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Abstract

A task that frequently occurs in machine learning is the computation of inte-
grals. These integrals are often intractable, and we must resort to approxima-
tion methods. One of these approximation methods is Bayesian quadrature.
It seeks to turn the problem of evaluating the integral into a Bayesian in-
ference task. We start with a prior over the integrand and make inferences
about it from a set of samples giving the posterior distribution over the in-
tegrand. A convenient way of putting priors over the integrand is through a
Gaussian process. For some kernel embeddings, the integral over the posterior
Gaussian process can be computed analytically. If we want to use Bayesian
quadrature for other kernel embeddings, an importance re-weighting trick be-
comes necessary. Similar to importance sampling, we rewrite the integral by
introducing a new probability density. However, the re-weighting trick has not
been explored in-depth, and it is unclear if re-weighting affects the performance
of Bayesian quadrature. In this thesis, we show that, depending on the new
probability density, re-weighting might severely affect the accuracy of Bayesian
quadrature. We propose ways of quantifying the expected performance drop
and design algorithms to choose parameters for the new probability density
in order to minimize the effect of re-weighting. Further, we conduct empirical
experiments that suggest that the proposed methods help reduce the potential
negative impact of re-weighting on Bayesian quadrature performance.
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Chapter 1

Introduction

Fitting machine learning algorithms, doing probability queries, summarizing
model performance, and training reinforcement learning agents all have in
common that they require the calculation of expectations. Calculating expec-
tations over continuous random variables amounts to determining the value
of an integral. Integrals are ubiquitous in machine learning and certainly not
limited to previously mentioned tasks. The integrals we encounter are often
intractable, meaning we can not calculate them exactly and, therefore, must
resort to approximation methods.

One method to approximate integrals is Bayesian quadrature. It seeks to
turn the problem of calculating the integral into a Bayesian inference task. We
start with a prior distribution over the integrand and make inferences about
the integrand from a set of samples giving the posterior distribution over the
integrand. A convenient way of putting a prior over the integrand is through
a Gaussian process. It allows us to incorporate knowledge about properties of
our integrand, such as smoothness or continuity. If we condition our Gaussian
process prior on evaluations of the integrand, we get a posterior distribution
over the integrand. We can then integrate over the Gaussian process posterior
instead of the true integrand and get an estimate of the value of the actual
integral. Since the Gaussian process gives us a distribution over the integrand,
the integral of this model is also a distribution. Bayesian quadrature thus al-
lows us to turn the intractable integration problem into a regression problem
on the integrand and an integration problem on the regression model. De-
pending on the chosen covariance function of the Gaussian process and the
integral at hand, the integral over the regression model might be analytical. If
we want to use Bayesian quadrature in cases where we do not have an analyt-
ical solution, an importance re-weighting trick becomes necessary. Similar to
importance sampling, we rewrite the integral by introducing a new probability
density. However, the re-weighting trick has not been explored in-depth, and
it is unclear if re-weighting affects the performance of Bayesian quadrature.
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In this thesis, we will first provide some background on Bayesian quadrature
and Gaussian processes. We then introduce the re-weighting trick, provide
some context on its relation to importance sampling, and show how it might
negatively affect the performance of Bayesian quadrature. We propose ways
of quantifying the expected performance drop and design algorithms to choose
parameters for the new probability density in order to minimize the potential
unfavorable effects of re-weighting. We then evaluate the proposed methods on
test integration problems to assess their viability and compare them. Lastly,
we will give an outlook on ways to continue or improve this work.



Chapter 2

Background

This chapter is concerned with introducing the basic concepts used throughout
this thesis. We will first introduce the concept of Gaussian Processes and then
show how we can numerically approximate integrals with Bayesian quadrature.
For the introduction to Gaussian processes, we rely on standard textbooks for
this topic [12, [16]. For the section on Bayesian quadrature, we rely on work
by O’Hagen [14], Rasmussen et al. [I5] and the textbook by Hennig et al. [7].

2.1 Gaussian processes

2.1.1 Regression

Regression is a fundamental concept in the field of machine learning. It is a
form of supervised learning wherein the algorithm is trained with input features
and real-valued output labels. The data, consisting of the input features and
output labels, is used to predict the unknown labels of new input features.
This is done by establishing a relationship among the variables by estimating
how one variable affects the other. So we assume that the data comes from an
underlying function, and our goal is to estimate that underlying function by
only considering some, possibly noisy, samples from it.

An example of a regression problem would be estimating the price of houses
based on properties like the number of bathrooms and age of the house. A
regression algorithm would use known examples of houses to infer a relationship
between the number of bathrooms and the age of the house with its price, to
then make predictions about the prices of other never before seen houses based
on the number of bathrooms and their age.
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2.1.2 Parametric approaches to regression

In a parametric approach to regression, we try to get as close as possible to the
unknown function f(x) underlying the data by choosing a nonlinear function
f(x; w), which is parameterized by parameters w. We could for example define
f(x;w) by using a set of nonlinear basis functions {¢(x)}_,,

FoGw) = wngn(x). (2.1)

While f(x;w) is not a linear function of x, it is linearly dependent on the
parameters w. We might therefore refer to this as a linear model. Using Bayes’
theorem, we can infer the value of the weights w. The posterior probability of
the parameters w is given by

fN|W, XN)P(W)
P(fv|Xn)

Here Xy = {x,})_, denotes the set of N input vectors and fy = {f,,}2_, the
corresponding target values. The concrete inference can be realized in different
ways. One of them is the Laplace method, where we minimize an objective

function

M(w) = —In(P(Ey|w, Xx) P(w), (2.3)

and thereby locate the locally most probable parameters. Another option we
have, would be Markov chain Monte Carlo methods to create samples from the
posterior P(w|fy, Xy). Since we only want to introduce Gaussian Processes,
we will not go into further detail about the approaches of parametric regression
here.

2.1.3 Introduction to Gaussian process regression

Gaussian Process Regression (GPR) aims to model an unknown function f(x)
that underlies the observed data. The adaption of the model to the data
corresponds to an inference of the function given the data. By inference, we
mean that Bayes’ theorem is used to update the probability for a hypothesis
as more information becomes available. So if we have a set of input vectors
Xy and a set of corresponding target values fy the inference of f(x) can be
described by

P(Ex] (), X) PU(x))

P(f(x)|fy, Xy) = P(fv|Xy)

(2.4)
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In the case of GPR, the prior, P(f(x)), is a Gaussian process (GP), which
encodes some prior beliefs we have about the distribution over the function
space. The GP framework allows us to place this prior on f(x) without directly
parameterizing it.

2.1.4 Definition of (Gaussian processes

To introduce Gaussian Processes, we first look at a regression problem using
H fixed basis functions {¢,(x)},, as we did in section . If we are given
N input points {x,})_,, we can define the N x H matrix R as the matrix of
basis function values at the given input points

Rnh = gbh(l’n) (25)

We can then further define a vector fy as the vector of values of f(x) at the
given N input points

H
Jn = Z Rypwy,. (26)
h=1
If we assume the prior distribution of w is Gaussian with zero mean
P(w) = N'(w;0,02), (2.7)

then f, as a linear function of w, is also Gaussian distributed with zero mean
and covariance matrix Q,

P(f) = N(£;0,Q). (2.8)

The covariance matrix Q is given by

Q =E(ff") = E(Rww'R") = RE(ww')R" = R62IR" = ¢2RR". (2.9)

Under the assumption that the prior distribution of w is Gaussian, no
matter what points {x,}"_;, we select the vector f always has a Gaussian
distribution. This is also the characterizing property of a Gaussian process.
The probability distribution over a function f(x) is a Gaussian process, if for
any {x, }_, with finite N, the density P(f(x1), f(x2), ..., f(xn)) is a Gaussian.

If we now look at a single entry (n,n’) of the covariance matrix

H

an’ = (UguRRT)nn’ - 0—120 Z ¢h(xn)¢h(xn’)7 (210)

h
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we see that we have to compute a sum for each entry of the covariance matrix
of the prior distribution of f. In mathematics, certain sums remain tractable
even if the number of entries of the sum goes to infinity. By computing the
integral, we can use this circumstance to add infinitely many features for each
entry of the covariance function. This, however, does not work for arbitrary
basis functions. We have to specifically choose certain basis functions and place
them in a regular fashion. To illustrate this, we have a look at an example
using one-dimensional radial basis functions

é(2)n = exp (—M) . (2.11)

2r2

We can now take the limit H — oo and thereby turn the sum over h into an
Integral. We scale 02 as & to prevent our covariance from diverging with H.
Here S is a constant, and AH denotes the number of basis functions per unit
length. A single entry of the covariance function can now be described as

hmaz
an’ - S/ ¢h($n)¢h($n/)dh
Pimin (2.12)

hmas (x, — h)? (x —h)?
= S/hmm exp (——%2 ) exp (——%2 ) dh.

This integral is analytically solvable if we let h,,., — oo and h,,;, — —oo and
we get

Quw = Vr2Sexp (—M) . (2.13)

42

This new form enables us to re-frame our view on the regression problem.
Whereas before, we had to specify the prior distribution using finitely many
basis functions and priors on parameters, we now can specify this distribution
using the covariance function,

C(2n, 2p) = Oexp (—W) . (2.14)

Many different covariance functions are possible. The one we have just con-
structed is called the squared exponential covariance function. The only con-
straint we have is that the chosen covariance function must generate a positive
semidefinite covariance matrix for any set of input points {x,})_,. A matrix is
positive semidefinite if all its eigenvalues are non-negative. By choosing differ-
ent covariance functions and different hyperparameters, we specify prior beliefs
about the distribution over the function space. In the case of the squared ex-
ponential covariance function, we encode the belief that the function should
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Figure 2.1: Samples of a Gaussian process with different covariance functions.

be infinitely differentiable. Figure shows samples from Gaussian processes
with different covariance functions. The formulas for the covariance functions
of the GPs from which these samples where taken as well as more examples
of covariance functions can be found in the well known Kernel Cookbook by
David Duvenaud [5].

We have seen that a GP defines a prior over functions using a covariance
function. Additionally a GP requires a mean function. However, the mean
function is usually just assumed to be the zero function. This is because one
can transform the original problem so that a zero mean function is appropriate.
If we would choose a non-zero mean function m(x), we can also model the
function h(x) = f(x) —m(x) instead of the function f(x), in which case a zero
mean function is suitable again. There are a few settings where m(x) = 0 does
not apply w.l.o.g., but these are not relevant for us for the time being. We can
thus write,

f~GgP(0,C(x,x)) (2.15)

and thereby define the GP.

2.1.5 Gaussian Processes inference

We are now concerned with fitting the GP to data. This is done by incorpo-
rating the information the training data provides about the true function into
our prior GP to form the posterior GP. In the case of noise-free observations,
we know that the true function goes through the training data points and can
therefore restrict our joint prior distribution to contain only functions which
agree with the observed training data. An example of this can be seen in
Figure . If we have observations {(x,, f,)}2_,, the joint distribution of the

n=1»
training outputs, f, and the test outputs f, according to our prior GP is
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Figure 2.2: Samples of a Gaussian process with squared exponential covariance
function before and after it has been fitted to the data.

{ £ }NN(O’{ C(Xy, X)  C(Xy, Xy.) (2.16)

f, C(Xni, Xn) C(Xnw, Xns) )

If there are N training points and N, test points, then C(Xy, Xn.) denotes
the N x N, matrix of covariances for all pairs of test points and training points,
the same applies analogously for for C'(Xy, X), C(Xn«, X) and C(Xnw, Xn).
We could now generate functions from the prior and reject all that do not
agree with the data points. Luckily we do not need to resent to such a compu-
tationally inefficient method. Using properties of the normal distribution, we
can compute the posterior mean function and the posterior covariance function
given by

fn(a:) = C(ﬂf, XN)C(XN, XN)_lf

- ) ) . ) (2.17)
C(z,2") = C(z,2") — Cx, X§)O( Xy, Xn) " C(Xy,2")

and thus obtain the joint posterior distribution conditioned on the observations

£,|X, f ~ N(m(z), Cz, ). (2.18)

Depending on the context, we may only have access to noisy observations of

the function values. If we consider Gaussian observations of the true function
f(x) of the form

yx) = fx) e e=N(0,02). (2.19)

we can rewrite the equations for the posterior covariance function and the
posterior mean function to incorporate the noise:

m(x) = Oz, Xy) (C(Xn, Xn) +021) 'y

. » (2.20)
C(z,2") = C(z,2) — C(z, Xy) (C(Xn, Xn) +021)  C(Xy,2').
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Hyperparameter optimization

In section we briefly mentioned the hyperparameters that a covariance
function might have. In our example of the squared exponential covariance
function, the hyperparameters define the length scale and amplitude of the
GP. These hyperparameters may significantly influence the GP’s performance,
and it is therefore desirable to choose them well. Various methods for selecting
suitable hyperparameters such as maximum likelihood, maximum marginal
likelihood, or maximum a posterior exist. For the experiments in this thesis,
we will use the maximum likelihood to optimize the hyperparameters. The
likelihood of a data set is the probability of obtaining that particular data set
given the chosen model. This expression includes the unknown parameters.
The values of the parameters that maximize the probability of the sample
are called maximum likelihood estimates. In our case, we are interested in
obtaining a maximum likelihood estimate for the hyperparameters @ of the
covariance function,

arg min —log(p(f| X, ). (2.21)

The optimization of this function is done by the Broy-
den—Fletcher-Goldfarb—Shanno (BFGS) optimization algorithm [3]. The
BFGS algorithm is an iterative quasi newton method for solving nonlinear
optimization problems. It determines the descent direction by preconditioning
the gradient with curvature information.

2.2 Bayesian quadrature

2.2.1 The problem of symbolic integration

Calculating integrals symbolically is not an easy task. Derivatives, on the other
hand, are usually much easier to obtain. Nevertheless, integrals and derivatives
are just opposites of each other. They are inverse operations. And they have
the same rules. What about these rules makes this possible? Put simply,
differentiation is a forward operation. We can apply the rules mechanically
to get from our function to its derivative. This can be done by recursively
applying the known rules to subterms of the function to get to the derivative
of the whole function. Integration, on the other hand, is an inverse problem. Of
course, there are analogues rules for integration, but here it is not immediately
obvious when to apply them. For example, the well-known integration by parts
formula,

/f(ﬂf)g'(:v)dl“ = f(z)g(x) — /g(x)f'(:ﬂ)dfﬂ, (2.22)
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is only useful if f'(z) [ g(x)dz or ¢'(z) [ f(x)dx is easier to integrate than
f(z)g(z). Tt is generally not obvious whether this is the case. During in-
tegration, one has to recognize patterns and even introduce substitutions to
bring the expression into the desired form. This requires a lot of practice and
intuition. Besides this difficulty, there is also the problem that we do not nec-
essarily have access to a formal description of the function. In some cases, we
can only take individual samples from this unknown black box function, some-
times with great computational effort for each sample. Luckily, in practice,
integrals do not have to be computed symbolically. Many different numerical
approximation methods exist.

2.2.2 Numerical quadrature

The term numerical quadrature represents many different algorithms that aim
to approximate the numerical value of a definite integral,

/Q f(x)dx. (2.23)

Numerical quadrature methods usually evaluate the function we wish to inte-
grate at specific points to infer the integral value. Since it can be expensive
to evaluate the function, the goal is often to obtain as accurate an estimate
as possible with as few samples as possible. For example, we could define an
interpolating function that is easy to integrate and use it to estimate the inte-
gral between each two samples of our function. The simplest choice would be
a constant function that passes through the point (¥ f(2EX41)) where
x; and x;,; denote the x-coordinates of two neighbouring samples. So the
approximation is calculated by dividing the region into rectangles that form
a region similar to the measured region, then calculating the area for each of
these rectangles, and finally adding up all these areas. This method of ap-
proximation is also known as the midpoint rule or the middle Riemann sum.
Of course, many more interpolation functions are possible, or even completely
different approaches that are not based on interpolation functions.

2.2.3 Monte Carlo estimators

To solve an intractable integral, practitioners often refer to Monte Carlo (MC)
estimators for the integral value F. Such an estimator is denoted as Fj;¢ and
has the form of a weighted sum,

Fue = Y wif() = /Q f@p@)de =B, (f(@) = F,  (2.24)
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with equal weights w; = + and z; ~ p(z) iid. from p in its standard form.

It is to be noted that point selection (the retrieval of the z;) is not arbitrary
in Monte Carlo estimation and must follow the random scheme as described
in order for the MC estimator to have favorable properties. We know that
this approximation converges to the right answer as T" — oo. Monte Carlo
estimators are also unbiased and easily implemented. However, the variance
of Monte Carlo estimators decreases linear with 7" and they therefore require
many samples to provide an answer with satisfactory accuracy. Depending on
the integrand, this might make a reasonable approximation expensive.

2.2.4 Bayesian quadrature

Unlike the Monte Carlo method, Bayesian Quadrature (BQ) correlates samples
by using assumptions about our integrand, such as smoothness or continuity.
It is a statistical approach to the numerical problem of computing integrals
and a subarea of Probabilistic Numerics. BQ tries to determine the value of
the integral F' by a number of evaluations of the integrand f at the points
{x,}_,. These samples are used to emulate the integrand by a surrogate
model, over which we then calculate the integral. Here it is important to
note that the integral of the surrogate model should be easier to calculate
than the true integral. A convenient choice of surrogate models are the earlier
discussed Gaussian Processes. They allow us to directly encode our assump-
tions about the integrand by choosing different covariance functions for the
GP. Depending on the chosen covariance function of the GP and the integral
at hand, the integral over the regression model might be analytical. We can
hence shift a possibly challenging integration problem to a regression problem
on the integrand and an easier, often analytic integration problem of the re-
gression model. Unlike the numerical quadrature methods presented earlier,
BQ not only provides an approximation of the integral value. It also indicates
how certain it is about this value by returning a distribution over the integral
value. This is due to the fact that the surrogate model itself is a distribution.
In the case of a GP as a surrogate model for our integrand, we get a Gaussian
distribution over the integral value because f is Gaussian distributed, and the
integral is a linear operation under which Gaussians are closed. So if we use
a GP with mean function m : Q@ — R,x — m(x) and covariance function
C:QxQ— R, (x,x') — C(x,x'), the distribution over the integral value of
F is given by

FGP NN(,M,O‘) (225)

Where the univariate mean p is
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p = Egp(F

e ()

- / Egp (f(x))p(x) dz

= [ mixiptx)ax

(2.26)

and the variance o is

o —V&I‘

_- / Fepxiix [ ool ) - (o ([ f(x)p(X)dx)>2

— / / Egp (f(x)f(x))p(x) p(x)dxdx’ — u?

//C’ X, X’) )dxdx’ +//m (x)p(x’)dxdx’ — m*
// X, %) ) dxdx’ + /m —m?
/ / x, x°)p(x)p(x’) dxdxc’.

. If we now sample points D = {(x1,¥1), .., (Xn,yn)} from f and update the
mean function and covariance function of our GP as discussed in section [2.1.5]
we get the posterior GP fp ~ N (m(x),C(x,x’)). When we apply formulas
and the mean pp of the posterior Gaussian distribution over the
Integral is given by

(2.27)

-1

pp = o+ (/Q C(x, XN)p(X)dX) (C(Xn,Xn)+0D)  f (2.28)

and the variance by

op =0 — (/Q C(X,XN)p(X)dX) (C(Xn,Xn)+020)" (/C (x*, Xn)p(x’)dx )

(2 29)

In general, these expressions may be difficult to evaluate, but several interesting
special cases for which we can obtain analytical expressions exist.



Chapter 3

The re-weighting trick in
Bayesian quadrature

As we have seen, BQ enables us to shift the problem of evaluating a difficult
integral to a regression problem on the integrand and an often analytical in-
tegration problem on the regression model (usually a GP). The integration
problem on the GP model is only analytical for some combinations of covari-
ance functions and probability densities p. Most common covariance functions
can be analytically integrated against the uniform density, which assigns equal
probability to all values in its interval and the Gaussian density. If we wish to
use BQ to integrate with respect to other probability densities, for which we
do not have an analytical solution, we have to make use of the re-weighting
trick,

q(x

R
/Q F)p(x)dx = / T
rz/g(X)Q(X)dx,
Q

where we rewrite the original integration problem by introducing a new prob-
ability density ¢ [15]. This new probability density ¢ can be chosen arbitrarily
as long as f(x)p(z) = 0 whenever ¢(x) = 0 holds true. Our Gaussian process
now models the new integrand g(x) = f(x)p(x)/q(x) and we integrate against
the probability density q. If we now choose ¢ to be the Gaussian or uniform
density, we can use BQ to integrate against any probability density p that can
be evaluated.

13
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Figure 3.1: A simple example of the negative effects re-weighting might have
on the performance of BQ. The integral [ f(z)p(z)dz where f(z) = 1 and
p(x) = N(z;0,1.5) has been re-weighted with ¢(x) = N(2;0,1). The first
plot compares the probability densities p and ¢q. The second plot shows the
distortion of the original integrand caused by re-weighting it with q. The next
two plots show the posterior GP for the original integrand and the re-weighted
integrand. In the last two plots, we see that re-weighting can significantly
decrease BQ) performance even for these relatively similar probability densities.
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3.1 Drawbacks of re-weighting

We do not change the value of the integral F' when re-weighting. It, therefore,
appears reasonable to use any probability density for ¢ as long as we can
integrate against it. However, while we do not change the value of our integral
F when re-weighting, the new integrand g might be distorted negatively and
therefore become significantly harder to capture for the given GP. This may
lead to a less accurate estimation by the GP and, therefore, a less accurate
estimation of the integral F'. While both re-weighting with a Gaussian density
and re-weighting with a uniform density might distort the original integrand,
the distortion of re-weighting with a uniform density is relatively independent
of the choice of parameters for the probability density q. The new integrand
will always be g(x) = % f(x)p(x), for any uniform density. The only thing
we could influence by selecting different parameters for our uniform density
would be the constant k, and scaling of the function we want to capture does
not affect the performance of the GP. However, when re-weighting with a
Gaussian density, the distortion of the new integrand ¢ is very sensitive to the
choice of parameters. An example can be seen in Figure [3.1] We see that the
parameterization of ¢ matters for the accuracy of the BQ estimate. This is
often ignored in practice. Our goal is to find a metric that allows us to predict
this performance drop to then, in a further step, choose a parameterization of

¢ that minimizes the metric and thus the performance drop.

3.2 Relation to optimal importance sampling

Importance sampling has some structural similarities to the re-weighing trick
in BQ in the sense that another distribution ¢ is used instead of p [9]. To pro-
vide some context, we briefly introduce importance sampling here, its optimal
distribution ¢jg, and discuss relations to the re-weighing trick in BQ.

3.2.1 Integral estimation with importance sampling

Importance sampling (IS) is a specific form of the Monte Carlo estimation, de-
scribed in section that circumvents mainly either of the following prob-
lems: i) It is not possible to sample from p(z) directly, or ii) The variance
of Fyc is large or unbounded, and we would like to find an estimator whose
variance is smaller or in fact bounded. An alternative MC estimator with an
alternative sampling distribution may be used in these scenarios. This is the
importance sampling estimator Fs.

The idea of importance sampling is similar in structure to the re-weighing
trick in BQ. In Monte Carlo, p(z) is called the "nominal” or "target” distribu-
tion, and another distribution with density ¢(z) is introduced which is called
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the ”importance” or ”proposal” distribution. Analogously to the above, we
can rewrite the original integration problem as

F=5,(fe) = [ falpta)da = [ f@p()
(3.2)

where we require that f(z)p(z) = 0 whenever ¢(x) = 0. Importance sampling
now says that we can simply use the standard MC estimator on g if we sample
the z; ~ q(z) from ¢ instead of from p, that is

N
. 1
Fis = ;:1 wig(x;), with w; = N (3.3)

However, the importance sampling estimator Fis may not have the same
properties as the standard Monte Carlo estimator. For example, if the ra-
tio p(z)/q(x) is very large in some areas, the variance of F;s may not be finite.
This means that even for large IV, Frg may not be reliable. It is, therefore,
essential to select ¢ well.

3.2.2 Optimal proposal distribution for importance
sampling

The importance sampling estimator Fg is still unbiased,
1 & 1 & 1«
E, (215) = E, (N > g*(:c») =2 E(g@) =5 =2 (34)
i=1 i=1 i=1
and its variance is given by,

1

- Vaty (9" (@)
1

- (B @) - ()
‘i</<M) (#)de — = f*()()d> o
=~/ e q(z)dz — 2 g z)p(x)dzx

-+ ([ o) - oy @as)

Varq(éfg) =
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In practice, we usually only have access to one sample of the importance sam-
pling estimator Fis. We are therefore interested in choosing our proposal
distribution such that the variance of ' 7¢ 18 minimized in order to increase our
chances of getting an estimate that is close to the actual integral value.

From Eq. we see that if f*(z) is positive Var,(Zrg) is zero if ¢jq(z) =
W. If f* is not positive everywhere, it can be shown that the distribution

q(z) = ¢ Y f*(x)|p(x) where c is the normalization constant of g, minimizes
the variance Var,(Zrs), and is hence optimal.

Discussion of optimal importance sampling distribution

Unfortunately g7 = ¢ is not easily accessible since the normalization constant
¢ = Jo|f*(@)|p(xz)dz is often as hard to compute as the original integration
problem. Nevertheless, let us see what effect ¢j¢ has on the integrand. In
other words, let us look at the weighted integrand ¢*(x).

If f*(x) is positive everywhere, then ¢j¢(z) = ¢! f*(z)p(x) and ¢ = 2* and
therefore
g(x):—(z():z. (3.6)
d1s

Hence, the re-weighted function g*(x) is constant at the precise value of the in-
tegral. The IS estimator would be done after one evaluation of g*(x); therefore,

its variance is zero, as shown. If f*(z) is not necessarily positive everywhere,
then ¢jg(x) = ¢ | f*(x)|p(z) and ¢ = [, |f*(x)|p(x)dz and therefore

oy S@R@) e
g'(@) = = oy = CSEn (). (37)

*
drs

Hence, the re-weighted function g*(x) is piece-wise constant at the values
+c¢ = £ [, [f*(z)|p(x)dz. The IS estimation in this optimal case is there-
fore equivalent to estimating the probability p to get "heads” when flipping a
coin; this Bernoulli estimator has the well-known variance %ﬁ(l —p) after hav-
ing thrown the coin N times. Here p is the probability of f(x;) being positive
when z; are sampled from ¢j.

It should be noted that in practice, and especially in high dimensions, it is
challenging to construct a g that would approximate ¢ in a meaningful way and
would improve the properties of the estimator Z;g. It is equally possible that
the properties of Z;¢ become worse and its variance unbounded when using a
q other than the (intractable) g.
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3.2.3 Comparison of importance sampling to re-
weighting trick in BQ

We see that importance sampling has some structural similarities to the re-
weighing trick in BQ. However, the two do not necessarily have similar goals.
In importance sampling, we aim to choose ¢ such that the variance of our distri-
bution Fyc is reduced. The re-weighting trick in Bayesian quadrature aims to
replace the density p with a density ¢ for which we can obtain analytical results
for the integral over the surrogate model. We have seen that depending on
the choice of ¢, the re-weighting trick might negatively affect the performance
of Bayesian quadrature as it can distort the integrand in unfavorable ways.
It is unclear whether the idea of ¢jg can be of use for the re-weighting trick
in BQ. However, it seems challenging for a GP to model piece-wise constant,
non-continuous functions, hence g* as a result of ¢jg seems not well behaved
for a GP, and ¢jg rather seems tailored to and optimal for an MC estimator
that has arguably the least hard to time estimate a constant function. We
will, therefore, not further consider importance sampling in this thesis.



Chapter 4

Performance drop after
re-weighting

As we have seen, depending on the new probability density ¢, there may be a
more or less pronounced drop in the performance of our BQ algorithm. In this
chapter, we will discuss different approaches to predict the performance drop
and construct empirical scores that follow these approaches.

4.1 Scores for measuring performance drop af-
ter re-weighting

4.1.1 Similarity of outcome

A desirable metric to minimize the effect of the re-weighting on the estimation
of our BQ algorithm would capture the difference between the Gaussian dis-
tribution over the integral before re-weighting and the Gaussian distribution
over the integral after applying the re-weighting trick. Minimizing this metric
could ensure that the re-weighting has as little effect as possible. We thus get:

arg max similarity (Fy, F3), (4.1)

where

Foe N ([ i, [ [ cuxoomtontnixi).
P N ([ ot o), [ [ Catxxdat 0)ates6pani

denote the distribution over the integral before and after re-weighting with the
probability density q. Unfortunately, we usually cannot calculate the distri-
bution F} because we typically use the re-weighting trick when we cannot use

(4.2)
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BQ to integrate over the probability distribution p. So even though this score
is useful, in practice, we can only use it in situations where re-weighting is not
necessary.

4.1.2 Distortion of the integrand

As we have seen, the direct comparison between the Gaussian distributions over
the integral values is impossible in most cases. However, if we assume that the
reason for the performance drop is the distortion of the integrand f, we can
use the similarity of the integrand f and the new integrand g as a proxy. The
idea here is that due to the distortion, the properties of the integrand change,
and thus it can no longer be guaranteed that the chosen Gaussian process can
approximate it well. f might, for example, be stationary, but g does not have
to be stationary as well. When our Gaussian process assumes stationarity, we
have to expect a performance drop for the re-weighted estimation. Therefore,
defining a score that indicates to what extent properties of f still apply g
would be desirable. One approach is to measure the similarity of p and ¢ to
then choose parameters 6 for q in order to maximize the similarity

arg max similarity(q(x, 0), p(x)). (4.3)

However, this is not the only plausible option. While it guarantees us f(x) =
g(x) and therefore no distortion, if it is possible to choose 6 such that p(x) =
q(x]0), this is most often not possible. When we can not find a 6 such that
p(x) = q(x|0), we have to define what "most similar” means exactly and have
no guarantee that our definition of most similar ensures that the previous
properties of f still apply to g.

Therefore, it might also be viable to think about the properties that our GP
assumes in the integrand and then try to define a Score that measures to what
extent these properties still hold after re-weighting.

4.1.3 Suitability of the integrand

In the above section, we argued for choosing a ¢ such that the original integrand
f and the new integrand ¢ are as similar as possible. However, our goal is not
necessarily to get the same results in the re-weighted case as in the non-re-
weighted case but to get the best approximation of the integral F'. Therefore,
we might try to distort the original integrand f so that our GP easily captures
the new integrand g. It is therefore desirable to define a score that measures
how well our Gaussian process can capture our new integrand g. This could,
for example, be achieved by measuring how probable it is to observe samples
from g under a given Gaussian Process.



4.2. EMPIRICAL SCORES ASSESSING THE RE-WEIGHTING TRICK21

4.2 Empirical scores assessing the re-
weighting trick

In this section, we will construct empirical scores based on the approaches
mentioned above.

4.2.1 Similarity of p and q

As discussed in section 4.1.2] a possibly interesting metric would capture the
similarity of the density p and the newly introduced density q. When the two
are similar, we might expect the distortion of the new integrand to be relatively
small and therefore expect that the GP still captures the integrand well. How-
ever, it is not obvious how exactly the similarity of the two densities should be
measured in order to minimize the distortion of the original integrand. Some
possible scores for determining the similarity of two probability densities are
shown below.

Manhattan distance

One way of quantifying the similarity of two probability densities is to take the
Manhattan distance between the two distributions. The Manhattan distance
measures the area between the distributions and is defined as

Man(p. ) i= 5 [ Ipbx) = alldx (1.4)

This score works for arbitrary probability densities and can easily be extended
into higher dimensions.

Kolmogorov-Smirnov score

The Kolmogorov-Smirnov score can be used to quantify the equality of two
probability distributions [I7]. This is achieved by using the largest difference
between the cumulative distribution functions of p and ¢ as an indicator of the
dissimilarity of the two samples. We thus get

KS(p,q) == max |edfy(x) — cdfy(x)]. (4.5)

The Kolmogorov-Smirnov score may be a valuable method for comparing two
samples, as it is sensitive to differences in both location and shape of the
cumulative distribution functions of the two samples. We do, however, have to
compute the cumulative distribution functions in order to calculate this score.
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Wasserstein distance

The Wasserstein distance is a distance function defined between probability
distributions [§]. Intuitively, if each distribution is viewed as a unit amount
of earth, the metric is the minimum ”cost” of turning one pile into the other,
which is assumed to be the amount of earth that needs to be moved times the
mean distance it has to be moved. The first Wasserstein distance between the
distributions p and ¢ is defined as

L(p.q) = inf /R o = ld(z.) (4.6)

m€l(p,q)

Here I'(p,q) is the set of probability distributions on R x R whose marginals are
p and ¢ on the first and second factors, respectively. Or intuitively speaking:
the set off all ways of moving the one pile of earth into the other. If cdf, and
cdf, are the respective CDF's of the one dimensional functions p and ¢, this
distance is also equal to:

ip.a) = [ ledfy(a) ~ cdf (o) dz (@7)

which is the previously mentioned Manhattan distance for the CDF's of p and q.
This might, however, be useful since the Manhattan distance of the PDFs does
not change much for two distributions with minimal overlap. The Wasserstein
distance would clearly display the difference. For other cases, the Wasserstein
distance cannot necessarily be computed as easily.

Kullback Leibler divergence

The Kullback Leibler (KL) divergence measures how one probability density
differs from the reference probability density [I0]. Here we measure the dis-
tance between p and ¢ by looking at how likely the second distribution will
be able to generate samples from the first distribution. By this definition, the
KL divergence is not a distance metric as it is not symmetric. K L(q||p) is
not necessarily equivalent to K L(p||q). It might, however, still be useful to
capture the similarity of the two distributions. The KL divergence of p and ¢
is given by
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We see that we have to calculate an integral. For some probability distri-
butions, this integral can be calculated analytically. For example the KL
divergence between a one dimensional Gaussian density ¢(z|u,, 0,) and a one
dimensional Gaussian mixture density p(x|p,, 0,, W)is given by,

Lipllg) = sz ( log o4 9oy, Tpi + (Mpi — f1g)” B 1) . (4.9)

i 202 2

In cases where we cannot calculate the integral analytically, we could approx-
imate the integral by Monte Carlo methods. This is still less expensive than
MC on the original integral since evaluating the densities is usually cheap,
while evaluations on the integrand are usually expensive.

Scoping experiments

It is not apparent which of the above scores is the most suitable to assess
the performance drop of our BQ algorithm when re-weighting with a given q.
For pre-selection, we make a quick empirical comparison between the different
scores and the actual performance of BQ) on the re-weighted integral. In figure
4.1 we see the values of the scores evaluated on different parameterizations of
a Gaussian density ¢q. Based on these empirical results and the fact that it is
relatively easy to calculate, we decide to use the KL divergence as a measure
of the similarity between p and gq.
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Figure 4.1: comparison of the four proposed similarity measures and the

relative absolute error of the mean estimate of a BQ algorithm with a
squared exponential covariance function for the GP for three different inte-
grals [ f(z)p(z)dz. Shown are heatmaps for each score and the error metric
for different parameters of the Gaussian density g. We see that the KL diver-
gence score looks similar to the error metric.
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4.2.2 “Non-stationarity” score for the re-weighting
trick

As mentioned in section 3.2.2, maximizing the similarity between p and ¢ is
not the only possible approach to minimize the distortion of the integrand
g. The score introduced in this section quantifies ”(non)-stationarity” which
is a property of a random process rather than a metric, in this case of the
process g implied by re-weighting f. We will assume f to be a draw of a
Gaussian process with some unknown covariance function C'. Note that this
GP differs from the GP we may use to model f. We additionally assume that
f ~ GP(my,Cy) is stationary. These are rather strong assumptions, and it
needs to be seen empirically whether this score generalizes to non-stationary
and deterministic integrands.

Stationarity and non-stationarity of a processes

A random process {n(z)}.cq is said to be stationary when its distribution is
unchanged by an index shift, that is {n(z)}.co = {n(x+9)}r1seq for arbitrary
0 [11]. This implies that all its statistics, such as mean and covariance, obey
this property as well. A GP is uniquely defined by its mean function m(z) =
E,(n(z)) and its covariance function C(z,z’) = cov(n(z),n(z")). Hence, a
stationary GP must obey m(z) = m(z + 0) and C(z,2") = C(z + d,2' + 9)
for arbitrary 6. Any covariance function that only depends on the distance
C(z,z") = C(r) with r := ||z — 2/|| is stationary by definition. For example
the squared exponential covariance function is stationary with C(r) = e 05",
The trivial mean function m(z) = 0 is also stationary.

Shift score

We will now construct a score in order to measure the change in stationarity
of the original integrand f when re-weighting it with a probability density
q. For a stationary process f ~ GP(my,Cy) we have Cy(z,2') = Cp(x +
0,2 +6). Assuming f, the re-weighting trick implies a non-stationary process
g~ GP(mgy,Cy). That is

o(z) = F@) 2 < Gp(m,. ) (4.10)
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where

e (P @ p@N (D) ()
-5 (i ) - B (s ) = (10755 )
= B (B () ()~ By () B ()

P,

ax)afa) 1)

(4.11)

Here Cy(z,2") = Cy(z + 6, 2"+ §) and my(x) = my(x + ) must not necessarily
hold true. For now we’ll consider ms(z) = 0 and hence m,(z) = 0 which
makes the object of interest the covariance function C,. Recall that we do not
have knowledge of the true process f and hence g. We construct a measure of
non-stationarity as

s(x,2'|0) :== ’C(‘”’f) — Oz +6,2" +96) '

C(z, )
C(z+9d,2" +9)
C(z,z") '

(4.12)

:‘1_

We see that for a stationary covariance function s(z, z’|6) = 0 for all =, 2’ and
all 0. When we now plug in Cy from equation [.11]

, Cy(z+6,2" +6)
Sg(x,2'|6) = |1 O ) ‘
- Bt O DA G 8y
q(z + 8)qg(x' + ) p(x)p(z’) Co(x, ') '
_ |y _ ple+0)p(a’ +6) g(z)q(a’)
q(x 4 0)q(z' + ) p(x)p(z") |’

we get a way of quantifying the change in stationarity. We make the following
observations:

e By definition s,(z,2'|0) > 0.
e s,(x,2'|0) is independent of Cy and only depends on ratios of p and g.

o sy(x,2'|0) =0 for all z, 2" and ¢ if both p and ¢ are stationary that is if
p(x) = p(x +0) and ¢(z) = q(x +0).
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o sy(x,2'|0) = ‘1 - %‘ if only ¢ is stationary.

o sy(x,2'[0) = if only p is stationary.

h_ a(@)a(x)
(z+0)q(z'+9)

The score s,(z,2'|0) is defined for a given triplet (z,2’,d). Assuming we are
interested in an expected score w.r.t p, we can define

Epxp(sq(T, @ '10))

//ng sq(z, 2'|0)p(x)p(z")dxda’ o
/AMZ x+&m£+5mwmqu@mm%mmﬁ

q(z + 6)q(a" + 0)p(x)p(a’)

We will from now on refer to this score as "shift score” trough out this thesis.
It still depends on 6, and it is unclear which ds to choose or if the score can be
defined independently of §. Since we do not have an answer at the moment, for
the experiments in chapter 5, we will evaluate the shift score for eight deltas
evenly distributed between -4 and 4 and calculate their average to get an
estimate for the change in stationarity. As already mentioned, the shift score
is based on the assumption that the true integrand is a GP f with a stationary
covariance function and mean function m = 0. This is not generally the case
in practice. Hence some questions arise. Does the shift score correlate with
performance under the given assumption? Does this also hold empirically
for other integrands? In figure we see the effect of re-weighting with
different Gaussian densities ¢ on integrands that are draws from a stationary
Gaussian process, as well as the shift score for different ds. It seems that at
least for these well-behaved integrands, the shift score is able to capture the
change in stationarity. Whether the shift score can also be generalized to other
integrands will be seen in the experiments in chapter 5.
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Figure 4.2: We see the distortion of samples from a stationary GP when re-
weighting with different Gaussian densities ¢ as well as the shift score for a
range of ds. Each row shows the distortion of the integrands caused by re-
weighting with a different ¢ followed by the shift score values for different
0s. We see that especially the logarithm of the shift score seems to yield
higher values for the same choice of delta when the re-weighted integrand is
highly non-stationary (row three) and is constantly zero for no increase in non-
stationarity (row one).



4.2. EMPIRICAL SCORES ASSESSING THE RE-WEIGHTING TRICK?29

4.2.3 Evidence of the model

In section we have considered a score that not only aims not to distort
the original integrand f but measures how suitable the re-weighted integrand
g is for our GP model. The evidence enables us to do exactly that. Here we
assess how probable it is to observe g under a given GP model with covariance
function C'. Calculating the evidence can be computationally expensive since
it requires us to integrate over a possibly multidimensional space. But for
Gaussian process models, integrals over the parameter space are analytically
tractable [16]. When we consider n samples (x,y) from g the log evidence is
given by

log(p(y|X)) = 5y C(X, X) ™y — 2 loa(|C(X, X)) — & log(2m).  (4.15)

So far, all the metrics we used depended only on the probability density func-
tions p and q. However, since we sample from ¢, the evidence also depends on
the original integrand f. This is a possibly more accurate score since consid-
ering f allows us to make more precise claims about the properties of ¢ than
just relying on p and q. However, the cost of computing f forces us to use the
same evaluations of f for the BQ algorithm and the evaluation of the density

q.

4.2.4 Reflection on the scores

All the above scores aim to quantify how much performance drop we might
expect in the BQ algorithm when re-weighting with a probability density q.
Except for the evidence score, all mentioned scores only rely on the densities p
and ¢ and can therefore be computed independently of f. This is desirable as
evaluating f is usually expensive. It also enables us to evaluate the suitability
of ¢ for a given p and reuse the results for any integrand f. However, relying
on the p and ¢ might not be desirable if f is not well-behaved. Hence, we
may want to choose some ¢ anyway that yields better performance. The only
score that could do that is the evidence score, which measures how well the
GP is suited for the function g. All the above constitutes a trade-off, and it
must be shown whether the additional information contained in f is worth
the additional computational cost. In the case of the shift score, it is unclear
whether the strong assumptions we made on f (draw from a GP with stationary
covariance function) can also be generalized to integrands that do not obey
these restrictions.
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Chapter 5

Empirical evaluation of the
Scores

When re-weighting, we are forced to decide on a parameterization of the den-
sity ¢ and are naturally interested in choosing the one that leads to the best
performance of our BQ algorithm. In this chapter, we will discuss how to
find the parameters for a Gaussian density ¢ that are optimal according to
each of the scores and further run empirical experiments to get a sense of the
performance we can expect under these optimal gs.

5.1 Finding optimal parameters

We aim to find parameters p, and o, for the Gaussian density ¢(x) =
N (z|pq, 04) that minimize the given score. For this, we will use the L-BFGS-B
algorithm, a version of the BFGS algorithm mentioned in section [2.1.5] [4]. As
the L-BFGS-B algorithm is a gradient-based optimizer, we need to calculate
the gradient w.r.t the parameters of ¢ for each of the scores. The gradient
of the KL divergence and the gradient of the shift score can be found in ap-
pendix [A] The gradient of the evidence score is a little bit trickier since we
do not only have to consider the gradient w.r.t p, and o, but also w.r.t. the
hyperparameters of the covariance function. Alternatively, we could use an
approach like coordinate descent [I8]. Here we alternate between optimizing
the kernel parameters and optimizing the parameters of ¢ until all parameters
are relatively stable. While both approaches are valid, for now, we will use a
different optimizer that does not rely on gradient information for the optimiza-
tion of the evidence score. The Nelder—-Mead method is a commonly applied
optimization method used to find the minimum of an objective function. It is
a direct search method based on function comparison and is often applied to

nonlinear optimization problems for which derivatives may not be known [13].
The Nelder-Mead method is both slower and less reliable than the L-BFGS-B

31



32 CHAPTER 5. EMPIRICAL EVALUATION OF THE SCORES

algorithm, so for practical use of the evidence score, one of the earlier men-
tioned approaches would be more desirable. In the interest of time, we will,
however, use the Nelder-Mead method for the optimization of the evidence
score.

5.2 Experimental setup

In this section, we will describe the design choices made for the experiments.

5.2.1 BQ algorithm

For Gaussian process Regression on the integrand, we use the GPy Python
library [2]. For the implementation of BQ, we use the EmuKit Python library,
and its GPy wrappers [I]. Throughout all the experiments, we use the already
mentioned exponential squared covariance function,

C(2n, 2p) = Oexp (—%) , (5.1)

for the Gaussian process. The points we evaluate the integrand at are sampled
from the probability density p.

5.2.2 Integrands

For the original integrand f, we will use functions of the Genz family [0], a set of
parameterized function families that cover characteristics such as stationarity
E]or smoothness. Out of the available families, we use:

e Oscillatory Integrand Family: Smooth, stationary integrands.
e Gaussian peak Integrand Family: Smooth, non-stationary integrands.

e Continuous Integrand Family: Non-smooth, non-stationary integrands.

As a fourth function family, we will use random Fourier functions, which
are also smooth and stationary, in order to have a second function family for
which the assumptions of our GP are fulfilled. The ground truth integrals
for functions of the Genz family are analytic w.r.t p, and the ground truth
integrals for functions of the random Fourier family are calculated with SciPy’s
integrate.quad method.

1 Stationarity” is usually used in the context random processes. We use the term ”sta-
tionarity” informally, meaning that a function looks similar at all x locations
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5.2.3 Probability density p

For the probability density p, we could, of course, use any density we wish.
All three scores work for arbitrary p that can be evaluated. In the interest of
time, we will limit the experiments to Gaussian mixture densities,

I 2
1 _ (z—py)
p(:v|u,a,vv)ZN(ﬂqu,a,W)=Zwi( e ) (5.2)

as they are relatively flexible and easily implemented.

5.2.4 Metrics to track performance

We want to asses how much impact the re-weighting with the optimized pa-
rameters of ¢ has on the performance of the BQ algorithm. We, therefore, need
a way to evaluate the performance of the BQ algorithm. The first evaluation
method we will use compares the mean up of the BQ estimate with the true
value of the integral F', which we will calculate with SciPy’s integrate.quad
method. We, therefore, look at the absolute value of the relative difference
between the two,

F—pp
F

Srme(F) = ‘ : (5:3)

This evaluation method, however, does not take into consideration that BQ
gives us a distribution over the integral value. If we have two BQ) estimates that
give an equally wrong mean estimate, we usually prefer the one with higher
variance since this indicates its uncertainty. In order to assess the calibration
of the distribution Fgp|D, we use the expected logarithmic density ratio of
p(Fep|D) and p(Fgp|D = F') evaluated on the ground truth F,

p(Fap|D)
) <& (e 602 )

()

A derivation of the second line in equation can be found in appendix
A value of zero here means that the BQ estimate is well calibrated. A value
greater than zero indicates that the estimate is over-confident, and a value less
than zero indicates that the estimate is under-confident. While overconfidence
should be avoided if possible, it is usually less of a problem if the estimate is
slightly under-confident.

(5.4)
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5.2.5 Workflow

We begin by constructing 20 integrands f; with random parameters from one
of the four integrand families mentioned in section [5.2.2] We then choose three
different Gaussian mixture densities for p. For each of the probability densities
p, we will optimize the parameters of ¢ according to the KL divergence score
and according to the shift score. Recall that both these scores can be optimized
independently of f. We also calculate the optimal parameters for ¢ according
to the evidence score for each combination of f and p. We then evaluate the
performance of our BQ algorithm on the re-weighted integrals on a fixed budget
of samples from f; from n=3 to n=29 in increments of one. The performance
will be evaluated with the two metrics introduced in section (.2.4l For each
budget, we will average the score of all 20 integrands and therefore get,

20 20

1 1 Fi — pp;
Bl F)= — Il el 24 )
50 ;:1 Srme(Fi) 50 ;:1 ok (5.5)
20 20
1 1 (Fy — ppi)?
— F)=— Ak A A 5.6
20 & swalF) = 35 ; < Yo (5:6)

as metrics. We then repeat the same procedure for the remaining four inte-
grand families. In all plots, we also show the performance of the BQ algorithm
if we re-weigh with ¢(x) = N(x;0,1). This is done to assess how the optimized
gs perform with respect to the current standard practice for re-weighing with
a Gaussian density.

5.3 Results

In the following, we will describe the experiments’ results and briefly discuss
possible explanations.

5.3.1 Random Fourier integrands

The random Fourier functions are smooth and stationary and are, therefore,
relatively easy to capture for our GP. In figure 5.1, we see that in the case of
a Gaussian density p, optimizing the KL divergence score and the shift score
results in a ¢ that is basically identical to p. We, therefore, see virtually no dis-
tortion of the integrand. This is to be expected since we know that both scores
are minimized when p and ¢ are identical. The evidence score also suggests a
q similar to p. However, it is not identical and results in a slight distortion of
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the integrand, making it less stationary. When optimizing the evidence score,
we only have access to a limited amount of samples from the original integrand
f. Recall that, to remain somewhat efficient, we have to use the same sam-
ples from f to both calculate the optimal ¢ and fit the GP to the integrand.
This might make it hard for the evidence score to capture the actual structure
of our integrand and, therefore, might lead to optimizations that make the
new integrand look well-behaved for the points we sampled but not in gen-
eral. This might explain the sub-optimal properties of the re-weighted integral
for the evidence score. We also see that simply re-weighting with a standard
Gaussian ¢(z) = N (z;0,1) leads to a highly distorted integrand, which was
to be expected. We can see that all three optimized ¢s yield a similar rel-
ative absolute error of the mean estimate and that they all outperform the
standard Gaussian significantly. The KL divergence score and the shift score
seem well calibrated, while the evidence score appears slightly overconfident,
which might result from insufficient samples, as mentioned above. The stan-
dard Gaussian, however, is highly overconfident. In figure and we can
see the same setup but with different Gaussian mixture densities for p. They
support the claims made about the experiment in figure 5.1} It is, however,
interesting to note that in figure |5.2] re-weighting with the standard Gaussian
q always results in a relative absolute error of the mean estimate of one. Here
the GP always has a mean estimate of zero, and therefore our BQ mean esti-
mate is also zero. When we recall the definition of the relative absolute error
of the mean estimate, we see that if up = 0, the score always equals one.

5.3.2 Oscillatory integrands

The oscillatory functions are also smooth and stationary and, therefore, rela-
tively easy to capture for our GP. For the oscillatory integrands we see similar
results as for the random Fourier integrands (figure , figure figure .
Again all three scores seem to perform relatively similarly, and with the ex-
ception of the experiment seen in figure [5.5] they significantly outperform the
standard Gaussian ¢. The similar performance for the experiment in figure
5.5 is probably because the standard Gaussian just happened to be relatively
similar to the probability density p. We can also see in figure that even
though p is Gaussian density, the optimal ¢ proposed by the shift score does
not resemble it exactly. It is unclear whether this is due to a failure of the
optimization algorithm or the choice of ds on which we evaluate the score.

5.3.3 Gaussian peak integrands

The Gaussian peak functions are smooth, but they are highly non-stationary.
They propose a challenge to our BQ algorithm as samples are likely to be taken
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at positions of the integrand that do not give valuable information about its
structure. In figure[5.7, we see that for a Gaussian density p, the KL divergence
score and the shift score perform similarly. They both recommend the same
q and result in the same relative absolute error of the mean estimate and
similarly well-calibrated BQ estimates. In figure |5.8| and figure they do not
yield the same optimal ¢q. However, their recommendations are still relatively
similar and again result in similarly minor distortions of the integrand and,
therefore, also in similar relative absolute errors of the mean estimates and
similarly well-calibrated B(QQ estimates. The standard Gaussian also seems to
result in a minor distortion of the integrand and a relative absolute error of
the mean estimate to the KL divergence score and the shift score. However,
for the experiments in figure [5.8 and figure the standard Gaussian ¢ seems
to result in an overconfident B(Q) estimate.

In figure we see that the evidence score suggests an optimal ¢ that
is significantly thinner than the Gaussian density p. This results in a very
flat integrand. This flattening of the Gaussian peak integrands results in a
relative absolute error of the mean estimate close to zero and an uncertainty
quantification score of -0.5, independent of the number of samples. In figure
and figure [5.9, we see similarly, though not as pronounced, effects. In
both experiments, the ¢ according to the evidence score flattens the integrand
and outperforms the other scores for the relative absolute error of the mean
estimate while remaining well calibrated. We see that for Gaussian peak inte-
grands, the evidence score seems to be able to distort the integrand such that
it can be better approximated by the GP.

5.3.4 Continuous integrands

The continuous functions are non-smooth and non-stationary and should pose
a significant challenge to our GP. In figure [5.10] we again see that the KL
divergence score and the shift score recommend an optimal g equal to Gaus-
sian density p and therefore do not distort the integrand at all. The standard
Gaussian ¢ also results in a relatively minor distortion of the integrand. The
optimal ¢ according to the evidence score, however, causes a significant distor-
tion of the integrand for x > 3 or x < 3. However, we also see that the relative
absolute error of the mean estimate is similar for all ¢s, which is somewhat
surprising. The distortion the optimal ¢ according to the evidence causes in
the integrand does not seem to affect the relative absolute error of the mean es-
timate. This might be because the distortion it causes is mainly affecting parts
of the integrand where p has basically no mass and which are therefore not all
too relevant for the estimation of the integrand. Except for the evidence score,
which results in overconfident BQ estimates, all ¢s result in well-calibrated
BQ estimates. In figure [5.11] all three optimized ¢s have a similar effect on
the integrand, which gets distorted and resembles p. The standard Gaussian
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q strongly distorts the original integrand. The relative absolute error of the
mean estimate is similar for all three optimized ¢s and significantly better than
for the standard Gaussian q. Except for the optimal ¢ according to the KL
divergence, all ¢s seem to result in an overconfident BQ estimation. In figure
[b.12] all gs result in a relatively minor distortion of the integrand and similar
performance for the relative absolute error of the mean estimate. However,
while the optimal ¢ according to the KL divergence score and the optimal
q according to the shift score are well calibrated, the other two result in an
overconfident BQ) estimate. We see that the integrands shown in figure
and figure do not get meaningfully distorted by any of our gs. The thin
continuous integrands seem to be relatively robust against distortions from
re-weighting with Gaussian densities. The stretched-out continuous integrand
in [5.11] however, gets heavily distorted by the standard Gaussian ¢, and we
see similar results as for the random Fourier integrands and the oscillatory
integrand. Surprisingly, our BQ estimates seem to be relatively accurate for
these integrands. The BQ algorithm seems to have similar performance for the
continuous integrands as for the random Fourier integrands and the oscillatory
integrands.

5.3.5 Reflection on the results

All three proposed scores seem to perform reasonably well for the test inte-
grands in our experiments. Especially for the random Fourier integrands and
the oscillatory integrands, all scores seem to outperform the standard method
of just choosing a standard Gaussian significantly.

The shift score and the KL divergence score recommend ¢s that result
in a relatively similar performance of the BQ algorithm. However, the KL
divergence score tends to recommend wider Gaussian densities for ¢, which
seems to lead to a better calibration of the BQ estimates. The KL divergence
score is also easier to optimize and appears more robust, making it look like a
favorable choice.

For the non-stationary Gaussian peak integrands, the evidence score en-
ables us to distort the original integrands such that they can be better captured
by our GP. We see that the evidence score can enable the BQ algorithm to
make more accurate estimates of the integral value than in the non-re-weighted
case we essentially see for the KL divergence score and the shift score in figure
b.7 The evidence score also outperforms the standard selection method for
the random Fourier integrands and the oscillatory integrands. However, it does
perform similarly to the other two scores and is therefore probably not worth
the extra computation costs. Moreover, using the evidence score generally
tends to result in slightly overconfident BQ estimates. The fact that we only
have access to a limited amount of samples for the calculation of the evidence
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score might make it difficult to capture the underlying structure of the inte-
grand. We can also only optimize the evidence for the sampled points. This
might lead to an integrand that appears well-behaved for the sampled points
but not necessarily for the other points, which might lead to overconfident BQ
estimates.

The KL divergence score and the shift score are both less informed and
easier to compute than the evidence score. While the evidence score seems
to result in better recommendations for special cases, the other two scores
seem to be more robust and often similar in performance, especially the KL
divergence. For the time being, based on the empirical experiments we have
done, we recommend the KL divergence score to select a suitable ¢ for the
re-weighting trick in Bayesian quadrature.
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Figure 5.1: Effect of re-weighting for integrals with random Fourier integrands
and probability density p(x) = N(z;0.271,2.908). The first six plots show
the Gaussian probability densities ¢ obtained by optimizing each of the scores
and the effect the re-weighting has on one exemplary integrand of the in-
tegrand family, as well as the effect of re-weighting with a standard Gauss
q(x) = N(x;0,1). The optimized gs are: gxp(x) = N(x;0.27,2.91) accord-
ing to the KL divergence score, gs(x) = N(x;0.27,2.91) according to the shift
score, g.(x) = N(x;0.48,2.54) according to the evidence. Recall that the evi-
dence score chooses a separate parameterization for each integrand; the shown
optimized ¢ is therefore specific to the integrand at hand. The bottom two
plots show the performance of the BQ algorithm (described in measured
with the metrics described in[5.2.5{on the integrals re-weighted with the differ-
ent gs. We see that gxr and ¢4 are basically identical to p, and we, therefore,
see virtually no distortion of the integrand. For this particular example, ¢. is
slightly thinner than p, and we see a slight distortion of the integrand. The
standard Gaussian, however, causes a substantial distortion of the integrand.
We can see that all three optimized gs yield a similar relative absolute error of
the mean estimate and that they all outperform the standard Gaussian, which
does not seem to improve with more samples. The KL divergence score and
the shift score seem well calibrated, while the evidence score appears slightly
overconfident. The standard Gauss can not be seen in the last plot since it is
highly overconfident.
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Figure 5.2: Effect of re-weighting for integrals with random fourier integrands
and probability density p(x) = N(x;p,0,w), where p = [—3.08,1.267],
o = [1.707,1.216] and w = [0.602,0.398]. Setup as described in figure
5.1, The optimized gs are: qgr(x) = N(x;—1.35,6.04) according to the
KL divergence score, ¢s(z) = N(x;—1.26,3.29) according to the shift score,
¢e(z) = N(x;—1.08,2.63) according to the evidence. The optimization of all
three scores yields a ¢ that does not result in a strong distortion of the in-
tegrand. The standard Gaussian, however, causes a substantial distortion of
the integrand. We can see that all three optimized ¢s yield a similar relative
absolute error of the mean estimate and that they all outperform the standard
Gaussian, which does not seem to improve with more samples. The BQ algo-
rithm is also well calibrated for the three optimized ¢s. The standard Gauss
seems to be highly overconfident in most cases.
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Figure 5.3: Effect of re-weighting for integrals with random fourier in-
tegrands and probability density p(z) = N(z;p,0,w), where p =
[—1.244,—-0.078,2.07,2.205], o = [1.003,0.795,0.881,1.681] and w =
[0.35,0.404,0.218,0.028]. Setup as described in figure . The optimized
gs are: qgr(r) = N(x;0.05,2.52) according to the KL-divergence score,
gs(x) = N(x;—0.01,2.47) according to the shift score, g.(x) = N(z;0.0,1.88)
according to the evidence. The optimization of all three scores yields a ¢ that
increases the non-stationarity of the integrand but otherwise conserves the
properties of the original integrand. The standard Gaussian, however, causes
a substantial distortion of the integrand. We can see that all three optimized
gs yield a similar relative absolute error of the mean estimate and that they
all outperform the standard Gaussian, which does not seem converge to a rea-
sonable approximation. The BQ algorithm is also well calibrated for the three
optimized gs. However, for ¢. we require more samples in order to be well
calibrated. The standard Gauss can not be seen in the last plot since it is
highly overconfident.
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Figure 5.4: Effect of re-weighting for integrals with oscillatory integrands
and probability density p(z) = N(z;1.883,0.879). Setup as described in
figure The optimized ¢s are: qgrp(r) = N(x;1.88,0.88) according to
the KL divergence, ¢s(z) = N(z;2.01,1.35) according to the shift score,
¢e(x) = N(2;1.88,0.86) according to the evidence. We see that the optimal ¢
according to the KL divergence conserves the original integrand, the shift score
yields a ¢ that is slightly slightly different from p and reduces the stationarity
of the integrand and the evidence score yields a ¢ that is much wider than p
and heavily reduces the stationarity of the integrand. The standard Gaussian,
however, causes a substantial distortion of the integrand. We can see that all
three optimized ¢s yield a similar relative absolute error of the mean estimate
and that they all outperform the standard Gaussian, which does not seem
converge to a reasonable approximation. The BQ algorithm is well calibrated
for the three optimized gs as well as the standard Gaussian.
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Figure 5.5: Effect of re-weighting for integrals with oscillatory integrands and
probability density p(z) = N(z;p,o,w), where p = [—1.603,1.510], o =
0.295,0.533] and w = [0.49,0.51]. Setup as described in figure 5.1 The
optimized ¢s are: qxr(z) = N(x;0.02,2.84) according to the KL divergence,
¢s(x) = N(x;1.72,1.17) according to the shift score, ¢.(x) = N(z;—0.2,1.69)
according to the evidence. All three optimised ¢s as well as the standard
Gaussian have a similar distortion effect on the integrand. The BQ algorithm
has a similar relative absolute error of the mean estimate for all four gs and
they appear to be similarly well calibrated.
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Figure 5.6: Effect of re-weighting for integrals with oscillatory inte-
grands and probability density p(z) = WN(z;p,0,w), where p =
[—2.415,—-0.357,2.285,3.117], o = [1.112,0.522,0.68,1.961] and w =
[0.271,0.182,0.295,0.252]. Setup as described in figure . The optimized
gs are: qrr(zr) = N(x;0.74,6.14) according to the KL divergence, ¢s(z) =
N(x;0.6,2.83) according to the shift score, ¢.(z) = N(x;0.32,2.3) according
to the evidence. We see that all three optimised gs have a similarly minor
distortion effect on the integrand. The standard Gaussian ¢, however, greatly
distorts the integrand. The BQ algorithm has a similar relative absolute error
of the mean estimate for all three optimised ¢s and they all perform signif-
icantly better than the standard Gaussian ¢, for which the error is almost
always one. The BQ algorithm is well calibrated for the KL divergence score
and the shift score, while it seems to be slightly overconfident for the evidence
and highly overconfident for the standard Gaussian.
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Figure 5.7: Effect of re-weighting for integrals with Gaussian peak integrands
and probability density p(z) = N(z;1,3). Setup as described in ﬁgure The
optimized gs are: qxr(z) = N(z;1,3) according to the KL divergence, gs(z) =
N(z;1,3) according to the shift score, ¢.(z) = N(x;0.54,0.2) according to the
evidence. We see that both the qx, and the ¢, do not distort the integral at all.
Optimizing the evidence score, for the shown example, results in a very thin
q that heavily flattens the original integrand. The standard Gaussian ¢ also
flattens the original integrand but not nearly as much as the ¢.. We further
see that the KL divergence score, the shift score and the standard Gaussian all
have similar results for the relative absolute error of the mean estimate and are
similarly well calibrated. The ¢., however, results in a relative absolute error of
the mean estimate of close to zero independent of the number of samples. The
uncertainty quantification score is also always -0.5 independent of the number

of samples.
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Figure 5.8: Effect of re-weighting for integrals with Gaussian peak inte-
grands and probability density p(z) = N (x; pu, o, w), where p = [—1.5,1.5],
o = [1,1] and w = [0.5,0.5]. Setup as described in figure [5.1 The op-
timized ¢s are: qxr(x) = N(z;0,3.25) according to the KL divergence,
gs(x) = N(z;0.07,2.12) according to the shift score, ¢.(x) = N(z;0.7,0.68)
according to the evidence. We see that both the ¢x; and g, cause only minor
distortions of the integrand. Optimizing the evidence score, for the shown
example, results in a thin ¢ that flattens the original integrand. The stan-
dard Gaussian q also flattens the original integrand but not as much as the ..
We further see that the KL divergence score, the shift score and the standard
Gaussian all have similar results for the relative absolute error of the mean
estimate. The q., however, has a relative absolute error of the mean estimate
of close to zero for sample sizes greater than five. The three optimised ¢s seem
to be similarly well calibrated. The standard Gaussian, however, is slightly
overconfident most of the time.
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Figure 5.9: Effect of re-weighting for integrals with Gaussian peak in-
tegrands and probability density p(z) = N(z;p,0,w), where p =
[—3.732,0.537,2.967], ¢ = [3.232,0.573,1.4] and w = [0.154,0.323,0.523].
Setup as described in figure . The optimized ¢s are: ggp(x) =
N(x;0.8,7.61) according to the KL divergence, ¢s(z) = N(x;1.74,4.21) ac-
cording to the shift score, ¢.(xz) = N(z;0.68,0.18) according to the evidence.
We see that re-weighting with g, ¢s or the standard Gaussian seems to dis-
tort the integrand only slightly. They also perform similar for the relative
absolute error of the mean estimate. While for qx, and ¢, the estimate seems
to be somewhat well calibrated, for the standard Gaussian the estimate is gen-
erally overconfident and varies greatly. ¢. is again very thin and results in a
spreading of the integrand integrand. The evidence score has a significantly
lower relative error of the mean estimate and is, while somewhat overconfident,

reasonably well calibrated.
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Figure 5.10: Effect of re-weighting for integrals with continuous integrands
and probability density p(z) = N(z;0.574,1.756). Setup as described in
figure The optimized ¢s are: qgr(x) = N(x;0.57,1.76) according to
the KL divergence, ¢s(z) = N(z;0.57,1.76) according to the shift score,
¢e(x) = N(x;0.84,0.8) according to the evidence. We see that the qxr, gs
and the standard Gaussian do not have a strong distorting effect on the in-
tegrand. Optimizing the evidence score, for the shown example, results in a
relatively thin ¢ that heavily distorts the original integrand for values greater
than three or below -3. We further see that all ¢gs have similar results for the
relative absolute error of the mean estimate. Except for ¢, all ¢s result in a
well calibrated estimate of the BQ algorithm. For ¢, the BQ algorithm appears
to be slightly overconfident.
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Figure 5.11: Effect of re-weighting for integrals with continuous integrands
and probability density p(z) = N (z; p, o, w), where p = [—1.617,3.181], o0 =
[1.578,0.178] and w = [0.138,0.862]. Setup as described in figure . The
optimized gs are: qgr(x) = N(z;—1.06,9.26) according to the KL divergence,
¢s(z) = N(2;0.79,2.21) according to the shift score, ¢.(z) = N(x — 1.56, 2.89)
according to the evidence. We see that all three optimized ¢s have a similar
effect on the integrand; which gets distorted and resembles p. The standard
Gaussian ¢ strongly distorts the integrand. The BQ algorithm has a similar
relative absolute error of the mean estimate for all three optimised gs and they
all perform significantly better than the standard Gaussian q. Except for gx,
all gs result in a slightly overconfident estimate of the BQ algorithm. For qx,
the BQ algorithm appears to be well calibrated.
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Figure 5.12: Effect of re-weighting for integrals with continuous in-
tegrands and probability density p(z) = N(z;p,0,w), where p =
[—3.14,—-0.47,1.95,1.764], o = [1.177,0.796,1.7478,1.6] and w =
0.235,0.455,0.54,0.256].  Setup as described in figure 5.1} The optimized
gs are: qgr(x) = N(x;—0.39,4.41) according to the KL divergence, gs(x) =
N(z;—0.23,2.31) according to the shift score, ¢.(z) = N(x;—0.08,1.26) ac-
cording to the evidence. We see that all four ¢s distort the integral only
slightly. We also see that the BQ algorithm has a similar relative absolute
error of the mean estimate for all ¢gs. The BQ estimate seems to be well cali-
brated for ¢, and g, and overconfident for the g, and the standard Gaussian.



Chapter 6

Discussion and Outlook

We have shown that re-weighting can have a significant influence on the per-
formance of Bayesian quadrature. The main contribution of this thesis are the
proposed methods of choosing parameters for ¢ in order to minimize the neg-
ative effects re-weighting might have on the performance of Bayesian quadra-
ture. The empirical experiments in chapter [5| have shown that the proposed
methods have the potential to improve the accuracy of the BQ estimation
compared to the common practice of simply using a standard Gaussian ¢ for
the re-weighting.

In some cases, the evidence score seems to distort the integrand so that
it can be more easily captured by the GP. However, for most of the tested
integrand families, its performance was similar to the shift score and the KL-
divergence score, which is underwhelming if we consider the difference in com-
putational cost. It is unclear whether this indicates that the other two scores
have already found an optimal ¢ or if the evidence score cannot find a better
one. For the experiments in this thesis, we relied on the Nelder—-Mead method,
which does not use gradient information, to find the optimal parameters for
q according to the evidence score. It is unclear if this relatively uninformed
optimization method might have negatively affected the recommendation of
the evidence score. Another potential problem of the evidence score is that we
have to rely on a limited amount of samples from the integrand to asses how
suitable the new integrand is. For performance reasons, we have to recycle the
samples we use for the optimization of the evidence score to fit the GP to the
integrand. We decided to select the samples according to the density p, which
might not necessarily be the best possible approach. The limited amount of
samples also might make it hard for the evidence score to capture the struc-
ture of the integrand. When choosing an optimal ¢, the evidence score only
considers its effect on the sampled points and ignores the global effect on the
integrand. This might also lead to overconfident BQ estimates since we only
optimize the samples we use for fitting the GP.
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The shift and KL divergence scores had very similar performance for all
test integrals. The shift score still depends on the choice of parameters ¢, and
it is unclear if it can be defined independently of . We decided to average
over the shift score evaluated for a set of ds in order to avoid this problem.
This might have negatively affected its performance. However, we can still
conclude that the idea of minimizing the increase in non-stationarity seems to

be a useful concept that generalizes to integrands that are not draws from a
GP.

The experiments we conducted to assess our scores’ usefulness were rel-
atively limited. All test integrands used Gaussian mixture densities for p.
While we know that all scores are compatible with arbitrary densities ps, we
have only evaluated them for Gaussian mixture densities and can not make any
definite statements about their usefulness for other densities. Especially the
KL divergence score and the shift score, which only depend on ¢ and p, should
be tested on other densities p. The proposed scores should also generalize to
multiple dimensional integrals. However, this has not been tested, and it is
unclear whether or how much the recommendations lose their significance for
multi-dimensional integrals. We also limited ourselves to GPs with squared
exponential covariance function, which further weakens the expressiveness of
our experiments. The same can be said about the choice of integrands. While
we specifically chose integrands that cover a wide range of properties, it would
certainly be advisable to expand the number of different integrand families
before making a final recommendation about which scores are useful in which
scenarios. While the metrics we used to evaluate the performance of the BQ
algorithm for the different re-weighted integrals seem to be useful, the results
we got from the uncertainty quantification score are to be taken with cau-
tion since uncertainty quantification in Probabilistic Numerics in itself is a
complicated topic.



Appendix A

Gradients w.r.t parameters of q

A.1 KL divergence score

Since in the experiments all measures p are Gaussian mixture measures, we
can limit ourselves to the derivation of equation [4.9| for the gradient of the KL
divergence w.r.t to the parameters of ¢:
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A.2 Shift score
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with n(z,2’,0) = o) ) independent of ¢ and 4+ (z,2']0) the signed score.
Let # be the parameters of ¢ and 6, be the ath element of #. Then the ath
element of the gradient of the score w.r.t. 6 is
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The last term is
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Combining Eq. with Eq. the gradient is (adding dependency on 6 into
notation at this point which is a bit sloppy and should have been done prior
to deriving the formulas)
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Appendix B

Derivation of Uncertainty
Calibration Score

. p(F P’D)
sug(F)=E (1og p(FGP|GD — F))

=E (logp(Fgp | D) —logp(Fgp | D = F))
= E (logp(Fgp | D)) —logp(Fap | D = F)

We will now have a look at the individual terms. Recall that
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and hence its logarithm is
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Its expecation is
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We now consider the second term of the last line if Eq[B.I] which is simply the
density evaluate at the true value F', hence
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We now plug Egs. and into Eq.
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