Eberhard Karls Universitat Tubingen
Mathematisch-Naturwissenschaftliche Fakultat
Wilhelm-Schickard-Institut fiir Informatik

Bachelor Thesis Cognitive Science

Investigating Probabilistic Preconditioning on
Artificial Neural Networks

Ludwig Valentin Bald

October 14, 2019

Gutachter Betreuer

Prof. Dr. Philipp Hennig Filip De Roos

(Methoden des Maschinellen Lernens) (Methoden des Maschinellen Lernens)
Wilhelm-Schickard-Institut fiir Informatik ~ Wilhelm-Schickard-Institut fiir Informatik

Universitat Tiibingen Universitat Tiibingen

Bald, Ludwig:

Investigating Probabilistic Preconditioning on Artificial Neural
Networks

Bachelor Thesis Cognitive Science

Eberhard Karls Universitat Tiibingen

Thesis period: 19.06.2019-18.10.2019

Abstract

In Deep Learning, many different optimization algorithms are used. Second-
order methods use curvature information to take good optimization steps, but
are computationally very intensive. First-order methods only have access to
the gradient and are susceptible to ill-conditioned problems, whose loss land-
scape curves much more strongly in one direction than in others.

The performance of first-order methods can be improved by precondition-
ing the problem, which transforms the loss landscape to curve more equally in
all directions. In this thesis, I present and investigate an implementation of the
probabilistic preconditioning algorithm proposed in [Roos and Hennig, 2019]
using the optimizer benchmarking framework DeepOBS, as proposed in
[Schneider et al., 2019].

I present evidence that suggests the algorithm does in fact improve the
learning speed of Stochastic Gradient Descent. However, it does not out-
perform other adaptive methods like Momentum and comes with additional
computational overhead.

ii
Zusammenfassung

Im Feld von Deep Learning wird eine Reihe an Optimierungsalgorithmen ver-
wendet. Methoden zweiter Ordnung benutzen Information iiber die Kriimmung
der Fehlerlandschaft eines Problems um sehr gute Optimierungsschritte zu fin-
den, sind aber sehr rechenaufwéndig. Methoden erster Ordnung benutzen nur
den Gradienten der Fehlerfunktion und sind anféllig fiir schlecht konditionier-
te Probleme, also solche, deren Fehlerlandschaft in verschiedene Richtungen
verschieden stark gekriimmt ist.

Die Ergebnisse von Methoden erster Ordung kénnen durch Preconditioning
verbessert werden. Dabei wird die Fehlerlandschaft so transformiert, dass sie in
alle Richtungen dhnlicher gekriimmt ist. In dieser Arbeit zeige und untersuche
ich eine Implementierung des probabilistischen Preconditioning-Algorithmus,
vorgestellt in [Roos and Hennig, 2019]. Dabei verwende ich das Optimierer-
Vergleichs-Framework DeepOBS, vorgestellt in [Schneider et al., 2019].

Ich prasentiere Evidenz dafiir, dass der Algorithmus tatséchlich die Er-
gebnisse von Stochastic Gradient Descent verbessert. Jedoch bleibt er hinter
anderen adaptiven Methoden wie Momentum zuriick. Dabei verwendet der
Preconditioner zusétzliche Ressourcen.

11

Acknowledgments

I would like to thank Aaron Bahde and Frank Schneider for developing the ex-
cellent benchmarking framework DeepOBS, which was essential to this thesis,
and for always being quick to answer questions and fix bugs.

I would also like to thank my supervisor Filip De Roos, who was always
available and helpful whenever I had questions.

v

Contents

1 Introduction

2 Fundamentals and Related Work

2.1
2.2
2.3

2.4

2.5
2.6

2.7

3.1

3.2

Probability Basics
The Normal Distribution
Machine Learning
2.3.1 Loss functions
Optimization
24.1 Gradient Descento
2.4.2 Stochastic Gradient Descent
24.3 Second-Order Methods
Preconditioningo
Deep learning
2.6.1 Artificial Neural Networks
2.6.2 Automatic Differentiation

Benchmarking L

Approach and Implementation

Description of the algorithm
3.1.1 Modifications of the algorithm
Documentation for the class Preconditioner
3.21 Overview

3.2.2 Methods

vi

3.2.3

3.3 Test Problems
3.4 DeepOBS baselines
3.5 Technical details

4 Experiments
4.1 Experiment 1: Preconditioning
4.2 Experiment 2: Wallclock Time
4.3 Experiment 3: Initialization
4.4 Experiment 4: Learning Rate Sensitivity
4.5 Discussion
4.6 Further Research and Development
4.7 Feedback for DeepOBS

5 Conclusion

A Code

A.1 Singularity build recipe
A.2 DeepOBS Runscript for experiment 1
A.3 Slurm Batch Definition File
A.4 Repository

References

Implementation Details

CONTENTS

Chapter 1

Introduction

In recent years, machine learning and more specifically Deep Learning has
been becoming more and more relevant. Both in research and in applica-
tion, it is ubiquitous. It has lead to anything from a better understanding of
the brain’s structure ([Brown and Hamarneh, 2016]) to major advancements
in self-driving cars.

Even though the practical use of the current state of machine learning
is unquestionable, there is a lot of opportunity for research and further im-
provement of the inner workings. One of the areas of interest is the study
of optimization algorithms. They have a large effect on the time it takes to
find an optimal parametrization while training a machine learning model. Im-
provements in this area lead to reductions in cost, need for data and energy
consumption.

The simplest optimizer is Stochastic Gradient Descent (SGD), which is a
first-order-method and needs access to the gradient of the error function of the
model. Second-order methods make use of the Hessian of the error function,
which is the second derivative and contains information about curvature. The
additional curvature information allows these methods to take much larger
and more precise steps, but they require more computational effort which is
infeasible for high-dimensional problems like Deep Learning models.

Two recent publications mainly drive this thesis: [Roos and Hennig, 2019
describes a preconditioning algorithm that estimates the Hessian and applies
its inverse to the parameters, which is a way of including second-order in-
formation. This changes the parameter landscape so that standard first-order
optimizers can converge faster to the optimum. The paper suggest that it com-
pares favourably in performance over non-preconditioned, standard SGD. The
paper also reports results for a single Deep Learning experiment. The second
paper, [Schneider et al., 2019], presents the benchmarking suite ”DeepOBS”
which makes it easier to compare new optimization algorithms against estab-
lished baselines in an unbiased way.

2 CHAPTER 1. INTRODUCTION

This thesis makes multiple key contributions. The first is a reimplemen-
tation of the preconditioning algorithm, which increases usability and adds
functionality, like the possibility to easily switch out the inner optimizer which
takes over after preconditioning. The second contribution is the comparison of
the preconditioning algorithm against established benchmarks measured using
DeepOBS, which includes both an attempt to reproduce the results and further
investigation into applying the optimizer to Deep Learning models. In parallel
with this thesis, a pyTorch version of DeepOBS was being developed, which is
described in detail in [Bahde, 2019]. Another contribution was to provide user
feedback to the development team of DeepOBS. A selection of main feedback
points is replicated towards the end of this thesis.

Chapter 2

Fundamentals and Related
Work

The studied algorithm builds on concepts from probability theory, linear al-
gebra and numerical optimization. This chapter also contains a high-level
introduction to Deep Learning.

The following concepts in this chapter are adapted from [Bishop, 2006], if
not otherwise specified.

2.1 Probability Basics

This thesis makes use of some basic concepts of probability theory. Most
notably Bayes’ Rule, point estimates, and vector-valued normal distributions.

Bayes’ Rule tells us what happens to the probability of an event X after
observing new evidence E, given a prior probability P(X) and probabilities
P(E) and P(E|X). It is given by this formula:

P(X) - P(EIX)
P(E)

P(X|E) =

P(X|FE) is the posterior probability.

When modelling a random variable z, a point estimator z is a function that
gives an approximation for the true value for x based on evidence, for example
observations of z. One example of a point estimator is the maximum — a —
posteriori estimate, which is defined as precisely the value for x which has the
highest posterior probability, i.e. the maximum of the posterior probability
distribution.

4 CHAPTER 2. FUNDAMENTALS AND RELATED WORK

2.2 The Normal Distribution

One of the central concepts in probability theory is the Gaussian distribution.
The real-valued normal or Gaussian distribution is defined as:

1 1
N (|, 0®) = WGXP <—ﬁ($ - M)Q)

It has the parameters mean p and variance o?. The mean represents the

maximum-a-posteriori estimate for z; it is the maximum of N(z|u,0?) Ex-
tending this to a multivariate Gaussian distribution with n dimensions, the
definition needs to be adapted:

1 1 1
N(Z|i, %) = exp | —=(@— @'Yz —ji
where Z or simply z is the n-dimensional vector of random variables. The pa-
rameters are similar to the one-dimensional case. The n-dimensional vector ji
or simply p denotes the mean. The symmetric n xn matrix 3 is the covariance
matriz, where

Zij = COV(QJi, 37]') = Zji

For the diagonal entries it follows that:
i = cov(zy, x;) = var(z;)

If the variables x; are independent, ¥ is a diagonal matrix.

Matrix-valued normal distributions can be written as vector-valued normal
distributions by flattening the matrix to a single vector. Bayes’ rule can also
be applied to vector-valued normal distributions, which again leads to vector-
valued normal distributions as posteriors.

2.3 Machine Learning

Machine Learning algorithms are central to almost every area of modern so-
ciety. They control which products we buy, which music we discover and
they enable recent advances in industrial automation and autonomous driv-
ing. Specialist Artificial Intelligence agents routinely outperform the best hu-
man players in the hardest games, like Go ([Gibney, 2016]) or Starcraft II
([Vinyals et al., 2019]). This recent rise of machine learning can be attributed
to a number of factors. Enabled by the internet, almost every interaction with
a technological system is tracked and recorded. Large, high-quality data sets
are available to everyone with an internet connection through Open Data ini-
tiatives. Learning algorithms have been around for a few decades, but recent

2.3. MACHINE LEARNING 5

advances in hardware meant it became economically feasable to use them on
a large scale.

The general process of machine learning can be summarized in multiple
steps:

1. Gathering Data: The gathered data needs to be prepared and split into
multiple sets, one for training, one set for testing generalization and a
third set for validation of hyperparameter tuning.

2. Chosing the model: Chosing a suitable model depends on the problem,
requirements and other constraints. A possible choice for image classifi-
cation tasks is for example a Convolutional Deep Neural Network.

3. Training the model: The model is shown the data, and its parameters are
adjusted towards the optimal setting, as measured by a predetermined
metric. The process is often run multiple times with different optimizer
hyperparameters to find the best setting, which is called hyperparameter
tuning.

4. Application: The model is tested on the previously prepared test data
set to see how it performs. If it does well, it can be deployed on the
intended task.

2.3.1 Loss functions

In order to find an optimal solution, there needs to be a measure of ”goodness”
of a given parametrization. The loss function usually is a sort of distance
measure between the model’s outputs and the true labels of the training data.

L:R"—R

One example for a loss function for classification problems, which is used for
the experiments in this thesis, is Cross Entropy Loss, where w are the model’s
parameters, y is the true label, 7, is the model’s output.

K

L(w) = = (y - log(ju(x)))

1

A model can achieve very good scores on training data, but fail to generalize
these results to unseen data. This unwanted behavior is called overfitting. In
order to prevent the model from overfitting, often a regularization term is

added:
K

L(w) = = (y - log(fu())) + M|

Here X is a parameter that determines the strength of the regularization. This
will penalize large weights during training, which biases the model towards

6 CHAPTER 2. FUNDAMENTALS AND RELATED WORK

less extreme parametrizations which are caused by fitting too closely to train-
ing data. In most cases L2 regularization is equivalent to weight decay, or
decreasing weights after each optimization step. See [Chaudhari et al., 2017]
for futher investigations on the differences between these two.

It’s worth noting that the choice of loss function and the regularization
term have a significant impact on the outcome and convergence speed of train-
ing. Ultimately, other measures like classification accuracy might be more
important during application.

2.4 Optimization

In order to find the optimal values for the parameters of a model, different
methods have been proposed. For low-dimensional optimization problems
with a small number of parameters, it is often possible to find the optimal
parametrization analytically. For high-dimensional optimization problems, the
analytical solution often is computationally intractable.

Numerical algorithms address this problem by using the available local in-
formation in order to iteratively approximate the globally optimal parametriza-
tion. The number of iterations needed until the algorithm converges varies
based on the implicit prior assumptions about the model. Some of these opti-
mization processes expose hyperparameters, which influence the performance
of the algorithm. These are different from the model’s parameters, which we
want to optimize.

Optimization algorithms can be grouped by the order of the highest-order
derivative they use. There are zeroth-order methods that only require the
value of the loss function itself. First-order methods like Gradient Descent use
the first derivative, or the gradient. They work under the assumption that the
gradient points in the direction of the global minimum and approaches zero
while approaching the minimum.

2.4.1 Gradient Descent

If the gradient of the Loss function at a certain point in parameter space is
known, this information can be used to update the parameters in the direc-
tion towards the solution. A widely used family of optimization algorithms is
derived from Gradient Descent. Gradient Descent means: Just take a step in
the direction of the steepest gradient. Scale the step size by the steepness of
the gradient. If the gradient is very steep, take a larger step. If it is small,
take a smaller step, like a drunk student taking repeated tumbles down a hill
and ending up on a local minimum.

Wir1 = w; — a - VL(w;)

2.4. OPTIMIZATION 7

Gradient Descent only has a single hyperparameter, the ”learning rate” «,
which scales the step. Its optimal choice depends on the problem and is gen-
erally not obvious.

2.4.2 Stochastic Gradient Descent

Traditional Gradient Descent is a deterministic model, which in Deep Learning
is equivalent to using the whole data set to compute the true gradient. Given
a large data set, one can better use their computational ressources by taking
several noisy smaller steps instead of one precise step. This variation is called
Stochastic Gradient Descent. Instead of the true loss, which is the model’s
performance on the whole training data, it computes only an estimate for the
true loss by using a subset or Minibatch of the training data. A common
choice is between 32 and 256 data items per minibatch. This greatly improves
convergence speed, as the required computations are much easier to perform.
However, especially for smaller batch sizes, this adds noise to the system,
meaning that the parameter update step points only roughly in the direction
of the steepest actual gradient.

Wir1 = W; — A Vﬁ(wl)

Many variants of SGD have been proposed, for example by adding a momen-
tum term or otherwise dynamically adapting the learning rate.

2.4.3 Second-Order Methods

First-order methods scale their step length by the gradient of the Loss function.
This means that they get stuck on flat plateaus, because the gradient is very
small. Adaptive Modifications of SGD like Adam and Momentum keep track
of previously seen gradients in order to take better steps. This implicitly
assumes that past gradients contain information about future gradients, which
is often the case. For example, if there is little change in the last observed
gradients, one can assume that the optimizer is far away from the minimum
where gradients should converge to zero. Therefore, it is now able to take
larger steps.

Second-Order-Methods are methods that explicitly use the Hessian B of
the Loss function, which is equivalent to the second derivativeVV L(w;). This
means they can use the explicit representation of curvature to take even better
optimization steps.

Newton’s method is the theoretical base for Quasi-Newton methods that
try to achieve similar performance while limiting computational complexity.

8 CHAPTER 2. FUNDAMENTALS AND RELATED WORK

Its update rule looks like this:

 VL(wy)
VV L(w;)

Wiy1 = Wy

Note the similarity to SGD’s update rule, but replacing the scalar learning
rate with a matrix: « = 1/VV L(w;)

2.5 Preconditioning

SGD takes large steps if the gradient of the loss landscape is steep, and it
takes small steps if the gradient of the loss landscape is flat. The underlying
assumption is that as the gradient gets flatter (approaches zero), the algorithm
approaches the minimum of the loss function. Taking large steps close to the
minimum most likely means taking a step away from the minimum. However,
SGD is not aware of the scale of the loss landscape. Some problems are gen-
erally flatter and have low general curvature than others. On these generally
flat problems, flat gradients can be observed quite far from the minimum and
mandate larger steps. Recalling the update function of SGD, the learning
rate parameter « is a scaling factor for the gradient, which can correct for
non-optimal general steepness:

Wit = w; — - Vf}(wi)

Tuning the learning rate amounts to finding a global scaling factor for the
gradient.

Often, machine learning problems are scaled differently in different direc-
tions. In one direction with low curvature, the problem might be quite flat,
while in another direction with high curvature, gradients are generally steeper.
This means that the optimal step length depends not only on the steepness
of the gradient, but also its direction (In the low curvature direction, longer
steps are warranted than in the high curvature direction). It is impossible
to fully capture and correct for this structure using a simple scalar learning
rate. Chosing the appropriate small learning rate for the high curvature direc-
tion will make the algorithm learn very slowly in the low curvature direction.
Chosing anything larger than that runs a risk of exploding gradients in the
high curvature direction, as the steps are too large. Using a matrix P (the
Preconditioner!) to scale every entry of the gradient matrix individually, we
get the following update rule for Preconditioned SGD:

Wip1 = w; —a- P - Vz(wi)

!Technically, a Preconditioner is any transformation which reduces the condition number,
or the ratio between largest and smallest eigenvalues of a problem.

2.6. DEEP LEARNING 9

A perfect preconditioner would be the inverse of the true Hessian of the loss
function, which exactly captures the curvature of every parameter. If it were
available, the true Hessian could be used for second-order methods, eliminat-
ing the need for preconditioning. Computing the true Hessian is very hard
and expensive in the high-dimensional and noisy deep learning setting, so var-
ious approximations have been studied (see [Saad, 2003] for a detailed, more
rigorous description)

2.6 Deep learning

2.6.1 Artificial Neural Networks

A popular machine learning paradigma is living through a resurgence: Arti-
ficial Neural Networks. The fundamental building block is the single neuron,
which somewhat resembles a biological neuron. Its activation depends on the
sum of the activation of its inputs. A neural network model is a connected
sequence of neuron layers. There is an input layer which is a direct mapping
of the training data point. The input layer’ activation are fed forward into
the "hidden layers”, which in turn feed their activations to the neurons of the
output layer. Information about observed data is stored in the model’s pa-
rameters, the weights and biases of each layer. As a mathematical object, a
neuron is an activation function which depends on the sum of the weighted
activations of the inputs. Often there is a bias, which is a static value added
to the input activation. Activation functions are not necessarily linear. For
example, the Rectified Linear Unit is widely used:

ReLU(x) = max(0, z)

The full activation of a Neuron z; in layer £ in a model with the layer’s input
weight matrix W*! and bias b; is given by:

ai=0 (Z Wﬁ_le_l + bj>

Wfi_l refers to the weight between neuron ¢ in layer £ —1 and neuron j in layer

l.

Different architectures of neural networks have been studied, which are
useful for different tasks and types of input data. For example, fully connected
Convolutional Neural Networks (CNN) are good at encoding visual or spatial
information, while Recurrent Neural Networks have an internal state and are
good at encoding information over time.

10 CHAPTER 2. FUNDAMENTALS AND RELATED WORK

2.6.2 Automatic Differentiation

First- and higher-order optimizers require information about the derivatives
V"L of the loss function L at a given point in parameter-space.In neural net-
works, this is achieved by an algorithm called backpropagation. Loss functions
in neural networks are the composition of all the layerwise activation functions
which are all individually differentiable. This structure leads to the algorithm
of backpropagation, which computes the gradient by doing a forward pass fol-
lowed by a backward pass.

In the forward pass, the loss function for a given minibatch is computed by
applying the model to the minibatch data and computing the error score on
its output. During these computations all operations on the hidden layers are
recorded in a graph structure. For each of these basic operations computing
the gradient is trivial. Taking the final loss value as the root of the graph,
the algorithm traverses backwards through the graph and computes individual
partial derivatives for each parameter by applying the chain rule along the
path.

2.7 Benchmarking

There are no standard established benchmarking protocols in research on op-
timizers. It is unclear what measures to consider, or how they are to be
measured. This means there is no rigorous base for choosing an optimizer as a
practitioner. DeepOBS is a solution to this problem, standardizing a protocol,
providing benchmarks and standard test problems.

It includes the most used standard datasets and a variety of neural network
models to train as standard problems. Also, the performance of a variety of
widely-used optimizers comes with DeepOBS as a baseline, which means these
runs do not have to be repeated by every single researcher. DeepOBS specifies a
protocol for hyperparameter tuning(see [Bahde, 2019]). Otherwise, researchers
with ressources for extensive hyperparameter tuning would have an edge over
those who can not afford such extensive tuning. It also provides the software
suite to run the actual experiments on optimizers. It takes care of logging
parameters and evaluating success measures. The analyzer class can generate
matplotlib plots showing the experiment data.

All in all, DeepOBS fixes most parameters that need to be fixed when
evaluating optimizers, which provides for a reasonably solid foundation for
comparison.

Chapter 3

Approach and Implementation

As explained in the previous chapter, preconditioning is a way to modify a
problem in order to improve convergence speed of first-order optimization
methods. Constructing a computationally tractable preconditioner while using
only noisy observations of Hessian-vector products was the goal of the recent
paper by de Roos and Hennig. In this chapter, I give a short overview of the
algorithm and explain my changes and the details of the implementation and
experiment setup.

3.1 Description of the algorithm

As described in section 2.5, a perfect preconditioner would be the inverse of
the Hessian of the loss function, wich is not directly accessible and expen-
sive to compute. The algorithm tested in this thesis is described in detail
in [Roos and Hennig, 2019]. This is a high-level overview on the algorithm’s
structure. The algorithm is made up of four main parts, which will be tested
seperately throughout this thesis. It restarts by default every epoch.

1. Using observations of Hessian-vector-products, construct a multivariate
Gaussian distribution as a prior estimate for the Hessian. Using this
information about curvature, calculate a scalar measure « for the inverse
of the curvature and use it as the learning rate of the inner optimizer.

2. Gather more observations and calculate the posterior multivariate Gaus-
sian distribution using Bayes’ rule and the prior constructed in step 1.

3. Take the mean of this distribution as the maximum-a-posteriori-estimate.
Invert it.

4. For every following minibatch, rescale the observed gradient by applying
the preconditioner, and perform an update step of the inner optimizer.

11

12 CHAPTER 3. APPROACH AND IMPLEMENTATION

3.1.1 Modifications of the algorithm

The implementation and theoretical work lead to the following proposed
changes to the abstract algorithm.

Parameter groups

Mainly due to technical reasons (see section 3.2.3), support was added for
parameter groups, but this also yields an interesting theoretical change. The
algorithm already treated every parameter layer as an independent task while
inverting the Hessian. It however estimated a global step size, which was the
same for every parameter. With this modification, the user can specify which
parameters should be grouped together and get a common learning rate.

As described in section 2.5, the learning rate corrects for the scale of the
overall curvature of the loss landscape. However, depending on the problem,
different parameters require different scale factors. With this modification,
scale factors are neither shared for all factors (as in SGD) nor down to an
individual parameter precision (Preconditioning). Rather than going for the
safest choice, the modified algorithm is able to use larger step sizes if all pa-
rameters in a group allow for it. This accelerates learning in the direction of
those parameters. The benefit of this approach in practice was not tested in
this thesis.

Automatic Assessment of the Hessian’s quality

The algorithm estimates a low-rank estimate for the Hessian. After a num-
ber of optimization steps, the surrounding loss landscape has changed and
the estimate for the Hessian no longer is useful. It is not clear when this re-
estimation should optimally happen. An answer needs to balance the added
computational cost of re-estimating the Hessian with the performance bene-
fit that comes from having a better-fitting Hessian. Using the original algo-
rithm, the estimation process is restarted every epoch. The authors do not
justify this practical choice. The Preconditioner class includes a method
maybe_start_estimate() which is called before every step of the optimizer
and could be used to dynamically assess whether the Hessian is out of date.

Assessment of the Hessian’s quality is made especially difficult by sampling
noise. A possible approach is to test prediction power of the Hessian. Given
the last observed gradient, how well does the Hessian predict the gradient for
the next minibatch? Standard statistical techniques like a y? homogenity test
could be applied, varying the confidence level to find the balance of having a
good preconditioner while limiting the number of times it is computed. If the
algorithm kept track of a measure of uncertainty for the Hessian and in turn
its predictions, Bayesian methods would be possible to apply.

3.2. DOCUMENTATION FOR THE CLASS PRECONDITIONER 13

Focusing on the adaptive learning rate

Deep learning problems are very high-dimensional. [Chaudhari et al., 2017]
report that around 10% of eigenvalues are large, while 90% are close to zero.
A proper preconditioner would need to rescale around 10% of parameters. This
means the proper preconditioner’s rank would still be very high. Computations
would be much more expensive and would probably eat up the performance
benefit that comes with preconditioning. In experiment 1 it is tested whether
applying the low-rank approximate preconditioner has an effect on convergence
speed.

3.2 Documentation for the class Precondi-
tioner

3.2.1 Overview

The class Preconditioner provides an easy way to use the probabilistic pre-
conditioning algorithm proposed by [Roos and Hennig, 2019]. It’s written in
python and made to work with pyTorch. This is how to use it:

1. Get the source file from the public repository and include it in your
project.

2. Initialize the preconditioner like any other optimizer. There are reason-
able default values for the hyperparameters.

3. Depending on the version you're using, manually call start_estimate ()
at the beginning of each epoch.

In the next section there is more detailed documentation for the class, its
attributes and functions.

3.2.2 Methods

e Public functions
— Preconditioner(params, est_rank=2, num observations=5,
prior_iterations=10, weight_decay=0, lr=None,
optim_class=torch.optim.SGD, **optim hyperparams)
* params: The model’s parameters that will be optimized
*x est_rank : An Integer, the rank of the preconditioner
* num observations : An Integer, the number of posterior up-
dates to the estimated Hessian
% prior_iterations: An Integer, the number of iterations to
construct the prior
* weight_decay : A float between 0 and 1, the amount of weight
decay

14 CHAPTER 3. APPROACH AND IMPLEMENTATION

x 1r: The learning rate. If specified, it will be passed to the inner
optimizer as 1r in the first epoch.
* optim_class : The torch.optim.optimizer class to be used
as inner optimizer.
* **optim_hyperparameters : Any other hyperparameters to be
used for the inner optimizer
— start_estimate()
* (Re)starts the process of estimating the Hessian.
— step(Q)
— get_log()
— (maybe_start_estimate())
e Private functions
— _initialize lists()
— _init the optimizer()
— _gather_curvature_information()
— _estimate prior ()
— _setup_estimated_hessian()
— _apply_estimated_inverse()
— _hessian vector_product ()
— _update_estimated hessian()
— _create_low_rank()
_apply_preconditioner ()

3.2.3 Implementation Details

In the following, I will highlight and explain some key software design decisions
I took while implementing and refactoring the algorithm. The starting point
was the original code from [Roos and Hennig, 2019

The main goals for the implementation were to make the algorithm as
easy to use as possible for a standard usecase, while maintaining the flexibility
I needed to research specific variations. The conceptual modifications to the
algorithm are discussed in section 3.1.1. The simple, default usecase was a
user trying to use the preconditioner as proposed in the original paper, to
optimize a neural network model. In this case, the necessary changes to the
user’s existing code should be minimal, with hyperparameters set to reasonable
default values. For development, it is important to understand the algorithm’s
structure and the code and be able to easily modify the algorithm without
disturbing other parts.

The code in its final form is provided as a self-contained python class,
built for the deep-learning framework pyTorch. According to Python con-
ventions, all the internal functions that a user should not call are marked as

hidden by having names beginning with an ”_”. This is an implementation of

3.2. DOCUMENTATION FOR THE CLASS PRECONDITIONER 15

the design pattern Low Coupling and tells the user a clear interface. All func-
tions have descriptive names. For example, in order to start the estimation
process, the function start_estimate() needs to be called.

The class Preconditioner inherits from torch.optim.Optimizer. This
means it follows all the conventions for how optimizers are expected to behave
in pytorch. This makes it intuitive to use for the pytorch user. Features
that were added to support this include the state dict, which can be used
to save and load the state of the optimizer in order to pause or continue
training. Another supported feature are parameter groups. This allows to
treat different parameters seperately, for example different layers of a neural
network. Specifically, each parameter group will be optimized with a seperate
learning rate.

The class Preconditioner wraps an inner optimizer which is responsible
for the actual parameter updates. In the original paper and in this thesis, only
SGD is studied as an option, but this modification allows to use preconditioning
and the adaptive learning rate estimation together with other optimizers which
are implemented in a pytorch optimizer class. The Preconditioner class is
responsible for estimating the Hessian. Once the estimate is complete, the class
turns into a decorator for the provided inner optimizer class. Before the inner
optimizer does its optimization step, the previously constructed preconditioner
is applied to the parameters’ gradient.

Logging data during training is a global task and should not be a respon-
sibility of the optimizer. In order to expose the data of interest, the class
exhibits a method get_log(), which returns some values of interest. It can be
overwritten if the user wants to see other data. The user then takes care of
further processing and writing the data to a file.

In order to change behavior of the class during development and research,
the best way to make different versions is to make use of python’s built-in
subclassing. For example, in the experiments there is a version AdaptiveSGD
that skips applying the preconditioner every step, but behaves exactly the
same as Preconditioner in all other ways. AdaptiveSGD is a subclass of
Preconditioner that overwrites the function _apply_preconditioner () with
an empty function.

Some minor bugs were also fixed. Previously, the algorithm skipped some
minibatches during the estimation phase. However, there remains room for
improvement. The class assumes the user to input sensible values and won’t
complain otherwise. For some variables, helpful unit checks are in place. This
is fine in a research environment, but not for deployment.

16 CHAPTER 3. APPROACH AND IMPLEMENTATION

3.3 Test Problems

The optimizers were tested on some of the testproblems that come with Deep-
OBS and had a stable pytorch implementation at the time of testing. DeepOBS
specifies the data set, the model architecture and initialization, the loss func-
tion and regularization. It also proposes a standard batch size that is shared
by all baselines.

Before training, the data set is split into a validation set for hyperparameter
tuning, a training set and a holdout test set.

The DeepOBS testproblem fmnist_2c2d uses the Fashion-MNIST data
set ([Xiao et al., 2017]), which consists of 60000 labeled greyscale 32 x 32 pixel
images of ten classes of fashion items. The model used consists of two con-
volutional layers, each followed by max-pooling, a fully connected layer with
ReLU activation functions, and a 10-unit softmax output layer. The initial
weights are drawn from a truncated normal distribution with ¢ = 0.05 and
initial biases are set to 0.05. As a loss function, cross entropy loss is used,
without any regularization term. The standard batch size is 128.

The DeepOBS testproblem cifar10_3c3d uses the CIFAR10 data set
([Krizhevsky et al., 2014]), which consists of 60000 labeled RGB 32 x 32 pixel
images of ten classes of objects. The model used consists of three convolu-
tional layers with ReLLU activation functions, each followed by max-pooling,
two fully connected layers with respectively 512 and 256 units and ReLU acti-
vation functions, and a 10-unit softmax output layer. The initial weights are
initialized using Xavier initialization and initial biases are set to 0.0. As a loss
function, cross entropy loss is used, with L2 regularization on the weights (but
not the biases) with a factor of 0.002. The standard batch size is 128.

For the experiment investigating computational complexity, DeepOBS uses
the built-in testproblem mnist_mlp, which is a multi-layer perceptron that
consists of four layers with 1000, 500, 100 and 10 unis respectively, using
ReLU activation on the first three layers and softmax on the output layer.
Initial weights are drawn from a truncated normal distribution (¢ = 0.03)and
the initial biases are set to 0.0. As a loss function, cross entropy loss is used,
without any regularization term. The standard batch size is 128.

In the experiment investigating different initialization methods, the goal
was to replicate the findings from [Roos and Hennig, 2019], so the exact same
model was used. It is very similar to the one that comes with DeepOBS. There
are three convolutional layers, each followed by ReLLU and maxpooling. After
that, there are three fully-connected layers preceded by ReLUs. As a loss
function, cross-entropy loss is used, with regularization as in cifar10_3c3d.
Batch size and initialization methods are varied.

3.4. DEEPOBS BASELINES 17

3.4 DeepOBS baselines

When using a standardized testing procedure like the one provided by Deep-
OBS, it is not necessary to run every optimizer, as reproducibility of the results
is guaranteed across different hardware. This saves a lot of work and energy
that every single researcher otherwise would have needed to spend. Deep-
OBS comes with results from many established and well-studied optimizers as
a baseline, and it is easy to compare a new optimizer against them. Their
hyperparameters are tuned for each testproblem, but some more complicated
widely used techniques like hyperparameter schedules are not available.

3.5 Technical details

The experiments were run on the TCML cluster at the University of Tiibin-
gen. A Singularity container was set up on Ubuntu 16.4 LTS with python 3.5,
pytorch (version) and DeepOBS (see Appendix for Singulariy recipe). Compu-
tation was distributed over multiple GPU compute nodes using the workload
manager Slurm. Every job had access to 4 CPU cores (Intel XEON CPU
E5-2650 v4), 3GB of RAM, and 1 GPU (GeForce GTX 1080 Ti).

During development, I used git on github for distributed version control.

Chapter 4

Experiments

The main goal of the experiments was to investigate the training performance
of the proposed algorithm on neural networks. In Experiments 1 and 2, the
various phases of the optimizer were tested seperately for training performance
and wallclock time as a proxy for complexity. In Experiments 3 and 4, outside
factors were varied to study the influence of initialization, batch size and the
first-epoch learning rate on the proposed full algorithm.

Experiments were run on the setup described in the previous chapter, using
DeepOBS standard procedures and parameters.

4.1 Experiment 1: Preconditioning

This experiment consists of two parts: In part A, the full preconditioning
algorithm applied to SGD is tested against the baselines. In part B, the dif-
ferent phases of the algorithm are tested seperately by using subclasses of
Preconditioner that knock out the corresponding functions. The hyper-
parameters used during the runs were the same for all versions of the al-
gorithm: num observations = 10, prior_iterations = 5, est_rank = 2,
optim class = torch.SGD, 1lr = None. The DeepOBS test problems used
were fmnist_2c2d and cifar10_3c3d.

The results of part A are presented in figure 4.1, together with the DeepOBS
baselines on the same problems. In almost every metric, Preconditioned SGD
is outperformed by all widely used baselines like bare SGD, Momentum and
Adam. Interestingly, the fmnist_2c2d problem seems prone to overfitting: All
the standard optimizers increase on test loss after reaching a local minimum.
However, the test accuracy does not seem to suffer from this same problem.
Preconditioned SGD does not show this behavior, but also does not reach
convergence even after 100 epochs, when they still continue to improve, while
the baseline optimizers reach convergence between 40 an d 60 epochs. Another

18

4.2. EXPERIMENT 2: WALLCLOCK TIME 19

finding is that the variance of Preconditioned SGD is larger than the variance
of the baseline optimizers.

For part B of the experiment, different versions of the precondition-
ing algorithm were created. See the appendix for an example definition of
AdaptiveSGD. Table 4.1 shows the definitions of the variations. The ”Tuned”
versions use a constant learning rate during the entire run, precisely the one
which was tuned for the baseline standalone inner optimizer for each test prob-
lem. Momentum was run with the parameter momentum = 0.9, as in the Deep-

OBS baseline.

(1) | (2) | (3) | (4) | Inner optimizer
Preconditioned SGD | v | vV | V | V SGD
Adaptive SGD || v | vV | V SGD
Preconditioned Tuned Momentum || v v |V Momentum
Preconditoned Tuned SGD || v v |V SGD

Table 4.1: The original algorithm, Preconditioned SGD, (1) calculates a prior,
(2) constructs and uses a learning rate for the inner optimizer, (3) calculates
the preconditioner and (4) applies it before every step of the inner optimizer.
The variations are defined as shown here.

Figure 4.2 shows the results of part B. On every metric, Preconditioned
SGD is outperformed by the variant without preconditioning, Adaptive SGD,
but both perform much worse than the other optimizers. On cifar10_3c3d, the
"Tuned” versions perform very similarly to standalone Momentum, beating
standalone SGD. On fmnist_2c2d, the ”"Tuned” versions perform similarly to
their respective standalone optimizers, but slightly worse. The overfitting be-
haviour on fmnist_2c2d observed in part A is also exhibited by the ”Tuned”
optimizers.

4.2 Experiment 2: Wallclock Time

To the practicioner it is important how much time, energy and money the
training of a model costs. For this reason, DeepOBS includes a script to
estimate wallclock time for given optimizers as compared to SGD. Wallclock
time is the runtime as measured by a clock on the wall. It does not correct
for hardware and parallelization. As such, it is not a direct measurement for
an algorithm’s complexity, but rather a proxy for the efficiency of a specific
implementation.

The three investigated optimizers were Preconditioned SGD and Adaptive
SGD, as defined in table 4.1, and OnlyAdaptiveSGD, which is an optimized
version of AdaptiveSGD. It simply skips the construction of the preconditioner,
which is not applied anyways. As a further baseline, Adam’s runtime is tested.

20 CHAPTER 4. EXPERIMENTS
cifar10_3c3d fmnist_2c2d
€ 151
E 0.4
1 |
0 20 40 60 8 100 O 20 40 60 80 100
2 \\ 'M-w\
0 0.2 -
& 1.5
k=
®
=1 0.1 1
0 20 40 60 8 100 O 20 40 60 80 100
Q
2
g

train acc

0 20 40 60 80 100 0 20 40 60 & 100
epochs epochs
—— PreconditionedSGD
—— Adam
—— Momentum
—SGD

Figure 4.1: This figure shows training performance of Preconditioned SGD

compared with DeepOBS baseline optimizers
on both testproblems.

. It performs comparatively bad

4.2. EXPERIMENT 2: WALLCLOCK TIME 21

cifar10_3c3d fmnist_2c2d

test loss
—_
—_ 133
| |
(@) (@)
i~ N
<

train loss
=
—_ t [\
| |
© ©
o [\&}
| |

0 20 40 60 8 100 O 20 40 60 80 100

test acc

train acc

0 20 40 60 80 100 0 20 40 60 80 100
epochs epochs

—— PreconditionedSGD

—— AdaptiveSGD

—— Momentum

—— Preconditioned Tuned Momentum
—— Preconditioned Tuned SGD
—SGD

Figure 4.2: Variations of the original algorithm perform better. ”Tuned”
versions use the same learning rate as tuned baseline standalone optimizers. This
figure shows the preconditioning algorithm, modified to use the same learning
rate as well-tuned SGD, for every epoch. It performs better than standard tuned
SGD using the same learning rate, and even better than the adaptive versions.

22 CHAPTER 4. EXPERIMENTS

Figure 4.3: Experiment 2: Wallclock time per epoch, as tested on the Deep-
OBS testproblem mnist_mlp. A score of 1 represents the baseline runtime of
SGD. The original algorithm is the slowest. Calculating, but not applying the
preconditioner is considerably faster. Only gathering the prior observations is
about as fast as SGD and Adam.

The testproblem used was the default value set by DeepOBS, mnist_mlp,
which is a rather small model on mnist, using a batch size of 128. Every
optimizer was run 5 times for 5 epochs each, on a GPU node of the TCML
cluster.

The results are presented in figure 4.3. As expected, the more phases of the
algorithm the preconditioner version goes through, the more time it takes to
run. PreconditionedSGD was the slowest optimizer, taking an mean of 2.39
(SD = 0.36) times as long as SGD, followed by AdaptiveSGD, which required
1.87 (SD = 0.25) times the runtime of SGD. OnlyAdaptiveSGD took about as
much time as SGD, with a mean time of 1.00 (SD = 0.07) the time of SGD.
Adam took about as long as SGD, with a mean time of 0.99 (SD = 0.08).

4.3 Experiment 3: Initialization

The original algorithm as studied in [Roos and Hennig, 2019] includes a hyper-
parameter for the manual first-epoch learning rate, because the learning rate
constructed by the algorithm would be so high that the model becomes un-
stable and diverges in the first epochs. Using the implementation proposed in
this thesis, this instability was not observed. On all tested problems included

4.4. EXPERIMENT 4: LEARNING RATE SENSITIVITY 23

in DeepOBS, using the constructed learning rate for the first epoch lead the
algorithm to eventual convergence.

The goal for the experiment was to narrow down the source of the insta-
bility by replicating the original setup as closely as possible. The DeepOBS
testproblem cifar10_3c3d differs in three ways from the original setup. Deep-
OBS uses an explicit initialization of the weights, while the original setup uses
the pyTorch default methods. DeepOBS sets the default batch size for the
cifar10 problems to 128, while the original paper used 32. The model itself
also differs in small ways.

For this experiment, DeepOBS was adapted to use the original model and
the initialization method was varied, as well as the batch size. In order to be
able to spot inconsistency, each run was 5 epochs long and was repeated on 10
different random seeds. The used optimizer version was Preconditioned SGD,
as in the experiments before.

The results are presented in figure 4.4. Both the initialization method and
batch size have an effect on training performance, but the algorithm was stable
for all combinations. The pyTorch initialization is a better prior for this test
problem than the DeepOBS initialization. The smaller the batch size, the
better Preconditioned SGD performs.

4.4 Experiment 4: Learning Rate Sensitivity

The proposed algorithm constructs a learning rate for the inner optimizer, but
one can manually specify a learning rate for the first epoch. The goal of this
experiment was to test how the choice of first-epoch learning rate influences
training performance of Preconditioned SGD.

DeepOBS was used to create independent commands for a grid search with
10 evaluations on a logarithmic grid between 1075 and 10? on the fmnist_2c2d
testproblem. Having independent commands to execute on the computing
cluster made the grid search easily parallelizable.

The results are shown in 4.5, together with the baseline SGD as reference
and a dashed line which represents Preconditioned SGD constructing the first-
epoch learning rate by itself. Like SGD, the model diverges in the first epoch
if the learning rate is set over a certain threshold. Below this threshold, the
first-epoch learning rate does not seem to have an effect on the model’s final
accuracy after training for 100 epochs. For SGD, which uses the same learn-
ing rate for all 100 epochs, there is a significant dropoff in training success for
smaller learning rates. Both SGD and Preconditioned SGD with a stable man-
ual first-epoch learning rate achieve a similar final accuracy to Preconditioned
SGD using the automatically constructed learning rate.

test acc

train acc

24 CHAPTER 4. EXPERIMENTS

DeepOBS init PyTorch default init
4 4
ke
g
ke
k=
s
0.6
0.4
0.2
T T T T T T T T
0 1 2 3 4 5 0 1 2 3 4 5
061 e . 0.6
044 fo= 0.4 g
0.2 0.2 fooo
T T T T - T T T T

— Batch Size = 32
Batch Size = 64
- - - Batch Size = 128

Figure 4.4: Experiment 3: PreconditionedSGD on a cifarl0 net, comparing
initialization methods. The algorithm is stable regardless of batch size and
initialization method.

4.5. DISCUSSION 25

fmnist_2c2d

e
(@) 0¢)
! !

Accuracy
e <
[\ H~
| |

I I I I I I I I
107°107*1072107210~" 10° 10! 102
Learning Rate

—¢ PreconditionedSGD
SGD
- - - Constructed Learning Rate

Figure 4.5: Experiment 4: The originally proposed algorithm allows the user to
specify the inner optimizer’s (in this case SGD) learning rate in the first epoch.
Setting it below a certain model-specific threshold, the algorithm performs just
as well as the constructed learning rate. Setting it over that threshold, the
algorithm diverges in the first epoch.

4.5 Discussion

The experiments presented in the previous sections show that the tested im-
plementation of the algorithm proposed in [Roos and Hennig, 2019] is not gen-
erally useful for application in deep learning.

In Experiment 1A the full algorithm performs worse than established base-
line optimizers on nearly every measure of training success. Experiment 1B
was set up to isolate the individual parts of the algorithm and investigate them
seperately.

The fmnist test problem seems prone to overfitting. After reaching a very
good point, test loss of the baseline optimizers increased, while train loss re-
mained low and accuracies high. The preconditioning algorithm does not show
this behaviour. This can be explained with the generally slow training speed.
After 100 epochs, it doesn’t even reach the minimum that the baselines have
achieved very quickly.

During its first phase, the algorithm gathers information about the curva-
ture of the loss landscape and uses this information to construct a diagonal
prior estimate for the Hessian. This is then used to construct a learning rate
for the inner optimizer. The step size changes every epoch and thereby allows
the optimizer to respond to changes in local curvature. However, using a fixed
tuned learning rate outperforms the adaptive learning rate in every case.

26 CHAPTER 4. EXPERIMENTS

Basing the constructed learning rate on only the first minibatches per epoch
makes the optimizer less robust. Training success of the whole epoch depends
largely on the learning rate, which is heavily influenced by sampling noise.
This explains the increased variance of the adaptive optimizers in figure 4.2. In
experiment 3, the batch size is varied. A smaller batch size increases sampling
noise, but surprisingly, it decreases variance of the optimizer’s performance.
The benefit of taking more steps seems to outperform increased sampling noise
on robustness.

The adaptive learning rate is not robust and it performs worse than a
tuned fixed learning rate, but might still be more effective than going through
an extensive tuning process.

The algorithm applies the preconditioner before every optimization step
performed by the inner optimizer. Applying the preconditioner to SGD while
using a fixed tuned learning rate lead to an increase in performance one one
of the two test problems. When using Tuned Momentum or when running on
the other test problem, applying the preconditioner had a very small effect, if
any.

When using the constructed learning rate on SGD, applying the precondi-
tioner lead to a decreased performance.

The preconditioning algorithm did not perform better than well-tuned mo-
mentum, which seems able to better capture local curvature with much less
computational effort.

There are limitations to this study that might contribute to the precon-
ditioning algorithm underperforming compared to the original paper. In the
original paper, the used testing protocol is not thoroughly explained. Test
problem, batch size and SGD learning rates were set manually and without
justification, which makes the results hard to interpret. In a similar way, the
Preconditioner’s hyperparameters were not tuned in a systematic way. Trying
to replicate the paper’s result as closely as possible in Experiment 3, I failed
to reproduce the observed instability. This points to a functional difference
between implementations.

Given the theory, Preconditioned Tuned SGD should reliably outperform
standalone Tuned SGD. It however has a noticeable effect only on the cifarl0
testproblem. There are multiple factors that might be contributing to this.

The main factor is that on the fmnist problem, standalone SGD performs
comparatively to Momentum. This means that the problem is already quite
well-conditioned and the scalar learning rate is able to capture global curvature.

Another possible reason that SGD is not outperformed by the precondi-
tioner is that while estimating the Hessian, the Preconditioner does not use the
data for actual parameter updates. The effect of this depends on the number
of minibatches.

In experiment 2, the time penalty of preconditioning was investigated. The

4.5. DISCUSSION 27

authors report that the time of building the rank 2 approximation accounted
for 2-5% of the total computational cost per epoch, using a batch size of 32
on the training subset of CIFAR-10. This number does not tell the whole
story. This thesis adds to this finding the performance penalty of estimating
the Hessian and applying the preconditioner. Gathering the prior observations
add no considerable overhead compared to SGD, while both calculating and
applying the Preconditioner add considerable overhead. Adam as another
adaptive method is almost exactly as fast as SGD.

Using the DeepOBS standard batch size of 128, there are fewer minibatches
per epoch, which means the estimation of the Hessian on the same number of
steps uses a larger proportion of total training time. In this setting, using
the preconditioner incurs a computational cost of more than double that of
SGD. Two epochs of SGD can be run in the time it takes to compute the
preconditioner and apply it during every step in one epoch.

The implementation of the algorithm also plays a large role. As construc-
tion of the preconditioner is not parallelized on the GPU, it is expected to take
a comparatively long time. However, applying the preconditioner every step
is a GPU operation and increases epoch time by about 50% of an SGD epoch.

Measuring CPU time would also be interesting, because that would account
for the algorithm not being fully GPU-optimized. Unfortunately, DeepOBS
does not provide this functionality.

Experiment 3 tried to replicate the author’s findings that the algorithm
would construct a very large learning rate in the first epoch, causing it to fail.
Using the same model, batch size and initialization method as in the original
paper, the new implementation proved stable. Interestingly, the algorithm
produces greater variance on accuracies when using larger batch sizes.

The runs in experiment 3 were only done for a small number of test prob-
lem/hyperparameter combinations. There is no guarantee that the found sta-
bility translates to other kinds of problems, so it is useful to keep the option of
setting an initial learning rate. It is also unclear exactly why the new algorithm
is stable.

Experiment 4 investigated the manual first-epoch learning rate. If set above
a certain threshold, the algorithm diverges in the first epoch. If set below this
threshold, the algorithm does not diverge. After 100 epochs, there is little to
no effect of the first-epoch learning rate. SGD is more sensitive to the learning
rate, where a low choice lead to considerably worse training performance.

If the algorithm is used to construct a learning rate, one should therefore
not need to specify a first-epoch learning rate. However, given the poor per-
formance of the constructed learning rate observed in experiment 1, it might
be a good idea to specify a tuned fixed learning rate throughout all epochs.

Generally, the experiments in this thesis were mostly performed on convo-
lutional nets, and it is unclear which of the found properties would translate

28 CHAPTER 4. EXPERIMENTS

to other architectures.

The usability goals of the implementation were met, as the experiments
required no modifications to the final optimizer class to be run and integrate
nicely with DeepOBS.

4.6 Further Research and Development

This thesis can not exhaustively cover all aspects of the presented optimizer
implementation. There are open questions the experiments did not answer and
several improvements to be made to the implementation and the algorithm
itself.

The relationship between the Preconditioner’s remaining hyperparameters
and accuracy and computational overhead remains unclear. How much better
does the estimate get when using an additional data point? The Hessian is
taken as the mean of a Gaussian distribution, so the variance of this distribu-
tion could be taken as a measure for uncertainty. The algorithm could keep
using new data points until the certainty of the estimate does not improve
anymore and the remaining variance can mostly be explained by minibatch
sampling noise.

A related open question is when to best restart the estimation process. This
could be at the start of every epoch, as throughout this thesis, after some fixed
number of minibatches or dynamically, once the estimate is determined to be a
bad fit at the current point in parameter space. Estimating the likelihood of the
Hessian given the observed gradients could also be achieved using the variance
of the Hessian estimate, which isn not calculated in the current version.

It is also unclear whether parameter groups are only a convenient feature
for practicioners or whether using them does actually impact training success.

In order to make general statements about the robustness and performance
of the algorithm, it would need to be either further examined analytically or
run on many more, different kinds of model architectures.

4.7 Feedback for DeepOBS

This thesis is one of the first semi-external projects that use DeepOBS and
more specifically the pyTorch version of DeepOBS. Naturally, some issues and
unexpected behavior came up while using it. This is a selection of Feedback
on DeepOBS.
e Usability:
— In general, DeepOBS is quite easy to use. The minimal examples
provided with the documentation work well and are easy to adapt

4.7. FEEDBACK FOR DEEPOBS 29

to other optimizers.

— Output files used to be single-line strings of json. This was changed
to easily human-readable formatting.

— The way DeepOBS currently handles output files is very transparent
(It simply writes json files for each optimizer run in an appropriate
file structure). However, there is no unique place where DeepOBS
saves and looks for metadata. Sometimes it is in the folder name,
sometimes in the file itself, where it should be. It would make more
sense to save consistently defined ”run”-objects which point to all
the runs that logically belong together.

— When analyzing runs, DeepOBS should not rely on the operating
system to determine things like the order of testproblems. The user
should be able to define this, for example by manipulating a "run”
object before plotting.

e Protocol:

— The testproblems’ hyperparameters like the batch size do affect op-
timizer performance a lot. DeepOBS provides default values, but it
should be clearer if and how they can be left on their default values
to compare optimizers without introducing bias.

— DeepOBS now uses a web-based issue tracking system where users
can easily report bugs and request additional functionality:.

e Features:

— DeepOBS lacks a testproblem that uses parameter groups. While
this might be less important for optimizer testing, it would be useful
for optimizer development.

— For measuring computational complexity, CPU time might be a
more useful metric than Wallclock time, because that would rely
less on the algorithm being tuned to the used hardware setup.

— In the output files, DeepOBS should record if a run was stopped
(and why) or if the algorithm was stable all the way throughout the
run.

Chapter 5

Conclusion

In this thesis, I present an implementation of the probabilistic precondition-
ing algorithm proposed in [Roos and Hennig, 2019]. This implementation is
a python class built for pyTorch, which wraps an existing optimizer. It is
straightforward to use and can be swapped out from another optimizer with a
few lines of code.

The algorithm gathers observations of local curvature to estimate the Hes-
sian of the Loss function. A low-rank estimate of this Hessian is then inverted
and used as a preconditioner. Also, the algorithm constructs a learning rate
for the inner optimizer from the observed curvature information. Once the pre-
conditioner is constructed, it is applied to the observed gradient before each
optimizer step.

Using the optimizer benchmarking framework DeepOBS, I show that Pre-
conditioned SGD performs worse than well-tuned standard optimizers like SGD
and Adam on convolutional neural networks. This effect is largely caused
by the non-robust adaptive learning rate. Using a tuned fixed learning rate
through all epochs for the inner optimizer lead to better performances than
standalone SGD, though not exceeding the performance of Momentum.

As DeepOBS is actively being worked on, I provide some feedback. While
the core functionality is quite mature, some areas like the handling of output
files and the automatic visualizer leave room for further improvement.

Future implementations of the tested preconditioning algorithm should be
fully GPU-optimized, which this one is not. If the algorithm can be further
improved, especially by finding a more robust alternative for the adaptive
learning rate, it can be a promising alternative to established optimizers.

30

Appendix A

Code

A.1 Singularity build recipe

#header
Bootstrap: docker
From: ubuntu:16.04

#Sections

Y%environment
set environment variables

hpost
commands executed inside the container after os has been installed.

Used for setup of the container

apt-get -y update
apt-get -y install python3-pip git python3-tk

python3 --version
pip3 install --upgrade pip

pip install torch torchvision
pip install git+https://github.com/abahde/DeepOBS.git@v2.0.0-betat#tegg=deepobs

This build recipe was used to build the Singularity container by invoking
sudo singularity build

31

32 APPENDIX A. CODE

A.2 DeepOBS Runscript for experiment 1

This code includes the definitions for PreconditionedSGD and AdaptiveSGD.
It was run 10 times using different seeds each time.

"""Simple run script using SORunner."""

import torch.optim as optim

import deepobs.pytorch as pyt

from sorunner import SORunner

from probprec import Preconditioner
import numpy

import math

DeepOBS setup

class PreconditionedSGD(Preconditioner) :
"""docstring for PreconditionedSGD"""
def __init__(self, *args, *+*kwargs):
super (PreconditionedSGD, self).__init__(
*args,
optim_class = optim.SGD,
**xkwargs)

class AdaptiveSGD(Preconditioner):
"""docstring for PreconditionedSGD"""
def __init__(self, *args, *xkwargs):
super (AdaptiveSGD, self).__init__(
*args,
optim_class = optim.SGD,
*x*kwargs)

def _apply_preconditioner(self):
return;
specify the Preconditioned Optimizer class

poptimizer_class = PreconditionedSGD

and its hyperparameters
phyperparams = {’1r’: {"type": float, ’default’: Nonel}}

create the runner instances

A.3. SLURM BATCH DEFINITION FILE 33

prunner = SORunner (PreconditionedSGD, phyperparams)
runner = SORunner (AdaptiveSGD, phyperparams)

runner.run(testproblem="fmnist_2c2d’)
runner.run(testproblem=’cifar10_3c3d’)
prunner.run(testproblem=’fmnist_2c2d’)
prunner.run(testproblem=’cifar10_3c3d’)

A.3 Slurm Batch Definition File

This file was used to run experiment 1 on the compute cluster.

#!/bin/bash

HH#H#
#a) Define slurm job parameters
HH##

#SBATCH —--job—name=prec
#resources:

#SBATCH —--cpus-per-task=4
the job can use and see 4 CPUs (from max 24).

#SBATCH --partition=day
the slurm partition the job is queued to.

#SBATCH --mem-per-cpu=3G
the job will need 12GB of memory equally distributed on 4 cpus.
(251GB are available in total on one node)

#SBATCH --gres=gpu:l
#the job can use and see 1 GPUs (4 GPUs are available in total on one node)

#SBATCH --time=03:30:00
the maximum time the scripts needs to run
"hours:minutes:seconds"

#SBATCH --array=43-51

34 APPENDIX A. CODE

#SBATCH --error=job.%J.err
write the error output to job.*jobID*.err

#SBATCH --output=job.%J.out
write the standard output to job.*jobID*.out

#SBATCH --mail-type=ALL
#write a mail if a job begins, ends, fails, gets requeued or stages out

#SBATCH --mail-user=ludwig.bald@student.uni-tuebingen.de
your mail address

Hit#
#b) copy all needed data to the jobs scratch folder
#itH#

DATA_DIR=/scratch/$SLURM_JOB_ID/data_deepobs/

mkdir -p $DATA_DIR/pytorch

mkdir -p $DATA_DIR/pytorch/FashionMNIST/raw

cp -R /common/datasets/cifar10/. $DATA_DIR/pytorch/

cp -R /common/datasets/Fashion-MNIST/. $DATA_DIR/pytorch/FashionMNIST/raw/

H#HitH#H
#c) Execute the code
#HitH#

singularity exec ~/image.sif python3 ~/exp_preconditioning/runscript.py
--data_dir $DATA_DIR --random_seed $SLURM_ARRAY_TASK_ID

echo DONE!

A.4 Repository

Everything that’s needed to reproduce the experiments in this thesis is freely
accessible. The python and bash source code for the preconditioner, clus-
ter use, experiment setup are available in the following repository: https:
//github.com/ludwigbald/probprec/ Raw experiment result files and the
ETEXsources for this thesis and the presentation are in the same repository.

https://github.com/ludwigbald/probprec/
https://github.com/ludwigbald/probprec/

Bibliography

[Bahde, 2019] Bahde, A. (2019). Tuning procedure for deepobs. Master’s
thesis, Universitat Tiibingen. Master thesis.

[Bishop, 2006] Bishop, C. M. (2006). Pattern recognition and machine learn-
ing. springer.

[Brown and Hamarneh, 2016] Brown, C. J. and Hamarneh, G. (2016). Ma-
chine learning on human connectome data from mri. arXiv preprint
arXiw:1611.08699.

[Chaudhari et al., 2017] Chaudhari, P., Choromanska, A., Soatto, S., LeCun,
Y., Baldassi, C., Borgs, C., Chayes, J. T., Sagun, L., and Zecchina, R.
(2017). Entropy-sgd: Biasing gradient descent into wide valleys. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings.

[Gibney, 2016] Gibney, E. (2016). Google ai algorithm masters ancient game
of go. Nature News, 529(7587):445.

[Krizhevsky et al., 2014] Krizhevsky, A., Nair, V., and Hinton, G. (2014). The
cifar-10 dataset. online: http://www. cs. toronto. edu/kriz/cifar. html, 55.

[Roos and Hennig, 2019] Roos, F. and Hennig, P. (2019). Active probabilistic
inference on matrices for pre-conditioning in stochastic optimization. In
The 22nd International Conference on Artificial Intelligence and Statistics,
pages 1448-1457.

[Saad, 2003] Saad, Y. (2003). Iterative methods for sparse linear systems, vol-
ume 82. siam.

[Schneider et al., 2019] Schneider, F., Balles, L., and Hennig, P. (2019). Deep-
obs: A deep learning optimizer benchmark suite. In 7th International Con-
ference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019.

35

36 BIBLIOGRAPHY

[Vinyals et al., 2019] Vinyals, O., Babuschkin, I., Chung, J., Mathieu, M.,
Jaderberg, M., Czarnecki, W. M., Dudzik, A., Huang, A., Georgiev, P.,
Powell, R., et al. (2019). Alphastar: Mastering the real-time strategy game
starcraft ii. DeepMind Blog.

[Xiao et al., 2017] Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-mnist:
a novel image dataset for benchmarking machine learning algorithms. arXiv
preprint arXiw:1708.07747.

Selbststindigkeitserklarung

Hiermit versichere ich, dass ich die vorliegende Bachelorarbeit selbsténdig und
nur mit den angegebenen Hilfsmitteln angefertigt habe und dass alle Stellen,
die dem Wortlaut oder dem Sinne nach anderen Werken entnommen sind,
durch Angaben von Quellen als Entlehnung kenntlich gemacht worden sind.
Diese Bachelorarbeit wurde in gleicher oder &hnlicher Form in keinem anderen
Studiengang als Priifungsleistung vorgelegt.

Tibingen, 14. Oktober 2019 Ludwig Bald

	Introduction
	Fundamentals and Related Work
	Probability Basics
	The Normal Distribution
	Machine Learning
	Loss functions

	Optimization
	Gradient Descent
	Stochastic Gradient Descent
	Second-Order Methods

	Preconditioning
	Deep learning
	Artificial Neural Networks
	Automatic Differentiation

	Benchmarking

	Approach and Implementation
	Description of the algorithm
	Modifications of the algorithm

	Documentation for the class Preconditioner
	Overview
	Methods
	Implementation Details

	Test Problems
	DeepOBS baselines
	Technical details

	Experiments
	Experiment 1: Preconditioning
	Experiment 2: Wallclock Time
	Experiment 3: Initialization
	Experiment 4: Learning Rate Sensitivity
	Discussion
	Further Research and Development
	Feedback for DeepOBS

	Conclusion
	Code
	Singularity build recipe
	DeepOBS Runscript for experiment 1
	Slurm Batch Definition File
	Repository

	References

