on our outgoings. For a
while DLMPS supported only its own meetings and some joint activities
with DHST, though since 2012 it has also distributed some small grants to
conferences sponsored by members. The money that DLMPS puts into the
international congresses held every four years is a small fraction of the cost
of these congresses, but it serves to prime the pump. In past decades the
sale of Congress Proceedings has brought in some income, but today we no
longer expect to make any profit on publications.
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Figure 2. DLMPS income, 1960s and today
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Figure 3. DLMPS expenditure, 1960s and today
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Happily the news recently came through, that one of the eight ICSU
grants for 2014 was awarded to [IUHPS/DLMPS for a project on ‘Cultures of
Mathematical Research Training’. To quote from the project specification:

This project aims to mobilize the energies of a currently very
active research area (the study of Practice and Cultures of Math-
ematics) to provide the theoretical and empirical resources for
designing improvements to the training of the next generations
of mathematical researchers and the improvement of research
education in developing countries.

The grant application was supported by IMU and its teaching commission
ICMI.

As Figure 2 shows, virtually all of our present income comes from our
members, both Ordinary and International. Common prudence dictates
that we should aim to know what these members reckon they are paying
for.

3 Our members and what they pay for

ICSU has no individual members. In its early days it had only two kinds
of member: national bodies and international unions. That was partly be-
cause ICSU was, so to say, a meta-level association. Its job was to deal with
governments or national academies, and to set up and support scientific
associations like the international scientific unions. The unions themselves
were not meta-level associations in this sense, but they still tended to have
structures that copied those of ICSU. The members of a union would be na-
tional committees (often administered either by national scientific academies
or by national subject societies) and international scientific societies. Our
own union IUHPS is a cipher, but its two divisions still both have this style
of membership.

The fact that our members represent societies and institutions means
that there is a kind of inertia built into our income: institutions that paid
this year are likely to carry on paying next year too, because otherwise they
would have to make a decision to stop. This could be dangerous for us,
because it tends to hide the question whether we are delivering what our
members are paying us for. In fact the position is quite complicated and
the remarks below are partly guesswork.

3.1 National academies and research councils

About half our members, and two-thirds of our Ordinary Members, are
committees of national academies or national research councils. These bod-
ies pass on money from their national governments. Probably most of them
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reckon that by supporting DLMPS they are supporting science and con-
tributing to the aims of the United Nations as expressed in ICSU. The
Canadian National Research Council knows that it is supporting interna-
tional congresses of DLMPS, and it requests reports from Canadian scien-
tists who attend these congresses; but my impression is that this amount
of diligence is very unusual. Some grant-giving bodies ask DLMPS for a
copy of our financial report but apparently pay no particular attention to
the involvement of logicians or philosophers of science in their countries.

Of course ICSU has its own activities, for example government-level con-
ferences like Rio+20. Let me mention two others that are likely to appeal to
national academies. The first is the sharing of expertise between different
international scientific bodies. Three recent examples are:

In 2010 TUHPS was invited to nominate a member for the advisory
board of the annual Gruber Cosmology Prize, worth half a million
dollars. We nominated a historian of cosmology proposed by a member
of DLMPS Council.

In 2011 TUHPS was invited to support the application of the Inter-
national Council for Industrial and Applied Mathematics to become
a Scientific Associate of ICSU. We sent a positive answer, citing the
methodological importance of mathematical modelling.

In 2011 ICSU consulted its members for their comments on its draft
ICSU Strategic Plan, 2012-2017. Since the Strategic Plan is largely
about environmental issues and the integration of science into govern-
mental planning, [UHPS found nothing to say about it. But perhaps
DLMPS should have commented on the proposed ‘Principle of Uni-
versality’ for science.

ICSU consultations can be tedious to handle, and often DLMPS is unlikely
to have anything to offer. But we could (if membership lists are kept up to
date) pass down some consultations to our member societies and national
committees. This could help to keep them in touch with the activities of
ICSU that they are supporting with their fees.

The second activity of ICSU is its work to protect the free movement of
scientists. There is a permanent need for this work, but it was particularly
valuable in the days of the Iron Curtain. For example DLMPS consulted
ICSU for help in getting visas for East European invitees to the Salzburg
Congress in 1983.

Besides these activities, ICSU has committees that rely on the unions
for their membership. From 2011 to 2014 Maria Carla Galavotti sat on the
ICSU Executive Committee; she was nominated by ITUHPS on the proposal
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of DLMPS. In 2005 Deborah Mayo from DLMPS was one of the authors of
the ICSU working group report ‘Science and Society: Rights and Responsi-
bilities’ (ICSU 2005). In 2008 Susan Lederer became a member of the ICSU
Publication Ethics Committee on the proposal of DHST.

3.2 Subject societies

There remain the other half of our members, who are not supported by
government-funded bodies. Nearly all of these are supported instead by
societies devoted to logic or philosophy of science, or both; some are national
and some international. It often seems that random factors have decided
whether the societies are primarily devoted to logic or to philosophy of
science, and it is possible that we have missed out on support in some
countries where the logicians and the philosophers of science were not close
to each other. We also have only minimal contact with societies of logicians
or philosophers of science in South America. The reasons for this are no
doubt partly historical, but we observe that our fellow Division has done
much better than us in South America; their next Congress is due to take
place in Rio de Janeiro in 2017.

Our supporting societies represent working logicians and philosophers,
and they are more likely to support activities that are directly helpful to
these working researchers. In the days when ICSU provided grants, these
grants often supported smaller meetings and workshops of the kind that
researchers relish. Those days are over, and that’s a threat to our income.
We saw this for example in Britain in the early 1990s, when the government-
funded Royal Society and British Academy stopped paying dues for inter-
national unions, and the national committees for these unions had to call
on scientific societies instead. The British Logic Colloquium at that date
was unable to meet its share of the cost, and for a while Britain dropped to
a lower category of membership in DLMPS.

The fact that the international scientific unions don’t have individual
members comes into play here, because it means that there are no DLMPS
scientific activities that individual researchers can feel they are involved
in. In fact until 2011 DLMPS was an extreme case. There were just two
ways in which individuals could be involved with DLMPS. The first was
as officers or members of committees, and the second was as participants
in congresses or other meetings organised by DLMPS. The officers had a
heavy commitment to DLMPS, and the congress organisers an even greater
one, but none of the others did. Participants in meetings registered for the
meetings and didn’t even need to know what DLMPS is. There were the
national committees, but in too many cases the committee had lapsed—we
found one case where the committee consisted of one person who had died
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ten years earlier. Sometimes the only task of these committees was to decide
who would be delegates at the four-yearly General Assemblies.

Many of the unions have taken steps to involve individuals in actual sci-
entific work. For example the International Union of Radio Science has ten
special-subject commissions and a larger number of working groups. The
brief of its Commission on Radio Astronomy includes ‘observation and in-
terpretation of cosmic radio emissions from the early universe to the present
epoch’ (URST 2012). The International Union of Pure and Applied Physics
has twenty special-subject Commissions; the Commission on Physics Edu-
cation goes back to 1960. I think none of these have an open membership,
but they do involve quite large numbers of individuals in more than just
bureaucracy. Our fellow Division, DHST, has for many years had special-
interest commissions; at least some of them have membership open to any
interested individuals, and newsletters are circulated to all members. The
DHST website lists sixteen commissions, including one on Scientific Instru-
ments and one on Women in Science.

The 2011 General Assembly of DLMPS made a bid to increase the in-
volvement of individual logicians and philosophers of science. It adjusted
the Statutes so as to allow commissions in the same style as DHST. It set
up four commissions, three of them with open membership. One of those
three was the Teaching Commission, which has for many years been a com-
mission of DHST and is now an inter-divisional commission. The other two
are new: a Commission on Philosophy of Technology and Engineering Sci-
ences and a Commission on Arabic Logic. Other new commissions are in
the pipeline. The aim is for DLMPS to make itself more responsive to the
needs of researchers.

4 The name of the Division

When our sister division added ‘and Technology’ at the end of its name and
became DHST, this was a natural step for them to take. The International
Committee for the History of Technology had been a Scientific Section of
DHS since 1968, and several commissions of DHS already had a strong
technology component—for example the Scientific Instruments Commission.
So the addition did no more than reflect the facts on the ground.

In June 2008 Claude Debru, on behalf of the French National Committee
of History and Philosophy of Science, wrote to DLMPS urging us to go
down the same road and add ‘technology’ to our scope. We put this to the
General Assembly in Nancy in 2011, and the result was a pair of resolutions:

The General Assembly agreed in principle that 'philosophy of science’
in the stated scope of the Division should be expanded to ’philoso-
phy of science and technology’, and that the Executive Committee
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should bring to the 2015 General Assembly proposals for changes in
the Statutes and the name of the Division to give effect to this expan-
sion.

The General Assembly asked the Executive Committee to consult with
the officers of DHST with a view to changing the name of the Union
so as to include technology.

The main reason for proceeding this way was to avoid getting the issue
of principle mixed up with debates about the future name of DLMPS. In
fact it seemed to many people that just adding T at the end would give
a rather monstrous acronym: DLMPST. We tried this acronym on some
spell checkers and got back among other things DEMIST, PLUMPEST,
ALMOST, DIMMEST and DUMPSITE. Should one or more of the letters
be dropped?

4.1 Where did L, M, PS come from?

We know what the organisers of the 1960 Stanford Congress thought these
letters stood for (Nagel et al. 1962, vi):

[Stanford] was in fact the first international congress to include
a large number of papers on both mathematical logic and the
methodology and philosophy of science.

So for the Stanford team, L was for ‘mathematical Logic’, M was for
‘Methodology of science’, and PS was for ‘Philosophy of Science’.

The name ‘Logic, Methodology and Philosophy of Science’ could have
come from Gonseth back in 1949. Of course if there is evidence against
this, then I defer to it; but I know none.

As to mathematical logic: we saw that already in 1947 Gonseth’s so-
ciety was called the International Society of Logic and the Philosophy of
Science. Logic was an old interest of Gonseth’s. In 1937 he had published
a long essay ‘Qu’est-ce que la logique?’ (1998, 11-94). True, that essay was
historical rather than mathematical, and even the chapter on Whitehead
and Russell’s Principia Mathematica hardly contains any formulas. But
his essay ‘Philosophie Mathématique’ (1998, 95-189), published in 1950, is
undoubtedly about mathematical logic, including axiomatic set theory and
Godel’s incompleteness theorem—even though it does tend to confirm Feys’s
epithet ‘rather literary’. We might add that although some mathematical
logicians were certainly repelled by Gonseth’s approach to the subject, oth-
ers found it a stimulus; Gerhard Heinzmann (2001) documents this in the
case of Bernays.
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As to methodology of science: this phrase goes back to the nineteenth
century. In Britain it was popularised by William Hamilton of Edinburgh
in his lectures in the 1830s and 1840s (Hamilton 1860, Appendix, 496):

The Science of Science, or the Methodology of Science—falls into
two branches. ... The former—that which treats of those con-
ditions of knowledge which lie in the nature of thought itself—is
Logic, properly so called; the latter,—that which treats of those
conditions of knowledge which lie in the nature, not of thought
itself, but of that which we think about, ... has been called
Heuretic ... The one owes its systematic development princi-
pally to Aristotle, the other to Bacon; |[...]

Speaking in Nancy it’s appropriate to mention that Henri Poincaré used the
phrase in the Introduction to his Science et Méthode (1908):

Je réunis ici diverses études qui se rapportent plus ou moins
directement a des questions de méthodologie scientifique.

By the 1940s the notion of scientific methodology was in free circulation
among philosophers of science. So it’s no surprise that we can document it
from Gonseth: Essai sur la Méthode Aziomatique (1936); ‘une méthodologie
dialectique ouverte’ (1948); ‘La question de la méthode en psychologie’
(1949); ‘La méthodologie des sciences peut-elle étre élevée au rang de disci-
pline scientifique?’ (1957); Essai sur la méthodologie de la recherche (1964).

In short, the full name ‘Logic, methodology and philosophy of science’ and
the parsing of it in the preface to the 1960 Stanford Proceedings could quite
easily have come from Gonseth. This is not to say that they would have
meant the same to Gonseth as they did to other members of the Division.

4.2 A name for the future of DLMPS?

The 2011 General Assembly left it to the new Executive to decide on the
future name of the Division. It may be superfluous for me to say anything
about it here, but I'll make a few remarks anyway.

The two divisions sit together as representing Philosophy of Science and
Technology on the one hand and History of Science and Technology on the
other. So there is no conceivable case for dropping the PS. The situation is
different for both the L and the M, but for different reasons.

In the case of M, there is a case for dropping it straight away. The case
is that it no longer represents anything distinctive about DLMPS. In the
mid 20th century it was common to distinguish methodology from tradi-
tional philosophical areas like epistemology and ontology. By advocating
‘methodology of science’ one would be supporting philosophy of science but
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distancing oneself from metaphysics. For example, Herbert Feigl published
in 1954 a paper with the title ‘Scientific method without metaphysical pre-
suppositions’ (1954). His opening words were:

As the title of this article indicates, I contend that there are
no philosophical postulates of science, i.e., that the scientific
method can be explicated and justified without metaphysical
presuppositions about the order or structure of nature.

On this interpretation the only reason for retaining the M would be to
bracket off certain aspects of the philosophy of science that some people
don’t want to be associated with. That doesn’t strike me as an adequate
reason.

Feigl’s usage of ‘method’ or ‘methodology’ was not the only one. Tarski
had a distinctive view of the matter. His fullest account of it is in the
Introduction to the 1941 English version of his book Introduction to Logic
and to the Methodology of Deductive Sciences (1941), and it appears unal-
tered at least up to the 1961 edition, though it has been shortened in the
posthumous 1994 edition.

Tarski distinguishes between ‘methodology of deductive sciences’ and
‘methodology of empirical sciences’. Methodology of deductive sciences is
what Tarski elsewhere calls metamathematics (for example 1983, 342). It
is a part of logic, and a part that Tarski strongly associates himself with.
Methodology of empirical sciences ‘constitutes an important domain of sci-
entific research’; and logic is valuable for it. But: ‘logical concepts and
methods have not, up to the present, found any specific or fertile applica-
tions in this domain’ (Tarski 1941, xiii). Tarski comments that this could
be a permanent and necessary feature of the subject. He continues:

It should be added that, in striking opposition to the high de-
velopment of the empirical sciences themselves, the methodol-
ogy of these sciences can hardly boast of comparably definite
achievements—despite the great efforts that have been made.
Even the preliminary task of clarifying the concepts involved
in this domain has not yet been carried out in a satisfactory
way. Consequently, a course in the methodology of empirical
sciences must have a quite different character from one in logic
and must be largely confined to evaluations and criticisms of
tentative gropings and unsuccessful efforts. (Tarski 1941, xiv)

Tarski doesn’t spell out what he regards as the tasks of the methodology of
empirical sciences—indeed he suggests that some concepts need to be clar-
ified before we can do that properly. But the comparison with metamath-
ematics sends a strong message. A methodologist of an empirical science
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should ideally aim to find a suitable formal language in which to carry out
the science, with suitable meanings for the primitive terms. Then she should
look for suitable axioms. Here part of her task will be to find appropriate
criteria for the suitability of the axioms. As Tarski explains in (1944, 366)

one of the main problems of the methodology of empirical sci-
ence consists in establishing conditions under which an empirical
theory or hypothesis should be regarded as acceptable.

He offers his truth definition as a help here, which suggests that he has
in mind a methodologist using a formal metatheory. The oral remarks of
Tarski in 1953 reported in (Feferman & Feferman 2004, 250f.) point in the
same direction.

Tarski makes a few further remarks about ‘the methodology of empirical
science’ in (1944), but I don’t think they help us much here. What is helpful,
and perhaps unexpected, is 19 of (Tarski 1944) in which he vigorously
dissociates himself from attacks on ‘metaphysical elements’.

When listening to discussions in this subject, sometimes one
gets the impression that the term “metaphysical” has lost any
objective meaning, and is merely used as a kind of professional
philosophical invective. (Tarski 1944, 363)

So he uses a very different language from that of Feigl above.

To my eye, not a single one of the papers on particular empirical sciences
in the Proceedings of the 1960 Stanford Proceedings (Nagel et al. 1962)
is written under the paradigm that Tarski has in mind above. From his
remarks in 1941, T doubt that this would have surprised Tarski himself. And
given the general usage of the word ‘methodology’, it seems unlikely that
Tarski would have expected many people outside a group of loyal followers to
interpret the M in DLMPS in line with his own account of ‘the methodology
of empirical sciences’. So even a deference to Tarski would hardly give us
reason to insist on keeping the M.

By contrast the word ‘logic’ certainly does mark a major area within
the scope of DLMPS. DLMPS Congresses continue to attract top quality
speakers in all branches of mathematical logic. Two of the international
members of DLMPS are specifically devoted to logic, and several national
members have a particular interest in it. Since logic is not a subset of
philosophy of science, or indeed of philosophy at all, it follows that as things
are at present, there is no question of dropping the L from DLMPS.

But the world moves on. Around 1950 some logicians—Bochenski in
particular (Van Ulsen 2007)—wanted an affiliation of ‘logic’ to ICSU in
order to get a wider recognition for modern logic. In this they succeeded
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magnificently. But logic today gets incomparably more recognition from its
role in computer science than it does from the title of DLMPS. Logicians
now have so many international outlets that they depend on DLMPS much
less than a few decades ago, and this trend will probably continue.

Also in 1955 mathematical logic had stronger links with foundations than
it does today. For example mathematical model theory, which was still
finding its feet in 1955, is now a branch of mathematics like any other; it
has interesting foundations but it is not itself a contribution to foundations.
So the links between mathematical logic and philosophy of science grow
weaker.

There are already signs that mathematical (as opposed to philosophical)
logic may eventually part company from DLMPS. The trend is for fewer
papers in mathematical logic to be submitted to DLMPS Congresses. It
seems very likely that DLMPS congresses will continue to attract philosoph-
ical work that uses mathematical logic, but less of the straight mathematics
will find its way there. The General Assembly in Nancy was the first one
to which the Association for Symbolic Logic sent no delegates; this was
certainly an unintended accident and not a policy decision, but there is a
message in the accident.

My own reaction would be to let rivers find their own natural course.
The L in DLMPS should be secure for some decades to come.
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Is There a General Notion of Proof?

DAG PrawiTz

1 Introduction

The question raised in the title of my talk—Is there a general notion of
proof?—may seem a bit strange. Of course, one may say, there is a general
concept of deductive proof. We have been familiar with it since the time of
ancient Greek. Aristotle had things to say about it, and the general concept
has stayed essentially the same since the Greeks, even if today we have more
to add.

However, some people may react in a quite opposite direction. With a
few exceptions to which I shall soon return, modern logic and philosophy
of logic do not deal with a general notion of deductive proof. With the
birth of modern logic attention has instead been directed towards formal
proofs, and it is clear that one cannot arrive to a general concept of proof
in that way. In the main stream of contemporary logic, the interest in even
formal proofs has been quite attenuated; often they are seen only as a way
of stating facts about the recursive enumerability of the true sentences of a
formal language.

Although formal proofs may be seen as representing real proofs or con-
tentual proofs, as they are sometimes called, we know from Goédel’s incom-
pleteness result that a general concept of proof, if there is such a concept
at all, cannot be characterized formally: for any sufficiently rich system of
formal proofs that represent contentual proofs, there is an unprovable sen-
tence which is not only true but is intuitively provable. Classically, we have
a general concept of computable function, and we discuss general concepts
of logical consequence and truth, but there is nothing comparable when we
come to the notion of proof. The attitude is often that it makes little sense
to speak about proofs in general.

Opinions are in this way divided on the question raised in the title. For
my own part, I see the question as a challenge. I share the common opinion
that mathematics since the time of the Greeks is distinguished by its deduc-
tive character, and I think that to account for this in more detail we should
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be able to say something about the general concept of deductive proof. But
it is a fact that this topic is remarkably neglected.

Proof theory should have something to say about the concept of proof,
one could think, but, as Kosta Dozen pointed out in his introduction to the
symposium on general proof theory at this congress, its focus has usually
been the consistency of mathematics. Nevertheless, when Hilbert coined the
term “proof theory”, he seemed to have had in mind a much broader field
of study. Somewhat bombastically, he depicted the new field by saying:

we must make the specific mathematical proof itself the object
of investigation, just as the astronomer must take his position
into account, the physicist must take care of his theory of instru-
ments, and the philosopher criticizes Reason. (Hilbert 1917)

2 The epistemic nature of proofs

If one really wants to study proofs as instruments of the mathematician, one
has to take seriously what proofs are instruments for, and obviously the first
point of a proof is to acquire knowledge. To make justice to what is essential
about proofs, we must therefore acknowledge their epistemic nature.

It is also clear that one cannot get to know something without acting
mentally in some way. This means that a proof is first of all an action, the
act of proving something.! A proof act may be verbally recorded. We then
get a representation of the proof act, which may also be called a proof in a
transferred sense. It is what we meet in a mathematical paper, and it may
serve as an instruction for the reader to carry out the same generic proof
act as the author of the paper had carried out.

By a proof in the sense of a proof act, one gets to know that the sentence
proved is true. This may seem a banality, but it is far from banal to account
for how and why a proof succeeds in giving such knowledge, and this I see
as the main conceptual problem about proofs.

To give such an account comes essentially to the same as explaining why
a proof is able to justify the assertion that is proved; I take for granted the
idea that “to know that p” involves “to be justified in holding p” to be true.

Of course, it is not only in mathematics that assertions are supposed to be
justified in some way; a speaker is normally expected to have some ground
for what she says. What is particular about mathematics in this respect
is a combination of two ideas: assertions are expected to have conclusive
grounds, and deductive proofs are supposed to deliver them. The problem
is to explain how proofs can have this power.

To my knowledge, among contemporary writers, Martin-Lof (1985) and Sundholm
(1998) have especially stressed this aspect of proofs.
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The term “proof” is commonly used veridically like “know” or “see”.
Mistakes are of course possible in deductive as well as in empirical matters.
But if we have claimed to have a proof of a sentence and the sentence turns
out to be false, then we say that we did not really have a proof. Even if
there is only a gap in an alleged proof so that it does not provide us with
a justification of its last assertion, we say again that we did not have a
real proof. In other words, it is a conceptual truth that a proof delivers a
justification; it is a part of how we use the notion of proof—for something
to be a proof it should give a conclusive ground for the assertion it claims to
prove. This common usage does not relieve us from the task of explaining
how proofs can have this epistemic power or, in other words, how there can
be something that falls under what we call proof.

There are many other aspects of proofs that have intrigued mathemati-
cians and philosophers. For instance, Henri Poincaré stressed features that
make one see what he called “the soul of a fact”, and blamed logicians for
neglecting them in a concern for rigour. Nevertheless he also said:

In mathematics rigor is not everything, but without it there
would be nothing. (Poincaré 1910)2

The rigour of proofs can be identified, I think, with they giving justifications
or conclusive grounds for their assertions. This aspect of proofs, on which
I shall concentrate here, is thus even to Poincaré the most fundamental
one, without which “there would be nothing”. Being only concerned with
conclusive grounds, I shall usually drop the attribute “conclusive” when
talking about grounds.

3 Inference and inference assertion

Proof acts are usually compound, that is, they are made up of a number of
other acts, inference acts, linked to each other. Problems about proofs may
thus be restated as problems about inferences, and again inferences are first
of all acts.

The importance of taking inferences acts seriously may be seen as the
main lesson of Lewis Carroll’s (1895) well-known tale about Achilles and
the Tortoise. As we recall, the Tortoise is questioning an inference in Euclid
whose premisses he accepts, and Achilles is to compel him to accept the
conclusion too. We may slightly modify the tale by assuming that the task
of Achilles is instead to show the Tortoise that he is justified in asserting
the conclusion since, as he agrees, he is justified in asserting the premisses.

2Originally stated in an address delivered at the general session of the Fourth Inter-
national Congress of Mathematics, Rome, April 6-11, 1908.
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Achilles strategy is to point out that if the premisses are true then the
conclusion must also be true. The Tortoise accepts this implication as an
additional justified premiss but asks why he now becomes justified in as-
serting the conclusion. Achilles repeats his strategy and points out that if
the original premisses and the added one are both true, then the conclusion
must be true. The Tortoise again accepts this new implication and so it
goes on, Achilles getting nowhere by adding more and more premisses. The
point is that the Tortoise cannot get justified in making the assertion in
question unless he acts by performing an inference. It does not help that
he accepts implications.

What is then an inference act? We commonly announce an inference by
stating its premisses and conclusion. For instance, we make a construction C'
and verify that applied to a prime number it yields a greater prime number.
From this we infer that there are infinitely many primes. We may announce
this inference by stating: “C' applied to a prime number yields a greater
prime number. Hence, there are infinitely many prime numbers.” I shall
call such a statement an inference assertion. Of course, we may make such
an inference without publically announcing it. We then judge that there are
infinitely many prime numbers, and take this judgement to be supported
by our verification concerning C'. When I speak of inference assertions I
include silent assertions of that kind.

An inference act thus involves the making of an inference assertion, which
is a kind of speech act, but more complex. It consists not only of a number
of assertions but also of the claim that one of them, the conclusion, is
supported by other ones, the premisses. A lesson from Lewis Carroll is thus
that one should not confuse an inference assertion with simply asserting
the implication formed by taking the conjunction of the premisses as the
antecedent and the conclusion as the consequent; in an inference assertion,
the premisses as well as the conclusion are asserted, and in addition it is
claimed that the conclusion is supported or inferred from the premisses.
The latter is typically indicated by inserting some word like “hence” or
“therefore”, if the conclusion is stated after the premisses, or by words like
“because” or “since”, if the conclusion is stated first and the premisses
afterwards.

The premisses need not be asserted categorically. They may be assump-
tions or assertions made under some assumptions. The conclusion may
then also be an assertion made under assumptions, or as happens in re-
ductio ad absurdum and implication introduction, the inference discharges
assumptions, so that the conclusion is asserted categorically or under fewer
assumptions than the premisses. The structure of an inference assertion
may thus be more complex than first exemplified. We must even allow that
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the sentence that is asserted in a premiss or in the conclusion is open, as
when we say: “Assume that v/2 equals a rational number n/m. Then, 2
equals n?/m?”.

Does an inference act only amount to making an inference assertion?
Since one often takes an inference to be individuated by just its premisses
and conclusion, one may be inclined to answer yes to this question. But I
think that this would be a mistake. It seems fairly obvious that a person
who is justified in asserting A does not get justified in asserting B by just
making the speech act:

A. Hence B.

But it is less obvious what precisely is contained in an inference above an
inference assertion.

The inference figures studied in proof theory, which depict the premisses
and conclusion of an inference, represent generic acts of inference assertions.
But if it is right that an inference contains something more than an inference
assertion, a full representation of an inference cannot consist of just an
inference figure but should contain some additional element. I shall return
to this question.

4  Legitimate inference

In contrast to the notion of proof, the notion of inference is usually not
used veridically.> We speak of correct and incorrect, or valid and invalid,
inferences. What is it then for an inference to be correct? The obvious,
general answer is that it should deliver a justification for its conclusion given
that the premisses are justified. I have called such an inference legitimate
(Prawitz 2011). If we define a proof as a chain of legitimate inferences, it is
conceptually guaranteed that a proof delivers a justification for its ultimate
assertion provided that its initial premisses are justified.

The crucial issue can now be stated as the question what it is that gives
an inference legitimacy. Can we give a criterion for an inference to be
legitimate or in some general way characterize the legitimate inferences so
as to explain their epistemic power?

It is obvious that logical validity of an inference as it is usually defined
in analogy with Bolzano’s and Tarski’s concept of logical consequence is
totally inadequate as a criterion for the legitimacy of an inference. That

3In the first version of this paper read at the CLMPS in Nancy, I suggested that it
would be better to change this terminology and use also the term inference veridically. 1
argued that it is unnatural to say that one inferred a conclusion from premisses for which
one had grounds but yet did not get a ground for the conclusion. I now think that there
are other considerations that may make one more doubtful about this proposal. In any
case, I am now sticking to the usual terminology in this respect.
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the definition pays attention only to the premisses and conclusion of the
inference is not in itself what makes it inadequate as such a criterion. But,
clearly, it is in general insufficient for legitimacy that the inference is in
fact truth-preserving under all interpretations of the non-logical terms of
the sentences involved. For instance, if the premisses are the axioms of a
theory and the conclusion is a difficult, not yet established theorem, no one
would consider the inference to be a legitimate step in a proof, despite its
validity, and it would remain so even if the validity becomes known.

It is noteworthy that when one wants to distinguish between bad and
good inferences, for instance in elementary textbooks of logic, one has only
this very inadequate concept of validity at hand in the main stream of
contemporary logic. Aristotle was in fact more advanced. Already at the
beginning of Prior Analytics, he introduces the notion of perfect syllogism,
which has the same drift as legitimacy. In his words, as translated by Ross:

A perfect syllogism is one which needs nothing other than the
premisses to make the conclusion evident. (Ross 1949)

Aristotle did not try to explain what it is that makes a syllogism perfect,
for which we cannot blame him. But it is time now, after more than 2 000
years, to try to make progress in this respect. To get a substantial concept
of proof seems to require that we can say something informative about what
an inference is and, in particular, what a legitimate inference is.

5 Gentzen’s idea about justification of inferences

I turn now to what I take to be the two most important exceptions to the
general lack of interest in the topic that I am discussing. One is Gentzen’s
(1935) ideas about justification of inferences, which I think contain an em-
bryo to a general concept of proof. It has two main ingredients that can
be summarized in the form of two principles that are implicit in Gentzen’s
work. The first says that certain direct or canonical means of proving an
assertion are given with the meaning of the asserted sentence, and the sec-
ond that other indirect or non-canonical means of proving assertions are
justified when it is shown that they can be transformed to direct means.
The canonical means consist in inferences that are instances of what
Gentzen called introduction rules. Their justification is merely a reflection
of they being constitutive of the meaning of the logical constants in question;
the introduction rules “represent, as it were, the ’definitions’ of the symbols
concerned” (Gentzen 1969, 80). An argument or piece of reasoning that
ends with an introduction inference is said to be in canonical form (Prawitz
1974), and is considered to represent a proof provided that the arguments
for the premisses do; the inference is in other words taken to be legitimate
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in virtue of the meaning of the conclusion. The idea that the meaning of
a logical constant is given by certain inference rules, in other words, by
taking certain forms of inference as legitimate may be seen as a special case
of Wittgenstein’s more general and vaguer thesis, stated at about the same
time, that it is the use of a symbol that determines its meaning. It has
been taken up in another way by what has become known as inferentialism,
saying roughly that all inferences that a language community accepts and
that cannot be decomposed into simpler inferences determine the meaning
that the words involved have in that language.

In contrast, according to Gentzen it is only the introduction inferences
that are meaning constitutive. Other inferences must therefore be justified
in a different way. In particular, what Gentzen called an elimination infer-
ence for a logical constant, where one of the premisses, the major premiss,
has this constant as its outer symbol, has to be justified according to the
second principle. To this end there must be a reduction procedure such that
any argument ending with this inference where the major premiss is in-
ferred by an introduction inference is transformed to another argument for
the same conclusion using only the immediate sub-arguments of the given
argument.

Such reduction procedures were first explicitly defined to show that a
proof in Gentzen’s system for natural deduction can be reduced to a certain
normal form (Prawitz 1965). But their relevance for our present topic is
that they show that an elimination inference uses the major premiss only
“in the sense afforded it by the [corresponding] introduction”, as Gentzen
says—the inference is in other words semantically justified.

Gentzen’s ideas were presented with reference to the particular system
of natural deduction that he developed but they are not necessarily limited
to any particular formal system. To be turned into a general concept of
proof they need of course to be further elaborated and generalized. One
such attempt has resulted in a notion called valid argument.* One of its
main features is that a non-canonical argument for a closed assertion not
depending on assumptions is valid if and only if there are associated re-
duction procedures that take it to a valid canonical argument for the same
assertion. However, as it stands it cannot be said to amount to a general
notion of proof. A valid argument does not give us a ground for its conclu-
sion unless we know that the argument is valid, and when this knowledge
comes from a proof, it is this proof rather than the argument itself that
gives a ground

4First presented at the 4th CLMPS (Prawitz 1973) and later discussed and modified
by among others Dummett (1991) and Schroeder-Heister (2006).
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6 The notion of proof within the intuitionistic
tradition

The other main exception to the general neglect of the notion of proof that
I want to take up is found within the intuitionistic tradition, where notions
of proof play an essential semantic role. I am not concerned here with the
conflict between classical and intuitionistic logic, and keep it open whether
similar ideas about proofs could be developed with respect to the classical
meaning of sentences. One may ask if, as far as intuitionism is concerned,
there is not already a general concept of proof that satisfies what I am
asking for. However, there is not one unambiguous view of proofs within
intuitionism, so we should look at some of the different proposals.

When in the beginning of the 1930’s Heyting (1930; 1931; 1934) was
engaged in the foundation and logic of intuitionism, he explained an in-
tuitionistic proposition as expressing the intention of a construction that
satisfies certain conditions and an assertion as affirming the realization of
this intention. He furthermore identified a proof of a proposition with the
realization of the intention expressed by the proposition.

For instance, the meaning of a proposition a — b is explained by saying
that it expresses “the intention of a construction which from any proof of a
leads to a proof of b”. To assert a — b is thus to affirm that this intention
has been realized, in other words, that the intended construction has been
found, and to prove a — b is to find such a construction that joined with a
proof of a leads to a proof of b.

A proof of a proposition is thus seen as an act, the act of realizing the
intention expressed by the proposition. Furthermore, it is an act that justi-
fies the assertion of the proposition, since what is affirmed is just that the
intention has been realized or, in other words, that a proof has taken place.
Proofs are on this view not only what justify our assertions, but also what
one affirms to exist when making an assertion.

As seen, Heyting’s view of proofs agrees in two important respects with
what I said initially about proofs: proofs are acts that justify assertions.
But it breaks with the traditional view of proofs as chains of inferences.
In a later survey paper, Heyting (1958) remarked that corresponding to
the inference steps of a proof as traditionally viewed there are steps of the
mathematical construction that constitutes an intuitionistic proof.

Although Heyting’s remarks about proofs are sketchy, his semantic view
of propositions and assertions explains to some extent how proofs can have
the epistemic power of justifying assertions. One can ask whether having
made a construction that in fact satisfies what is required of the construction
intended by a proposition means that one also knows that the obtained
construction satisfies the required conditions, and if not, whether it is really
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sufficient to have found the intended construction in order to be justified in
making the assertion in question. These are questions that Heyting does not
enter into. Nor does he say much about the nature of the constructions and
the steps by which they are constructed. One could expect that questions
similar to the ones I have raised about inference steps could be asked about
construction steps.

There is also a certain ambiguity in Heyting’s use of the notion of proof.
A proof is not only seen as an act but also as a mathematical construction
that could itself be treated mathematically.

Writers on intuitionism after Heyting have often been explaining the
meaning of propositions or sentences not in terms of constructions but in
terms of what they have called proofs, whose status has sometimes been
unclear. When Kreisel at the 1st CLMPS in 1960 (Kreisel 1962) tried to lay
a foundation of the logic of intuitionism, he saw proofs as just objects. He
then naturally became concerned with the epistemic force of proofs and saw
a need to supplement what Heyting had said about proofs of implications
and universal quantifications. A proof of an implication p — ¢ was required
to consist of a pair (f,d) where f is a function that transforms any proof of
p into a proof of ¢, and d is a proof of the fact that f has this property; the
latter proof was supposed to consist in an application of a decision method
to avoid a regress.

Kreisel’s work inspired Troelstra (1977) to speak of the Brouwer-Heyting-
Kreisel interpretation of intuitionism, abbreviated the BHK-interpretation,
where he followed Kreisel in taking proofs of implications and universal
quantifications to consist of pairs (f,d), but where d was now said to con-
sist not of a proof but of the insight that f satisfied the required property.
Later Troelstra & van Dalen (1987) presented what they also called the
BHK-interpretation of intuitionism, but where K now stood for Kolmogorov
and where the supplementation of proofs of implications and universal quan-
tifications inspired by Kreisel was dropped.

Let us recall how Troelstra’s and van Dalen’s well-known interpretation
runs. Their aim is to explain the use of logical operations in a constructive
context by telling what forms proofs of logically compound statements take
in terms of proofs of the constituents, which is done by stating the following
clauses:

1. A proof of AA B is given by presenting a proof of A and a proof of B.
2. A proof of AV B is given by presenting either a proof of A or a proof

of B (plus the stipulation that we want to regard the proof presented
as evidence for AV B).
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3. A proof of A — B is a construction which permits us to transform
any proof of A into a proof of B.

4. Absurdity L has no proof.

5. A proof of Vz A(x) is a construction which transforms a proof of d € D
(D the intended range of the variable x) into a proof of A(d).

6. A proof of JxA(z) is given by providing d € D and a proof A(d).

The interpretation is intentionally quite informal, but its account of proofs
seems to differ in essential respects from how Heyting saw it and to mix
different lines of thought. Clauses 1, 2 and 6 tell how proofs are formed
or “given”, and there is an indication that a proof is seen as evidence for
what it is a proof of. They may be understood as saying that a proof in
these cases is formed by applying one of Gentzen’s introduction rules. But
if so, they characterize only what was called canonical proofs in connec-
tion with Gentzen’s ideas of proofs and not proofs in general; we must of
course acknowledge that there are proofs of conjunctions, disjunctions, and
existential quantifications that are not in canonical form.

Clauses 3 and 5 on the other hand identify proofs in these cases with
certain mathematical objects, namely the constructions in terms of which
Heyting explained respective proposition, and not with the acts of con-
structing these objects, which is what Heyting took as proofs. One may
wonder about the epistemic force of these objects. In what way do they
constitute evidence for what they are said to be proofs of?

However, one may instead understand what is said in the BHK-
interpretation as differing from Heyting’s explanations in merely termino-
logical respects: what Heyting called intended construction is now simply
called proof instead, and the point of the clauses 1-5 is to give a recursive
account of these intended constructions.

If so, it would be preferable to make explicit how the construction in-
tended by a compound proposition or statement is built up by applying
operations to constructions intended by the constituents. For instance, it
may be said that a construction of (or intended by) a conjunction A A B
is a pair whose elements are constructions of the conjuncts. It is not im-
portant that we use exactly the operation of pairing to form a construction
of a conjunction. What matters is only that for each of the clauses 1-3
and 5-6 there is a certain operation with the help of which the construction
is formed. Since they will have a structural affinity with Gentzen’s intro-
duction rules, we may call them introduction operations and name them
AL, VI, and so on. Note that there are two disjunction introductions, VI
and VI, and that the two operations — I and VI are variable binding and
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are therefore written (— Iz) and (VIz). We then get the following clauses,
which should be supplemented with indications of types and with a clause
for atomic statements:

1) «a is a construction of Ay A Ay iff @« = AI(aq, a) for some constructions
a; of A; (1 =1,2).

2") « is a construction of Ay V Ay iff o = VI;(8) for some construction g of
A; (i=1or?2).

3') « is a construction of A — B iff & = (— Iz)®(z) for some ®(z) such
that ®(3) is construction of B if 8 is a construction of A.

4") « is a construction of VzA(z) iff o = (VIz)®(z) for some ®(x) such
that ®(d) is construction of A(d) if d € D (D the intended range of the
variable x).

5) «a is a construction of xA(z) iff « = 3I(3,d) for some § and d € D (D
the intended range of the variable x) such that 3 is a construction of

A(d).5

There are two ways to read these clauses. One is to see them as defining
an abstract notion of construction; they may be denoted by terms that
can be introduced later. They should then be supplemented with identity
stipulations, saying for instance that AI(a1,as) = AI(S51,B2), if and only
if, ;1 = p1 and as = 2. P(x) stands in this case for a function from
constructions or individuals, respectively, to constructions.

Alternatively, the clauses may be seen as steps in building up a language
of terms standing for constructions. In this case they are to be understood
as describing the canonical forms of such terms, and have to be supple-
mented by introducing also non-canonical terms. ®(z) is in this case an
open term in the language, and it is important to note that ®(8) or ®(d)
need not be terms in canonical form. The language may be seen as that of an
extended lambda calculus. If it is supplemented with operations analogous
to Gentzen elimination rules, it will be structurally similar to Gentzen’s
system of natural deduction; a well-known fact known as the Curry-Howard
isomorphism.

The BHK-interpretation of Troelstra and van Dalen is best seen in this
way as a recursive characterization of the constructions intended by com-
pound propositions or sentences in predicate logic in the sense of Heyting—

5Already Kreisel Kreisel (1962) made explicit operations of this kind by which the
various constructions are formed. Clauses of more or less the form exhibited here have
since then been used by a number of authors, see for instance Prawitz (1970), Howard
(1980), and Martin-Lof (1984, 12-13), or (1994).
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supplemented with operations for how to form compound constructions from
constructions of the constituents—and not as proofs that give evidence.

The conclusion that the proofs referred to in intuitionistic meaning ex-
planations are mathematical objects and not epistemic proofs was drawn
some time ago by Per Martin-Lof (1998). In his type-theory there is a clear
distinction between on the one hand proofs in the sense of constructions of
propositions and on the other hand proofs in the sense of demonstrations
of assertions or judgements. Nowadays he usually calls the former proof-
objects and the latter demonstrations. The demonstrations establish that a
proof-object is a proof-object of a particular proposition or an object of a
particular type. They proceed by inferences in the traditional way, and the
question what makes them legitimate remains.

In the works of Gentzen and Heyting there are implicit suggestions based
on their semantic ideas for a general concept of proof that could clarify how
and why a proof has epistemic force, but as far as I can see there has been
no successful attempt to work out such a concept.

7 Grounds

It is the epistemic character of their meaning explanations that makes
Gentzen’s and Heyting’s ideas promising for the project to explain the epis-
temic force of proofs, in my opinion. That Gentzen’s explanations are in
epistemic terms is plain since he explains the meaning of sentences in terms
of inference rules. It is less clear in what sense the intuitionistic explanations
in terms of constructions are epistemic. Martin-Lo6f (1998) lists the notion
of construction among non-epistemic concepts. Sundholm wants to deny
that they have any epistemic significance whatever, saying for instance:

A proof-object is a mathematical object like any other, say a
function in a Banach space whence, from an epistemological
point of view, it is of no more forcing than such objects. (Sund-
holm 1998, 194)

I want to argue to the contrary that the proof-object in terms of which the
meaning of a sentence A is explained intuitionistically constitutes a ground
for asserting A. By saying that something is a ground for an assertion, I
mean that it is sufficient to be in possession of it in order to be justified in
making the assertion. That the proof-objects are grounds in this sense is
something that Martin-Lof seems to agree with, saying “to have the right
to make a judgement of the form ‘A is true’, you must know a proof of A”
(Martin-Lof 1998, 112); in this quote “proof” stands for what Martin-Lof
now calls proof-object.
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The crucial question is what it is to be in possession of a ground or know
a proof-object. Note that grounds are objects that it is possible to get in
possession of. Sundholm (1994) makes the reasonable suggestion that a
proof-object of a proposition A is a truth-maker for A. When one adopts
the position of realism, one cannot assume that the entities that are taken
as truth-makers of propositions are always possible to get in possession of.
But in contrast, as Heyting was keen to emphasize, the intention expressed
by a proposition is not to be understood transcendentally “as an imagined
state of affair existing independently of us, but as an imagined possible
experience” (Heyting 1931, 113). The intended constructions are in other
words thought of as something we can experience or get to know, and this is
what makes it possible for intuitionistic truth-makers to be at the same time
grounds for assertions. But we have to account for how we get in possession
of them.

We can know an object only under some description of it, and to get
in possession of a construction o we have to form a term that denotes a.
It may be in canonical or in non-canonical form. For instance, if one has
formed a term AI(t1,t2), and knows that ¢; denotes a ground for asserting
A; (i = 1,2), T shall say that one is in direct possession of a ground for
asserting A; A As. Provided that one knows the meaning of Ay A As, one
then knows that AI(t1,t) denotes a ground for asserting A; A As.

When we have formed a term in non-canonical form that denotes a proof-
object, it is more difficult to say what has to be required in order to be in
indirect possession of a ground for the assertion in question. For instance, we
can define two operations AE; and AFEj by the equations AE; (Al (a1, as)) =
a; (1 =1 or 2) and form a non-canonical term AE;(u). If one knows that
u denotes a proof-object of A1 A Ay and knows how AF; is defined, I shall
say that one is in indirect possession of a ground for A;. I think that it is
because of the nature of the definition of the operation AE; that it is right
to say so in this case.

The operations AE; and AF, are of the same nature as the reduction
procedure for conjunction that Gentzen saw as justifying the inference con-
junction elimination. It is essential to characterize this common nature of
such reduction procedures and certain operations on constructions if one is
to argue for the view that one can be in indirect possession of a ground for
the assertion of a sentence A by having formed a non-canonical term ¢ de-
noting a proof-object « of A without having actually proved that ¢ denotes
«a. But I have to leave this problem here.
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8 The concept of inference reconstructed

To arrive at a general concept of proof where proofs are seen as chains of
inferences, the main problem as I see it is to say how the performance of an
inference can result in a ground for asserting the conclusion. It cannot be
enough to prove that the inference is justified in the sense that there exists
a ground for the conclusion, because then it is this proof rather than the
performance of the inference in itself that gives a ground for the conclusion.

To make an advance concerning this problem, we have to reconsider the
concept of inference. A kind of synthesis of ideas from Heyting and Gentzen
can help us here. We should now return to the question that I raised in the
beginning of the paper what the difference may be between performing an
inference and making an inference assertion. What more is involved when
we perform an inference? If we accept the view discussed in the previous
section that to be justified in asserting a sentence is to be in possession of
a construction of the sentence, and can make sufficiently clear what it is
to be in possession of a ground, the natural answer is, I want to suggest,
that the performance of an inference involves in addition to an inference
assertion an operation on the grounds that one considers oneself to have
for the premisses. When successful, the operation results in one getting in
possession of a ground for the conclusion.

Examples of operations that one can apply are firstly the primitive ones
referred to when saying in clauses 1'—6" what counts as constructions of
sentences in predicate logic and secondly operations that can be defined on
these constructions such as AF; and AFEs. In the first case we can get in
direct possession and in the second case in indirect possession of a ground.

For instance, to make an inference by conjunction introduction is to sup-
port the assertion of a sentence A; A Ay by two premisses asserting A; and
A, and to apply in addition the operation Al to alleged grounds for the pre-
misses. To make an inference by the first form of conjunction elimination
is to support the assertion of a sentence A; by a premiss asserting A; A Ag
and to apply in addition the operation AE; to an alleged ground for the
premiss. If these operations are applied to real grounds for the premisses,
one thereby gets in possession of a ground for the conclusion.

The proposal is thus that an inference is to be individuated not only by
its premisses and conclusion but also by an operation applicable to grounds
for the premisses. For instance, modus ponens (implication elimination) is
defined not only by saying that it is an inference with premisses of the form
A and A — B and a conclusion B but also by giving an operation — E
applicable to grounds for the premisses and defined by the equation

— E[(—=Iz)®(x), o] = ¢(a).
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An inference can now be defined as deductively valid when the result of
applying its operation to grounds for the premisses is a ground for the
conclusion.

When the notions of inference is reconstructed in this way it is a con-
ceptual truth that when one performs a deductively valid inference as now
defined one gets in possession of a ground for the conclusion provided that
one was in possession of grounds for the premisses. We can then arrive at
a general notion of deductive proof by defining it as a chain of deductively
valid inferences.

9 Logically valid inferences

The suggested definition of deductively valid inference makes an inference
valid in virtue of the meaning of the involved sentences. This is a conse-
quence of the leading idea that the meaning of a sentence is given in terms
of what counts as ground for asserting the sentence. For this reason, one
could speak of analytic validity instead of deductive validity.

Let me end by noting that from this notion of validity one can easily define
a notion of logical validity by applying the same general idea that Bolzano
and Tarski used when defining the concept of logical consequence. We can
simply define an inference as logically valid when it remains deductively
(or analytically) valid under any (re-)interpretation of the non-logical terms
occurring in the sentences involved. In contrast to Bolzano’s and Tarski’s
definition, this definition does not refer to the truth-values of the sentences
involved but to the notion deductively valid inference, which is a more basic
notion than the notion of logically valid inference.
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“The Soul of the Fact”—

Poincaré and Proof

JEREMY GRAY

ABSTRACT. Throughout his life Poincaré reflected on how to be a
productive mathematician and physicist. Many of his popular essays
were influential, and remain interesting today, because they argue for
his opinions about the nature of mathematics and science. But his
work has acquired a reputation for being impressionistic and lacking
in rigour, and while there is some justification for this there is more
to be said for the view that Poincaré always sought to advance one’s
understanding of a problem or a topic. This could be done in various
ways, he suggested, chief among them being the identification of “the
soul of the fact”, the key concept that enabled the best way to organise
one’s ideas. Poincaré’s sense of human understanding was focussed on
its capacity to create new knowledge, and can be illuminated from a
perspective that places it close to what Wittgenstein later advocated.

1 Poincaré and rigour

For Poincaré, the uninteresting part of proof was rigour, the interesting part
was the role a proof plays in understanding a piece of mathematics. As he
put it in L’Avenir, his address to the International Congress of Mathemati-
cians (ICM) of 1908:

Rigour is not everything—but without it there is nothing.
(Poincaré 1908a, 932)!

Nonetheless, he cared about rigour, as his correspondence with Fuchs in
1880 demonstrated, and as does his work on asymptotic series.

The correspondence with Fuchs (see Poincaré 1921b) began on 29 May
1880 as soon as Poincaré had submitted his essay on differential equations
in the complex domain for the prize of the Paris Académie des Sciences.

LA full English translation appears in (Gray 2012b).
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This is the competition later won by Georges Halphen that was the oc-
casion for Poincaré to discover the theory of automorphic functions (see
Poincaré 1997). But in May Poincaré was still considering the subject from
an entirely analytic point of view, and his questions to Fuchs were about the
analytic continuation of the quotient of two independent solutions of a linear
differential equation. This was standard research material of the day, and
one that Fuchs was the acknowledged expert in, but we have the somewhat
comic sight of Poincaré explaining the subtleties of analytical continuation
to the older man. What he saw, and Fuchs had missed, was an insight into
the global nature of the image defined by the quotient. This derived from
Fuchs’s immersion in a tradition that emphasised local aspects, such as the
nature of singular points of an analytic function, and provided techniques
for dealing with them, but was much less well equipped to handle global
questions. But nonetheless, it was Poincaré, not Fuchs, who was rigorous
and Poincaré who, through this insistence on rigour was able to reach the
situation where the attention to the behaviour of the inverse of the quo-
tient and the nature of its domain was to lead to the great discovery of the
importance of non-Euclidean geometry.

The same story can be told with Poincaré’s work on asymptotic series,
presented in (Poincaré 1886). Astronomers had observed that certain power
series expansions that are not known to be convergent, and may even be
known to be divergent, can even so be truncated after a certain number of
terms and give useful information. But it is a delicate journey from there
to a theory of how this can be, and what operations (such as differentiation
and integration) are permissible under what conditions. As with Poincaré’s
work on several other technical topics in the theory of analytic functions,
there could be nothing without rigour.

Poincaré also had reluctant criticisms of rigour. Proofs can be too large,
he argued in L’Avenir, and well-chosen terms, such as ‘uniform convergence’
would encapsulate progress and prevent rigorous proofs from becoming al-
most incomprehensibly too long. Likewise, calculation should be an irre-
ducible minimum, and never blind. Such proofs, he suggested, while valid,
could not be properly understood.

A more substantial objection was that proofs can be wrong in kind, as was
the case, he suggested, in potential theory, where they do not mimic the ac-
tual processes involved. More-or-less intuitive proofs, he said in an analysis
of his own scientific work in a memoir? written in 1901, are of the right sort
to satisfy a physicist because they leave the mechanism of the phenomena
apparent. More rigorous arguments for the existence of solutions depended
on convergence arguments but this convergence was usually too slow, and

2Published as (Poincaré 1921a), see (Buvres 9, 2.
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the approximations involved too complicated for such approaches to yield
effective numerical procedures. The implication is not only that there was
a better proof to be found that would speak to both the physicists and the
mathematicians. Poincaré was also explicit, in (Poincaré 1890b), that the
physicists” understanding was not good enough. He argued instead that
one could not be content with the lack of a rigorous proof; analysis itself
should be able to solve such problems. Any rigorous solution is, of course,
a solution, and even if crude nonetheless teaches us something. But was it
not needlessly pedantic to seek the rigorous solution of equations that had
only been established by approximate methods and which rested on impre-
cise experimental foundations? His answer was ‘no’: how could one be sure
that something less than a rigorous proof was not actually flawed; had one
the right to say that something inadequate for mathematics was yet good
enough for physics?—the line was impossible to draw. One could not, as a
mathematician, settle for less, and in any case many of these equations had
applications not only in physics but also in pure mathematics (for example,
he observed, Riemann himself had based his magnificent theory of Abelian
functions on his use of Dirichlet’s principle).

A further objection to rigour that Poincaré held was that there are occa-
sions when it is is not enough. He observed in his (1905a) that Hilbert had
exposed the formal character of reasoning in geometry, and remarked that
even if the same was done for arithmetic and analysis, mathematics could
not be reduced to an empty form without mutilating it and the origin of the
axioms would still have to be investigated, however conventional they were
taken to be. In (Poincaré 1908a, 932), he remarked that logical correctness
is not all.

A lengthy calculation that has led to a striking result is not
satisfying until we understand why at least the characteristic
features of the result could have been predicted.

And because it is not order per se, but only unexpected order that has a
value, the mechanical pursuit of mathematics would be worthless,

“A machine can take hold of the bare facts, but the soul of the
fact will always escape it”.

So the problem for Poincaré was: How to proceed? Isolated facts had no
appeal for him, but a class of facts held together by analogy brings us into
the presence of a law, and as he continued in L’Avenir, in explicit agreement
with Ernst’s Mach’s principle of the economy of thought,

The importance of a fact is measured by the return it gives—that
is, by the amount of thought it enables us to economise.



48 Jeremy Gray

Poincaré argued that the elegance of a good proof reflects an underlying
harmony that in turn introduces order and unity and “enables us to obtain
a clear comprehension of the whole as well as its parts. But that is also
precisely what causes it to give a large return” (Poincaré 1908a). The
aesthetic response to mathematics was regarded by Poincaré as a sign of
its efficacy, and this pair of ideas then shaped the rest of his address.

2 Poincaré on progress in mathematics and physics

Poincaré was not seduced by flashes of insight. He explicitly commented
that these, although convincing at the time, can mislead. As he put it in
his address to the Parisian Society of Psychologists in 1908 (see his 1908b),
the unconscious provides points of departure for calculations that must be
made consciously, but operates by chance. And one must be careful, for the
unconscious presents these ideas with a feeling of certainty even when, on
rational analysis, they prove to be worthless.

There was, however, an in-built activity of the mind that was capable of
providing knowledge, and that was our ability to reason by recurrence, and
this allows for the growth of knowledge. And, he implied in his (1902a),
“Who doubts arithmetic?” (Perhaps no-one in 1900, when he made these
remarks at the Paris ICM.)

Not many years later there were people who did indeed, if not doubt
arithmetic at least deny it a fundamental status. In 1909 Poincaré, who
was also fighting acrimonious battles with Russell, Couturat, and other
logicians, responded to Zermelo’s first attempt at an axiomatisation of set
theory (as presented in papers written 1904 and 1908 and now collected in
(Zermelo 2010)). Poincaré began his (Poincaré 1912a) by observing that
an axiom system of any kind must be free of contradiction. If this could
not be done by an appeal to some other system, as Hilbert had done with
his axioms for various geometries by appealing to arithmetic, then the only
hope is that the axioms be self-evident. This was the situation Zermelo was
in, but Poincaré found Zermelo’s axioms far from self-evident. In particular,
he was unconvinced by Zermelo’s use of the term ‘Menge’ to identify the
type of collection about which we can reason. For Poincaré these would be
sets with predicative definitions, so that each member has, as it were, its
own entitlement to membership. For Zermelo, these were collections with
a ‘definite’ membership criterion, but by not requiring definiteness to mean
predicativity Poincaré felt that Zermelo had not been careful enough:
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But even though he has closed his sheepfold carefully, I am not
sure that he has not set the wolf to mind the sheep. (Poincaré
1912a, 87, 67)3

Predicative definitions permit clear checks on membership of a set and im-
pose limits on the size of sets, or so Poincaré believed, which is why he
rejected the well-ordering axiom; no set larger than the first uncountable
set can be surveyed. This was Poincaré’s second objection: set theorists
spoke to him far too easily of very large sets. Since this was a consequence
of their approach, he took it as evidence that their concept of a set was
not self-evident, and accordingly rejected it. The nub of Poincaré’s opinion
was that what could not be understood by the human mind should not be
talked about, however formally it could be expressed.

If neither naive intuition nor strict logic nor axiomatic set theory was
the right basis, what could be? Poincaré invested considerable effort in
deciding how to conduct his own research,as perhaps many a researcher does,
but unusually he also spelled out explicitly for others the way in which he
operated and which, he believed, it was most propitious to proceed. Among
the topics he considered was a lifelong interest of his, number theory, and
because his work in that subject is less familiar than are his achievements
in some of the other fields he occupied I shall draw examples from it here.

Poincaré on progress in mathematics

Higher arithmetic is difficult, he explained in L’Avenir, and progress slow
because there can be no appeal to continuity. Therefore the subject should
be guided by the numerous analogies with algebra, and in his first works
he argued that it can be (partially) unified by use of transformations. This
was an approach he had taken in his first substantial number theory paper,
(Poincaré 1881). Here he had begun by observing that Hermite had com-
pletely and elegantly solved the problem of finding canonical representatives
for quadratic forms, and then offered an extension of Hermite’s methods to
forms of higher degree, specifically cubic forms in 3 or 4 variables.* Poincaré
considered the effect of linear changes of variables on a given form. He noted
that the effect of following one change of variables by another depended on
the order in which the transformations were carried out, and then consid-
ered different types of linear transformation: they could be unitary (they
have determinant 1), real (they have real coefficients) or integral (integer

3Page references of this kind refer to the French and English editions of the text where
appropriate; I have used (Poincaré 2001).

4Hermite had looked for all transformations of a ternary quadratic form to itself in
1853 in papers in JfM 47, see his (Buvres, I, and had considered the group that maps an
indefinite ternary quadratic form a2 + y2 — 22 to itself.
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coefficients). He called two forms F’ and F” equivalent if there is a third
form F and transformations 77 and 7" such that F/ = FT' and F" = FT",
and said this equivalence is algebraic, real, or arithmetic if the correspond-
ing transformations are, respectively, unitary, real, or integral. Because a
linear transformation can be thought of as a change of coordinates, Poincaré
set himself the task of classifying the possible transformations where 7" and
3 = SvT'S are regarded as equivalent.

He then showed how the groups of transformations that arise yield a
classification of the forms that agrees with the geometrical classification of
them as loci or surfaces, which German geometers such as Hesse, Clebsch,
and Gordan had already presented. The first part of the paper ended with a
table of the cubics in four variables that are indecomposable, do not reduce
to forms in three variables, and have non-trivial self-transformations, and
the second part of the paper, (Poincaré 1882), Poincaré turned to the real
and integral theories, which give a finer classification of the forms.

Hermite’s response to this paper was to urge Poincaré to make an explicit
investigation of the reduced forms, because calculation can reveal what no-
one could otherwise see or predict. This was never to be Poincaré’s way.
Hadamard, much later, on the other hand observed of this work (Hadamard
1921, 168), that the problem of indecomposable forms “disappeared, in this
sense, that an idea of rare simplicity gave the rule applicable to all problems
of this sort at a stroke”. What was left, he explained was a purely algebraic
problem of reducing the form to a canonical type, and then a problem about
the arithmetic group.

Poincaré’s interest in Hermite’s work on number theory explains an oth-
erwise mysterious but famous incident in Poincaré’s discovery of the riches
of non-Euclidean geometry. In the summer of 1880, as he recalled in his
lecture in 1908, he realised while walking by the sea-side, that the arith-
metical transformations of ternary indefinite quadratic forms were identical
with those of non-Euclidean geometry.> This not only helped to illuminate
the reduction of these forms to canonical form, it was the key that opened
the way to Poincaré’s theory of Fuchsian groups.

Poincaré’s belief that the group idea was central to many different prob-
lems in mathematics continued to animate his work in number theory. In
1887 he wrote a major paper on Fuchsian functions and arithmetic (Poincaré
1887). He was interested in the famous modular equation, but not, as
Hermite had been because it bridged elliptic function theory and number
theory, but because he wanted to understand why it existed at all.

He argued that the modular function J(z) is invariant under the group
I' = SL(2,Z), and that the transformation S given by z — z/n is not in

5See (Poincaré 1908b), in (Poincaré 1908c, 52-53, 393).
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this group, but the relationship between J(z) and J(z/n) is governed by
the celebrated modular equation. To generalise this, he introduced the idea
of commensurable groups. He said that two groups G; and G5 are com-
mensurable if their intersection H is a subgroup of finite index of both G
and G, and he noted that the groups SL(2,Z) and SvSL(2,Z)S are com-
mensurable, so there is an equation between J(z) and J(z/n)—the modular
equation.

Next, Poincaré looked for commensurable Fuchsian groups. He observed
that there are three groups of interest that map a given ternary form to itself,
and the matrices involved have either real, rational, or integer coefficients,
so he denoted the groups

Freca FQ» PZ~

Each of these groups gives rise to a corresponding Fuchsian group. When
he used the groupl'y, Poincaré called the corresponding Fuchsian group the
principal group, Gz., and this led him to the generalised modular equations.
He took a I'g, and S € I'g with rational, non-integral coeflicients, and
argued that the Fuchsian group corresponding to I'g is not discontinuous,
so an element S in this group gives rise to a Fuchsian transformation s ¢
Gz. But the groups Gz and svGzs are commensurable, so a Fuchsian
function for the principal group is algebraically related to its transform
by s. The relation takes the form of a polynomial equation, and so the
existence of a family of Fuchsian groups with arithmetic properties explains
why there is, in particular, the modular equation. (It should be added that
this generalisation is not trivial, the proofs involved difficult and unfamiliar
extensions of familiar ideas such as summing over the elements of a Fuchsian
group and not over the integers. Good analogies are seldom simple.)

In short, what Poincaré had done was not, in his view, just a generali-
sation. Rather, where Hermite had found a pre-existing phenomenon, the
modular equation, Poincaré went looking for a generalisation, and found it
via a group-theoretic analysis which explained why the modular equation
existed.

Poincaré on progress in physics

Here again analogy and generalisation played fundamental roles. One brief
example will illustrate the point. It is well-known that one of Poincaré’s
great innovations in the theory of celestial mechanics was the idea of per-
turbing the system studied, and seeking to see if solutions known to exist
in a simple case survived the transition to more general cases that were, in
some sense, nearby. In his work for King Oscar II of Sweden’s prize com-
petition (Poincaré 1890a) Poincaré supposed that a system of equations



52 Jeremy Gray

depending on a parameter p was solvable when p = 0 and that among the
solutions were some that were periodic.® For example, consider the three
body problem with masses aq, asp, and agu, where p i very small. When
1 = 0, the explicit solutions have the two small bodies orbiting the large
one in Keplerian ellipses, and there is an infinity of periodic solutions.

Poincaré now asked under what conditions has one the right to con-
clude that there will still be periodic solutions for small values of u, and
he promised to show that when p is sufficiently small the problem for each
value of p still has infinitely many periodic solutions, as he did also later in
1892 in his (1892), the Les Méthodes nouvelles de la mécanique céleste.

The work was very difficult, and he looked for a simplified version. Even-
tually, to understand the problem in the simplest analogous case, he con-
sidered the topic of closed geodesics on spheroids in his (1905b). A spheroid
is a surface that differs only slightly (in ways Poincaré did not specify) on
a parameter p from a sphere, where, of course, the closed geodesics are
the great circles. To derive the appropriate equations for geodesics on the
spheroid, Poincaré imagined that as p increased from zero each point on
the sphere moved to its corresponding point on the spheroid, (corresponding
points have parallel tangent planes). This gave him a good way to relate the
maps of the sphere and the spheroid on a plane. He could now investigate
when a closed geodesic on the sphere (a great circle) remains a geodesic on
the spheroid.”

3 Poincaré on mathematics and physics

Most importantly, Poincaré argued at the ICM in 1897, (Poincaré 1897)
that mathematics and physics are inseparable.®

Mathematics has a triple purpose: it must provide an instrument
for the study of nature; it has a philosophical purpose and, I
would say, an aesthetic purpose.

It must aid the philosopher to make our ideas of number, space,
and time more profound.

Mathematics, he went on, is not a mere provider of formulae for physics.
Indeed

The first reason why the physicist cannot give up mathematics
is: it provides him with the only language he can speak.

SFor a rich historical account, (see Barrow-Green 1997).

"For an excellent account of Poincaré’s paper, (see Anantharaman 2006/2010).

8To be precise, Poincaré did not attend this ICM because his mother had died on 17
July 1897.
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On the other hand,

The only natural object of mathematical thought is the inte-
ger [...] It is the external world that has imposed the contin-
uum upon us, which we would have invented without doubt,
but we have been forced to invent. Without it there would be
no infinitesimal analysis, and all of mathematical science would
reduce to arithmetic or to the theory of groups.

The remark about the continuum is particularly noteworthy because
Poincaré had elsewhere spoken favourably of a different continuum intro-
duced by Du Bois Reymond (see Poincaré’s 1893) which contains infinites-
imals.

A crucial test of any philosophy of science is how it deals with theory
change, and Poincaré was very aware that theories change and die. What
survived, he believed, were the relations in which the theory was expressed.
The aim of mathematical physics he proclaimed as being “to reveal the hid-
den harmony of things...”—a harmony of relations between facts—by ‘facts’
he meant the results of accepted experiments and mathematical theorems.
Confronted, as one is, with what he called the melancholy remains of failed
theories, he argued that the equations in which the old theories were ex-
pressed are still true, and the relations they capture preserve their reality.
But as for what is related, as Poincaré put it at the International Congress
of Physics (Poincaré 1900):

these are merely names of the images we substituted for the real
objects which Nature will hide for ever from our eyes. The true
relations between these real objects are the only reality we can
attain, [and] When theories seem to contradict each other, it
is likely that it is the images we have supplied which stand in
contradiction.

On this occasion Poincaré gave the examples of billiard ball atoms and
the fluids of Coulomb, once old-fashioned “yet here they are re-appearing
under the name of electrons”.

4 Poincaré on philosophy and conventionalism

All of which brings us to the place Poincaré assigned to conventions in
mathematics and physics. It is important to recognise that these are of two
kinds. What is called geometric conventionalism was expressed in his re-
peated argument that we cannot tell if space is Euclidean or non-Euclidean.
This is because there are no logical grounds for distinguishing the claim
that Space is Euclidean and light rays are curved from the claim that Space
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is non-Euclidean and light rays are straight. (Here light rays stand in for
any physical embodiment of straight lines.) Accordingly, we make a choice
on grounds of convenience—but this choice, as he explained in his article
in the Monist for 1898, is made because of our inherent ability to construct
a theory of space out of our innate appreciation of rigid bodies. Geometri-
cal conventionalism is fundamental to our ability to have knowledge of the
external world at all, knowledge that is acquired before we are capable of
receiving formal education of any kind.

Other conventions arise in our construction of physical theories. These
included, by Poincaré’s time, Newton’s laws of motion, and the law of con-
servation of energy. At the International Congress of Physics, 1900, but also
on other occasions, Poincaré repeatedly stressed the conventional element
in mechanics, such as Newton’s laws of motion, the definition of force, and
the conservation of energy, are not increasingly well confirmed experimental
results, rather, they have been elevated to the status of conventions. They
function as axioms, and they are not to be put in question by an unexpected
result. On such occasions scientists looks for an unexpected, and possibly
new, process at work; they do not doubt the basic principles. The principles
are true by convention, and to deny them on such grounds is not to be a
radical scientist but to cease to be a scientist altogether.

Poincaré was challenged at that Congress by the radical conventionalism
of his former student Edouard le Roy, who argued that science was a mere
game that produced rules for action but no actual knowledge and supposed
scientific facts were the creation of the scientist. Poincaré replied (Poincaré
1902b) that science provided knowledge because it makes predictions that
are, in the main, correct. Scientists, he argued, do not create scientific facts.
They start with the brute facts, and all they create is the language in which
they express these facts. There is a greater creative role, he allowed, when
it comes to scientific laws that have been raised to the status of principles.
But here he insisted that any substantial disagreement will be settled by
appeal to convention: principles are neither true nor false but conventional
and convenient ( 4). True to his conventionalism, Poincaré set great store
by the ability to converse effectively. For him science was objective because
it rested on communication between people. In 4 he returned to his hypo-
thetical confrontation between Euclideans and non-Euclideans, and argued
that if they have analogous senses and accept the same logic then it would
be possible to translate their language into ours. And in every case where
translation is possible, there is an invariant (which is what is being said
in each language) and these invariants are laws which in turn are relations
between crude facts, expressed differently in each language. As he put it in

6, “No discourse, no objectivity”.
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Science, he went on, speaks only of relations between sensations, and
once the role of conventions is understood it is objective precisely because
it is a system of relations. But, he insisted, science was not about objects in
themselves. Indeed, to say that science cannot be objective because it can
speak only of relations and never of things ‘in themselves’ or ‘as they really
are’ is absurd. Nothing can reveal the true nature of things, and, in words
surely chosen to hint at le Roy’s theology, Poincaré added (see Poincaré
2001, 267, 347-348) or (Poincaré 1904a), that if some god did know the
true state of things “he could not find the words to express it. Not only
would we not be able to guess the answer, but if one gave it to us we would
not be able to understand it”.

Even so, the fundamental principles can be challenged, and in his lectures
in St Louis in 1904 (Poincaré 1905¢) Poincaré discussed how this challenge
was seemingly underway. His paper (Poincaré 1904b) is remarkable because
it marks the closest he ever came to producing a relativistic theory of electro-
dynamics. He proposed that “the laws of physical phenomena must be the
same for a fixed observer as for an observer who has a uniform motion of
translation relative to him” (see Poincaré 2001, 176, 294), and deduced from
this that

From all these results would arise an entirely new mechanics
which would above all be characterised by the rule that no ve-
locity could exceed the velocity of light. (see Poincaré 2001, 197,
314)

Poincaré summarised what had driven him to contemplate a new physics
and a revision of the conventions of contemporary physics under several
headings. The fundamental theory of thermodynamics had no theoretical
foundations. Newton’s third law (action and reaction are equal and op-
posite) was contradicted by the best existing explanation of the persistent
failure to detect the Earth’s motion through the ether, which was Lorentz’s
theory in which the ether affected the electron but not the other way round.
Lorentz had also suggested that all matter might be electro-magnetic in na-
ture, in which case it might indeed not obey Newton’s laws, a view that
did not attract Poincaré. The study of cathode rays, by then understood as
the motion of high speed electrons, suggested that their mass was electro-
magnetic in nature and depended on their velocity—in which case Poincaré
observed, all of Newton’s physics collapsed. Finally, the principle of con-
servation of energy was challenged by Becquerel’s discovery of spontaneous
radioactivity, for which he had won the Nobel Prize in 1903.

Poincaré’s cautious proposal was to loyally defend present principles and
not give up everything at once, because new experiments might yet restore
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harmony. But, he admitted, if even the best established experiments are to
be overthrown, it is not clear what was left of his philosophy of science (see
Poincaré 2001, 207, 312).

Have you not written, you might say if you wished to seek a quar-
rel with me—have you not written that the principles, though
of experimental origin, are now unassailable by experiment be-
cause they have become conventions? And now you have just
told us that the most recent conquests of experiment put these
principles in danger.

Well, formerly I was right and today I am not wrong.

But it might be that a new approach, comparable to that which took
physics from a theory of central forces to a physics of principles, would be
created, in which recognisable traits of the old view would still be visible.
For example, thermodynamics could become based on the laws of chance,
and the physical law would no longer be a differential equation but a sta-
tistical law. This view, which the 20th, and still more it seems the 21st
century only confirm, was prescient. So too was his suggest that the new
theory of dynamics valid for high speeds, would have Newtonian dynamics
as a limiting case (see Poincaré 2001, 211, 314).

We get a tantalising glimpse of what the new physics Poincaré contem-
plated might have been if we consider one of his last papers, which comes
from a lecture he gave in London on 4 May 1912, (Poincaré 1912b). He re-
ported on the impact of “the principle of relativity, as conceived by Lorentz”,
and so had to confront the problem that he had previously put our knowl-
edge of the geometry of space beyond revision, yet here it was seemingly
being revised.

Poincaré continued to argue that our knowledge of space is constructed
from our representation of the sensations that accompany certain move-
ments in space. Our measurements of space and time depend on instru-
ments, starting with our own bodies, and an element of convention enters
when we talk of perfect instruments. But Poincaré now distinguished be-
tween actual observations and the laws of motion derived from them by
differentiation. Observational values are changed by a change of coordinate
axes; the differential equations are not. The principle of relativity applies,
said Poincaré, to the equations, their invariance under the appropriate co-
ordinate changes is assured because they are second-order differential equa-
tions (and rotating axes can be handled by passing to third-order equations).
By considering how we would treat a small piece of the universe distant from
the rest and visibly rotating with respect to the rest, he deduced that phys-
ical relativity incorporates the idea that widely separated worlds may be
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treated independently, and is therefore not a necessity of the intellect but
an experimental truth holding within limits. Relativity in this sense “is no
longer a simple convention. It is verifiable, and consequently it might not
be verified”. As such, it differs from relativity in the broader psychological
sense that draws on our sense of time, and cannot, for example decide of
two events, one on Earth and one on Sirius, which came first except by a
convention.

After Lorentz, then, there are two principles that can serve to define
space: the old one involving rigid bodies, and a new one to do with the
transformations that do not alter our differential equations. They are not
essentially different, said Poincaré, because both are statements about the
objects around us, but the new one is an experimental truth. Geometry
can once again be made immune to revision by experimenters by making
physical relativity a convention concerning distant objects. Then, whereas
our conventional knowledge of geometry was formerly rooted in the group
of Euclidean isometries, it could now be rooted in the Lorentz group: the
Lorentz group that preserves our equations, at the price of placing us in a
four-dimensional space. So, Poincaré concluded:

What shall be our position in view of these new conceptions?
Shall we be obliged to modify our conclusions? Certainly not; we
had adopted a convention because it seemed convenient and we
had said that nothing could constrain us to abandon it. Today
some physicists want to adopt a new convention. It is not that
they are constrained to do so; they consider this new convention
more convenient; that is all. And those who are not of this
opinion can legitimately retain the old one in order not to disturb
their old habits. I believe, just between us, that this is what they
shall do for a long time to come. (Poincaré 1913, 109, 24)

The ultimate test, for Poincaré, remained a pragmatic one. Conventions
can be challenged if the theory that they support becomes incoherent, as
it may under the impact of new experimental results. When this happens
the transition to a new theory may be messy and uncertain, but if it has
to be made and the old theory abandoned the new theory will rest on
its own principles, which will again function as conventions. We adopt a
mathematised theory of physics that we find most convenient, not one that
is forced upon us (because no theory is).

5 A Wittgensteinian comparison

It is interesting to see how much of Poincaré’s views make him a sceptic in
the manner of Wittgenstein, Kripke, and Kusch. In his essay On Certainty
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(Wittgenstein 1969) Wittgenstein remarked that “Certainty is attainable”
(see Wittgenstein 1969, 56), and that

Endless doubting is valueless: If you tried to doubt everything
you would not get as far as doubting anything. (Wittgenstein
1969, 115)

This rather pragmatic sense of certainty was rooted in a concept of self-
evidence, which for the purposes of mathematics in particular the self-
evidence of a mathematical axiom system, Wittgenstein put this way: the
assertion of self-evidence implies “that we have already chosen a definite
kind of employment for the proposition without realising it. The proposition
is not a mathematical axiom if we do not employ it precisely for this purpose.
The fact, that is, that here we do not make experiments, but accept the
self-evidence, is enough to fix the employment” (in Wittgenstein 1964, III).
When we are forced to claim without a proof, or even the possibility of a
proof, that a system we are using is consistent, the risk is that we shall turn
out to be wrong, and of a system that was inconsistent but had never yet
been made to generate a contradiction, Wittgenstein made the ‘good angel’
defence:

Well, what more do you want? One might say, I believe: a good
angel will always be necessary, whatever you do. (Wittgenstein
1964, V)

The usual contrary position is that we know what we are doing, and we
know what we mean when we talk. Kusch (see 2006; 2009) calls sceptics
people who reject as incoherent explanations of meaning in terms of the
mental states of people. Sceptics argue, he says, nothing precludes anyone
from having failed to exclude some other meanings. Kripke’s example is
that ‘+’ could obey rules for large numbers that someone used to adding
only small ones could never have ruled out (such as a+b = 5 for all numbers
a,b > 100). Typically, the response to the sceptical challenge is to take it
on its own terms and attempt to refute it, but Kusch argues that the proper
thing to do is to see that it is harmless after all and accept it, and to replace
talk about mental states with talk about intersubjectivity.

Poincaré’s position, I suggest, is close to that of the Kusch’s sceptic. He
agreed that we rely on the testimony of experts and on a shared commu-
nication with others; that we speak a shared family of languages, natural,
scientific, mathematical which work because of a shared set of conventions,
and we have ideas about what we would do if our statements conflict or
communication failed. As he put it in (Poincaré 1902b), (see Poincaré 2001,
292, 345): “No discourse—mno objectivity”. In his controversy with Zermelo
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he made it clear that he would accept self-evident axioms, and rested his
case on the lack of self-evidence in Zermelo’s system. His dispute with le
Roy and his imaginary discussions between Euclideans and non-Euclideans
are far from the only occasions where Poincaré put his trust in the pos-
sibility of effective communication. None of this involves knowing about
meanings or have particular mental states.

If talk about meaning proceeds from introspection (‘I know what I mean
by X’) to a charitable interpretation of what everyone else is saying as being
sufficiently like what one says oneself, then Wittgenstein’s alternative says
that ‘By their deeds ye shall know them’. It is clear that Poincaré did
not talk about meanings, and certainly not about mental states, which he
disparaged as carriers of truth in his lecture to the psychologists (Poincaré
1908b). He was reluctant to speak about eternally established facts, and
placed great weight on actions and usage (for example, in measuring). Not
only did he not think a list of facts was anything like as good as a theory
(one cannot make predictions from a list of facts, science cannot progress
by generalisation and analogy from a mere list) he often openly doubted
if today’s facts would be accepted tomorrow. But was he a sceptic in the
sense just described?

The usual charge levelled at sceptics is that they are relativists. This
charge alleges, to quote from (Kusch 2009, 19) again, that

people using different epistemic systems (consisting of epistemic
standards) can ‘faultlessly disagree’ over the question whether
a given belief is epistemically justified or not. Faultless dis-
agreement in such scenario is possible because (1) beliefs can be
justified only within epistemic systems; (2) there are, and have
been, many radically different epistemic systems; and (3) it is
impossible to demonstrate by rational argument that one’s own
epistemic system is superior to all or most of the others [...].

But it can surely be argued that conventionalism in physics, and even ge-
ometric conventionalism, are akin to a language game. Poincaré was ev-
idently a relativist over the question of the geometry of space, because
faultless disagreement between a Euclidean and a non-Euclidean is exactly
what he said would happen, and he was a relativist again when it came to a
choice between the Galilean and the Lorentz group in special relativity. The
nub of these disagreement is the existence of two distinct epistemic systems.

He was a sceptic about physics, for he agreed that we rely on the
testimony of experts and on a shared communication with others “No
discourse—mno objectivity” he said in 1902 (see Poincaré 1902b). He argued
that we speak a shared family of languages, natural, scientific, mathematical
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which work because of a shared set of conventions, and we have ideas about
what we would do if our statements conflict or communication failed. None
of this involves knowing about meanings or have particular mental states.
Conventionalism is surely much more akin to a language game, and if scep-
ticism is criticised for implying relativism, and if it is relativism to permit
faultless disagreement, Poincaré’s geometric conventionalism is relativist.

But Poincaré was not a sceptic about pure mathematics. He believed
that we know what reasoning by recurrence is in an almost Kantian fashion.
But recall that for Poincaré mathematics and physics are inseparable, and
his deepest commitment was to discovery in mathematics. Now, no serious
philosophy of mathematics can ignore or mistreat the role of discovery:
without it there would be no mathematics! As Poincaré said in the first
volume of Enseignement mathématique (see Poincaré 1899), even “the next
generation of leading mathematicians will need intuition, for if it is by logic
that one proves, it is by intuition that one invents”.

6 A philosophical study of proof

A few brief remarks on this vexed topic may help to make a useful contrast.
There is, of course, a sophisticated language for discussing proof known to
mathematical logicians. This overlaps the ways mathematicians think about
proofs, but it is not the whole story. It is excellent at questions of logical
independence among axioms, at questions about the relative strengths of
proofs, and of course, about logic itself. What Poincaré’s comments were
directed towards is better seen as ways of doing mathematics, and they are
in some ways closer to how mathematicians regard their own work when
they take a step back from it.

Central to Poincaré’s approach was an idea of what it is to understand
a concept or a mathematical argument. For him, grasping a proof should
not be (only) a matter of psychology or mental states. Whatever aesthetic
pleasure there might be in this or that piece of mathematics, it was more
important to be able to advance the subject, and the aesthetic sense was,
he argued, connected to the way in which the right new idea was enabling.
For him, mathematics was a practice, and one to be judged ultimately on
practical grounds. So a position of “Rigour—good: lack of rigour—bad”
could not be the whole story, and alongside technical correctness a proof
played a key part of acquiring, displaying, and using one’s understanding.
The “right” proof, for him, was one that got to the deepest relationship
between the concepts and so enabled new work to be done, perhaps by
displaying a new and valid use of the terms it involves. Research should
aim for general ideas capable of wider application (by analogy), and would
show not only what is the case but why it is the case. And it is striking,
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by the way, how often in his mathematics Poincaré relied on the general
context and how little weight he attached to examples, and how often he
insisted that physics dealt in relations that would survive changing beliefs
or practices about objects.’
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Einstein and Bohr Meet Alice and Bob

JEFFREY BuB

ABSTRACT. The Bohr-Einstein debate was ultimately about the
nature of quantum reality. Here I consider how the puzzling questions
at issue have been transformed by the information-theoretic turn in
quantum foundations, and what we have learned about the possible
answers.

1 Correlations

The debate between Bohr and Einstein about the nature of quantum reality
reached its high point in 1935 with the publication of the Einstein-Podolsky-
Rosen argument for the incompleteness of quantum mechanics (Einstein
et al. 1935) and Bohr’s reply (Bohr 1935). Roughly thirty years later, John
Bell’s critique (Bell 1964) turned the EPR argument on its head and was
seminal in the development of quantum information theory. The conceptual
issues have been transformed by the associated information-theoretic turn
in quantum foundations, and we can now see that the puzzling counter-
intuitive features of quantum mechanics at the heart of the Bohr-Einstein
debate have their source in the peculiar nonclassical correlations of quan-
tum phenomena. In this paper, I discuss some aspects of this change in
perspective.

To fix notation and terminology, consider the simple case of measure-
ments of two binary-valued observables, 2 € {0, 1} with outcomes a € {0,1},
performed by Alice in a region A, and y € {0, 1} with outcomes b € {0,1},
performed by Bob in a separated region B. I shall refer to the x-values and
a-values as Alice’s inputs and outputs, respectively, and similarly for Bob
with respect to the y-values and b-values. So the two Alice-inputs (z = 0
or z = 1) correspond to the two Alice-observables, and the two Bob-inputs
(y =0ory = 1) correspond to the two Bob-observables, and each observable
can take two values, 0 or 1.

Correlations are expressed by a correlation array of joint probabilties as
in Table 1:
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z || 0 1
Y
0 p(00]00)  p(10]00) | p(00[10) p(10]10)
p(01]00)  p(11]00) | p(01|10) p(11]10)
1 p(00/01)  p(10/01) | p(00[11) p(10[11)
p(01]01)  p(11]01) | p(01|11) p(11]11)

Table 1. Correlation array

The probability p(00]00) is to be read as p(a = 0,b = O0lz = 0,y = 0),
i.e., as a joint conditional probability, and the probability p(01|10) is to be
read as p(a = 0,b = 1|z = 1,y = 0), etc. (I drop the commas for ease
of reading; the first two slots in p(— — | — —) before the conditionalization
sign ‘| represent the two possible outputs for Alice and Bob, respectively,
and the second two slots after the conditionalization sign represent the two
possible inputs for Alice and Bob, respectively.)

The sum of the probabilities in each square cell of the array in Table 1 is
1, since the sum is over all possible outcomes, given the two observables that
are measured. The marginal probability of 0 for Alice or for Bob is obtained
by adding the probabilities in the left column of each cell or the top row of
each cell, respectively, and the marginal probability of 1 for Alice or for Bob
by adding the probabilities in the right column of each cell or the bottom
row of each cell, respectively. The measurement outcomes are said to be
uncorrelated if the joint probability is expressible as a product of marginal
or local probabilities for Alice and Bob; otherwise they are correlated.

Now consider all possible correlation arrays of the above form. They form
an 8-dimensional regular polytope with 256 vertices and 1024 edges, where
the vertices are the extremal deterministic arrays with probabilities 0 or 1
only, e.g., the array in Table 2:! A general correlation array is represented
by a point inside this polytope, so the probabilities in the array can be
expressed (in general, non-uniquely) as convex combinations of the 0, 1
probabilities in extremal correlation arrays (in a similar sense in which a
probability can be represented as a point on a line between the points 0 and

LA polytope is the analogue of a polygon in many dimensions. A convex set is,
roughly, a set such that from any point in the interior it is possible to see any point
on the boundary. There are four possible arrangements of 0’s and 1’s that add to 1 in
each square cell of the correlation array (i.e., one 1 and three 0’s), and four cells, giving
4% = 256 vertices. Each of the four pairs of inputs, 00, 01, 10, 11, is associated with two
dimensions.
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x|l 0 1
Y
0 p(00]00) =1 p(10/00) =0 | p(00]10) =0 p(10]10) =0
p(01]00) =0 p(11j00) =0 | p(01]10) =1 p(11]10) =0
1 p(00]01) =0 p(10/01) =1 | p(00|]11) =0 p(10]11) =0
p(01]01) =0 p(1101) =0 | p(01]11) =0 p(11]11) =1

Table 2. Extremal signaling deterministic correlation array

1 because it can be expressed as a convex combination of the extremal end
points).

The correlation array in Table 2 defines a set of correlations that allow
signaling between Alice and Bob. Alice’s output is the same as Bob’s input.
Similarly, Bob’s output is the same as Alice’s input. So an input by Alice or
Bob is instantaneously revealed in a remote output. There are 240 signaling
extremal deterministic correlation arrays in the total set of 256 extremal
deterministic correlation arrays. The remaining 16 extremal deterministic
correlation arrays are non-signaling.

The ‘no signaling’ condition can be formulated as follows: no information
should be available in the marginal probabilities of outputs in region A
about alternative choices made by Bob in region B, i.e., Alice, in region
A should not be able to tell what Bob measured in region B, or whether
Bob performed any measurement at all, by looking at the statistics of her
measurement outcomes, and conversely. Formally:

(1) > p(abla,y) = plalr,y) = plalz), for ally
b

(2) > pla,blz,y) = ple,y) = p(bly), for allz

Here p(a, b|z,y) is the probability of obtaining the pair of outputs a,b for
the pair of inputs x,y. The probability p(a|z,y) is the marginal probability
of obtaining the output a for  when Bob’s input is y, and p(b|x,y) is the
marginal probability of obtaining the output b for y when Alice’s input is x.
The ‘no signaling’ condition requires Alice’s marginal probability p(a|x,y)
to be independent of Bob’s choice of input in region B (and independent
of whether there was any input in region B at all), i.e., p(alz,y) = p(alz),
and similarly for Bob’s marginal probability p(b|x, y) with respect to Alice’s
inputs: p(b|z,y) = p(bly). Note that ‘no signaling’ is simply a constraint
on the marginal probabilities, not a relativistic constraint per se. But if
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this constraint is violated, instantaneous (hence superluminal) signaling is
possible.

The joint probabilities in the 16 non-signaling deterministic correlation
arrays can all be expressed as products of marginal or local probabilities
for Alice and Bob separately. For example, the deterministic correlation
array in which the outputs are both 0 for all possible input combinations,
as in Table 3, is a non-signaling array and the joint probabilities can be
expressed as a product of local probabilities: a marginal Alice-probability
of 1 for the output 0 given any input, and a marginal Bob-probability of 1
for the output 0 given any input.

z || 0 1
Y
0 p(00]00) = p(10]00) = p(00|10) = p(10]10) =
p(01]00) =0 p(11|00) =0 | p(01|/10) =0 p(11|10) =
1 p(00]01) = p(10/01) =0 | p(00|]11) =1 p(10/11) =0
p(01]01) = p(11]01) =0 | p(01]11) =0 p(11]11) =0

Table 3. Extremal non-signaling deterministic correlation array

In the following, I shall refer to the probabilistic arrays as states, since
the classical and quantum correlation arrays correspond to classical and
quantum pure and mixed states.

2 Nonlocal boxes

Now suppose the correlations are as in Table 4. These correlations define
a Popescu-Rohrlich (PR) box, a hypothetical device proposed by Popescu
and Rohrlich (Popescu & Rohrlich 1994) to bring out the difference between
classical, quantum, and superquantum non-signaling correlations.

x 0 1
Yy
0 p(00]00) = 1/2 p(10]00) = p(00/10) = 1/2 p(10/10) =
p(01]00) = p(11]00) = 1/2 p(01|10) = p(11|10) = 1/2
1 p(00[01) = 1/2 p(10]|01) = p(00|11) = p(10|11) = 1/2
p(01|01) = p(11|01) = 1/2 p(01|11) = /2 p(11|11) =

Table 4. PR-box correlations
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PR-box correlations can be defined as follows:
(3) adb=z-y
where @ is addition mod 2, i.e.,
same outputs (i.e., 00 or 11) if the inputs are 00 or 01 or 10
different outputs (i.e., 01 or 10) if the inputs are 11

with the assumption that that the marginal probabilities are all 1/2 to
ensure ‘no signaling’, so the outputs 00 and 11 are obtained with equal
probability when the inputs are not both 1, and the outputs 01 and 10 are
obtained with equal probability when the inputs are both 1.

A PR-box functions in such a way that if Alice inputs a 0 or a 1, her
output is 0 or 1 with probability 1/2, irrespective of Bob’s input, and ir-
respective of whether Bob inputs anything at all; similarly for Bob. The
requirement is simply that whenever there are in fact two inputs, the inputs
and outputs are correlated according to (3).

A PR-box can function only once, so to get the statistics for many pairs of
inputs one has to use many PR-boxes. This avoids the problem of selecting
the ‘corresponding’ input pairs for different inputs at various times, which
would depend on the reference frame. In this respect, a PR-box mimics a
quantum system: after a system has responded to a measurement (produced
an output for an input), the system is no longer in the same quantum state,
and one has to use many systems prepared in the same quantum state to
exhibit the probabilities associated with a given quantum state.

The 16 vertices defined by the deterministic states form a convex poly-
tope, the local polytope. The correlations represented by points in the local
polytope have a common cause explanation, where the common causes can
be represented geometrically by the vertices of a simplex, a polytope gen-
erated by n + 1 vertices that are not confined to any (n — 1)-dimensional
subspace, e.g., a tetrahedron as opposed to a rectangle. The lattice of sub-
spaces of a simplex (the lattice of vertices, edges, and faces) is a Boolean
algebra, with a 1-1 correspondence between the vertices, corresponding to
the atoms of the Boolean algebra, and the facets (the (n — 1)-dimensional
faces), which correspond to the co-atoms. The 16-vertex simplex repre-
sents the correlation polytope of probabilistic states of a bipartite classical
system with two binary-valued observables; the associated Boolean algebra
represents the classical event structure. Probability distributions of these
extremal states—mixed states—are represented by points in the interior of
the simplex.

The local polytope is included in a non-signaling nonlocal polytope de-
fined by the 16 vertices of the local polytope together with an additional 8
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nonlocal vertices, one vertex representing the standard PR box as defined
above, and the other seven vertices representing PR boxes obtained from
the standard PR box by relabeling the z-inputs, and the a-outputs condi-
tionally on the z-inputs, and the y-inputs, and the b-outputs conditionally
on the y-inputs. For example, the correlations in Table 5 define a PR-box.
Note that the 16 vertices of the local polytope can all be obtained from the
vertex represented by Table 3 by similar local reversible operations.

T 0 1
Yy
0 p(00]00) =0 p(10]00) = 1/2 | p(00|]10) =0 p(10[10) = 1/2
p(01100) =1/2  p(11/00) =0 | p(01/10) =1/2 p(11]10) =0
1 p(00[01) =0 p(10[01) =1/2 | p(00|]11) =1/2 p(10[11) =0
p(01|01) = 1/2 p(ll\Ol) =0 p(Ol\ll) =0 p(11|11) = 1/2

Table 5. Locally transformed PR-box correlations (relative to Table 4)

3 Simulating a PR-Box

Suppose Alice and Bob are allowed certain resources. What is the optimal
probability that they can perfectly simulate the correlations of a PR box?
In units where a = £1,b = +1,2

(4)
(5)
(6)

and similarly for input pairs 01, 10, 11.
It follows that the probability of successfully simulating a PR-box is given
by:

(00) = p(outputs same|00) — p(outputs different|00)

p(outputs same|00) =

p(outputs different|00) =

1
p(successful sim) = Z(p(outputs same|00) + p(outputs different|01) +

21t is convenient to change units here to relate the probability to the usual expres-
sion for the Clauser-Horne-Shimony-Holt correlation, where the expectation values are
expressed in terms of 1 values for  and y (corresponding to the relevant observables).
Note that ‘outputs same’ or ‘outputs different’ mean the same thing whatever the units,
so the probabilities p(outputs same|zy) and p(outputs different|zy) take the same values
whatever the units, but the expectation value (zy) depends on the units for = and y.
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(7) p(outputs same|10) + p(outputs different|11))
1 K 1
- 1+ ) =:(1+E
0 SISy

where K = (00) 4+ (01) + (10) — (11) is the Clauser-Horne-Shimony-Holt
(CHSH) correlation.

Bell’s locality argument in the Clauser-Horne-Shimony-Holt version
(Clauser et al. 1969) shows that if Alice and Bob are limited to classical
resources, i.e., if they are required to reproduce the correlations on the ba-
sis of shared randomness or common causes established before they separate
(after which no communication is allowed), then |K¢| < 2, i.e., |E| < 1, so
the optimal probability of successfully simulating a PR-box is $(1+3) = 3.

If Alice and Bob are allowed to base their strategy on shared entan-
gled states prepared before they separate, then the Tsirelson bound for
quantum correlations requires that |Kg| < 2v/2, i.e., |E| < %7 so the op-
timal probability of successful simulation limited by quantum resources is
3(1+ 75) =~ .85.

Clearly, relativistic causality does not rule out simulating a PR box with a
probability greater than %(1 + %) As Popescu and Rohrlich observe, there
are possible worlds described by superquantum theories that allow nonlocal
boxes with non-signaling correlations stronger than quantum correlations,
in the sense that % < E < 1. The correlations of a PR box saturate the
CHSH inequality (E' = 1), and so represent a limiting case of non-signaling
correlations.

I use the term ‘nonlocal box’ to refer to any non-signaling device with
a probability array for which the probability of a successful simulation is
greater than the classical value of 3/4. We do, in fact, live in a nonlocal
box world: a pair of qubits in an entangled quantum state constitutes a
nonlocal box for certain pairs of measurements.

For two binary-valued observables of a bipartite quantum system the cor-
relations form a spherical convex set that is not a polytope, with extremal
points between the 16-vertex local polytope and the 24-vertex non-signaling
nonlocal polytope, which is itself included in the 256-vertex nonlocal poly-
tope with 240 vertices that represent deterministic signaling states. The
correlations of the local polytope have a common cause explanation, repre-
sented by a 16-vertex simplex, where the vertices of the simplex represent
common causes or classical states.

A simplex has the rather special property that a mixed state, represented
by a point in the interior of the simplex, can be expressed uniquely as a
mixture (convex combination) of extremal or pure states, the vertices of the
simplex. No other convez set has this feature. So in the class of non-signaling
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theories, classical theories are rather special. For all nonclassical (= non-
simplex) theories, the decomposition of mixed states into pure states is not
unique. For such theories, there can be no general cloning procedure capable
of copying an arbitrary extremal state without violating the ‘no signaling’
condition, and similarly there can be no measurement in the non-disturbing
sense that one has in classical theories, where it is in principle possible, via
measurement, to extract sufficient information about an extremal state to
produce a copy of the state without irreversibly changing the state. For a
nonlocal box theory, there is a necessary information loss on measurement.

The quantum theory is a nonlocal box theory, i.e., it is a non-signaling,
non-simplex theory with counter-intuitive probabilistic features like those of
an extremal PR box. Hilbert space as a projective geometry (i.e., the sub-
space structure of Hilbert space) represents a non-Boolean event space, in
which there are built-in, structural probabilistic constraints on correlations
between events (associated with the angles between the rays representing
extremal events)—just as in special relativity the geometry of Minkowski
space-time represents spatio-temporal constraints on events. These are kine-
matic, i.e., pre-dynamic, objective probabilistic or information-theoretic
constraints on events to which a quantum dynamics of matter and fields
conforms, through its symmetries, just as the structure of Minkowski space-
time imposes spatio-temporal kinematic constraints on events to which a
relativistic dynamics conforms.

4 Why quantum mechanics?

The basic question underlying the Bohr-Einstein debate was the question
of the completeness of quantum mechanics, which is essentially the ques-
tion why quantum mechanics rather than a classical theory, i.e., a simplex
theory? In effect, Einstein’s assumption here was that there is something
metaphysically privileged about a simplex theory (see the quotation at the
end of this section). From the perspective of the previous analysis, we see
that the more interesting question (first raised by Popescu and Rohrlich)
is why quantum mechanics rather than a superquantum theory, i.e., a non-
simplex theory that violates the Tsirelson bound: % <|E| < 1.

The revolution in physics associated with relativity theory involves the
discovery of a contingent fact that conflicts with what one might call a
structural principle. The contingent fact is the discovery that there is no
overtaking of light by light, as Hermann Bondi puts it (Bondi 1980). The
structural principle is the relativity principle, roughly that velocity doesn’t
matter (Bondi): the laws of physics are the same in different reference frames
moving at constant relative velocity. If velocity doesn’t matter and there is
no overtaking of light by light, then Newtonian space-time has to go. It was
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Einstein’s genius to see that the behavior of light could be reconciled with
the relativity principle by replacing Newtonian space-time with Minkowski
space-time.

The analogous contingent fact for the quantum revolution is the discovery
of nonlocal entanglement; specifically, that there are correlations outside
the classical simplex. This involves the extension of classical information
theory to quantum information theory. We know that the simplex structure
for probabilistic correlations should be extended to the quantum convex
set. But what is the structural principle that constrains correlations to the
quantum convex set?

There are various proposals in the literature for such a principle, e.g.,
the principle of information causality proposed by Pawlowski et al. (2009).
Information causality is a generalization of the ‘no signaling’ principle. It
can be interpreted as a principle characterizing system separability, or a
limitation of what Bohr referred to as quantum ‘wholeness’.

Information causality says that Bob’s information gain about a data set
of Alice (previously unknown to him), on the basis of his local resources
(which may be correlated with Alice’s local resources) and a single use by
Alice of an information channel with classical capacity m, is bounded by
the classical capacity of the channel. For m = 0, this is equivalent to ‘no
signaling’. Zukowski calls the principle ‘causal information access’.? The
proposal is that quantum mechanics optimizes causal information access.

Here is a simple way to see the significance of information causality as a
constraint. If Bob has to guess the value of any designated one of N bits held
by Alice, and Alice can send Bob just one bit of information, then Bob can
do better exploiting quantum correlations than classical correlations (shared
randomness). In