
Improved Decision Procedures for the Modal

Logics K, T and S4

Jörg Hudelmaier
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Abstract. We propose so called contraction free sequent calculi for the
three prominent modal logics K, T, and S4. Deduction search in these
calculi is shown to provide more efficient decision procedures than those
hitherto known. In particular space requirements for our logics are low-
ered from the previously established bounds of the form n

2, n
3 and n

4

to n log n, n log n, and n
2 log n respectively.

1 Introduction

Modal logics are extensions of classical propositional logic by the necessity oper-
ator 2 . Different properties of necessity give rise to various such logics. Here we
consider three logics K, T, and S4. For all these logics basic properties required
of the necessity operator are validity of the so called necessitation rule

(N)
a

2a

and of the axiom (K) 2(a → b) → (2a → 2b). For the logic T we need in
addition to (N) and (K) the axiom (T) 2a → a and for S4 we need besides
(N), (K), and (T) the axiom (4) 2a → 22a. Semantics for all these logics
are based on so called Kripke models, i.e. sets of possible worlds with binary
accessibility relations on them. Validity of a formula is then defined as validity
in all suitable Kripke models, where suitability of a model for a given logic is
described in terms of properties of the accessibilty relation. So for the logic K
any Kripke model is suitable, whereas for T only Kripke models with reflexive
accessibilty are suitable and for S4 only models with reflexive and transitive
accessibility are suitable. Validity of a formula in a given Kripke model m is
defined recursively over the structure of the formula, where the Boolean cases
coincide with the definition of classical validity and a formula 2a is valid in m,
iff it is valid in all worlds accessible from m.
It has been shown that validity of formulas for any of these three logics is
PSPACE complete, even for their Horn fragments [4] and for formulas with
only one propositional variable [6]. In particular Ladner in the 1970s has given
decision procedures using Kripke models for the modal logics K, T, and S4 of
space complexity respectively n2, n3 and n4 [1]. Now instead of Kripke models
most systems designed for actual theorem proving in modal logic (cf. [5], [8])



use so called sequent calculi [3]. These calculi are, however, built on formalized
search for counter examples in Kripke models. Thus they can not provide smaller
space bounds. Moreover building theorem provers for such calculi is made dif-
ficult by the fact that depth first search is not guaranteed to terminate. Thus
more sophisticated search procedures have to be applied, e.g. procedures using
loop checking. In contrast to this it has recently been shown that for intuition-
istic propositional logic so called contraction free sequent calculi, i.e. calculi for
which there is a measure such that for each rule of the calculus the measure of
all its premisses is smaller than the measure of its conclusion, yield more effi-
cient decision procedures [2]. Thus it was natural to try to extend this approach
to modal logic. However it turned out that contraction free calculi could not
be obtained directly from these calculi; most notably for the logics T and S4 a
new connective had to be added to the language, in order to be able to define a
suitable measure function for the contraction free calculus.

2 Basic Clausal Calculi

As our basic language we consider arbitrary modal formulas built up from propo-
sitional variables by means of the connectives ¬, ∨ and 2 and modal clauses,
i.e. formulas of the form 2 . . . 2(a1 ∨ . . . ∨ al) (1 ≤ l ≤ 3) or 2 . . . 2(a1 ∨ 2b)
or 2 . . . 2(a1 ∨ ¬2b), where the ai are propositional variables or negations of
propositional variables and b is a propositional variable. These clauses we write
in the form 2

s[c1, . . . , cn]. Ordinary sequents are pairs of multisets of arbitrary
formulas and clausal sequents are multisets of modal clauses.

We start from an often used family of sequent calculi F0(K), F0(T) and F0(4) for
deducing ordinary sequents. All these calculi have axioms of the form M,v ⇒
v,N , where v is a propositional variable and Boolean rules

(EB¬0)
M ⇒ N, v

M,¬v ⇒ N
(IB¬0)

M,v ⇒ N

M ⇒ N,¬v

(EB∨0)
M,u ⇒ N M, v ⇒ N

M,u ∨ v ⇒ N
(IB∨0)

M ⇒ N,u, v

M ⇒ N,u ∨ v

Moreover F0(K) has the modal rule

(IK20)
M ⇒ v

L,2M ⇒ N,2v

F0(T) has the rule IK20 and the rule

(ET20)
M,2v, v ⇒ N

M,2v ⇒ N



and F0(4) has the rule ET20 and the rule

(I420)
2M ⇒ v

L,2M ⇒ N,2v

It is well known that F0(K) formalizes the modal logic K, F0(T) formalizes T
and F0(4) formalizes S4 (cf. [3]). Thus in particular for every one of these calculi
all the structural rules are admissible, i.e. if a sequent M ⇒ N is deducible,
then so are the sequents v,M ⇒ N and M ⇒ N, v (weakening), if a sequent
M,v, v ⇒ N resp. M ⇒ N, v, v is deducible, then so is the sequent M,v ⇒ N

resp. M ⇒ N, v (contraction), and if two sequents M,v ⇒ N and M,¬v ⇒ N

are deducible, then so is M ⇒ N (cut).
We call two sequents s and t equideducible for one of our calculi iff deducibility
of s in this calculus implies deducibility of t and vice versa. Then the calculi F0

allow reduction of sequents to clausal form according to the

Lemma1. Let p be a propositional variable which only occurs at the indicated
positions. Then the following holds:

a) These pairs of sequents are equideducible for all calculi F0:

M ⇒ a,N and M,¬a ⇒ N

M,2s[A, a ∨ b] ⇒ N and M,2s[A, a, b] ⇒ N

M,2s[A,¬¬a] ⇒ N and M,2s[A, a] ⇒ N

M,2s[A,¬(a ∨ b)] ⇒ N and M,2s[A,¬p],2s[p,¬a],2s[p,¬b] ⇒ N

M,2s[A,¬2a] ⇒ N and M,2s[A,¬2p],2s+1[p,¬a] ⇒ N

M,2s[A,2a] ⇒ N and M,2s[A,2p],2s+1[¬p, a] ⇒ N

M,2s[A,B] ⇒ N and M,2s[A, p],2s[¬p,B] ⇒ N

b) The sequents M,a ⇒ N and M,p,2[¬p,¬a] ⇒ N are equideducible for F0(T)
and F0(4).
c) The sequents M,22a ⇒ N and M,2a ⇒ N are equideducible for F0(4). ⊓⊔

This lemma is well known (cf. [7]) and using it we may reduce any sequent u to
a sequent CFK(u) of the form c1, . . . , cn ⇒, such that u and CFK(u) are equid-
educible for F0(K) and such that the ci are formulas of the form 2

s[a1, . . . , al],
0 ≤ s, 1 ≤ l ≤ 3 or 2

s[a1, b], where the ai are propositional variables or negated
propositional variables and b is a formula of the form 2a or ¬2a, where a is a
propositional variable. Moreover we may reduce u to a sequent CFT(u) of the
form c1, . . . , cn ⇒ such that u and CFT(u) are equideducible for F0(T) and such
that the ci are either propositional variables or formulas of the form 2

s[a1, . . . , al]
or 2

s[a1, b], 1 ≤ s, 1 ≤ l ≤ 3 . Finally we may reduce u to a sequent CF4(u)
such that u and CF4(u) are equideducible for F0(4) and such that the ci are
either propositional variables or formulas of the form 2[a1, . . . , al], 1 ≤ l ≤ 3 or

2[a1, b]. In all three cases the number of connectives of the sequents CF(u) is
linearly bounded by the length of u.



The Boolean rules of the calculi F0 are clearly invertible in the sense that any
deduction of a conclusion of such a rule may be converted into a deduction of
its premiss(es) of smaller or equal length. Therefore the following family F1 of
calculi is complete for deriving clausal sequents:

Axioms of all calculi F1 are the sequents of the form M,a,¬a ⇒. In addition
F1(K) has the rule

(EK∨1)
M,v1 ⇒ . . . M, vn ⇒

M, [v1, . . . , vn] ⇒

and the rule

(IK21)
M,¬v ⇒

L,2M,¬2v ⇒

F1(T) has this latter rule and the rules

(ET21)
M,22v,2v ⇒

M,22v ⇒

and

(E421)
M,2[v1, . . . , vn], v1 ⇒ . . . M,2[v1, . . . , vn], vn ⇒

M,2[v1, . . . , vn] ⇒

Finally F1(4) has the rule E421 and the rule

(I421)
2M,¬v ⇒

L,2M,¬2v ⇒

Now we consider a further calculus F2(T) which instead of the two rules ET21

and E421 of F1(T) has only a single rule

(ET22)
M,2s[v1, . . . , vn], v1 ⇒ . . . M,2s[v1, . . . , vn], vn ⇒

M,2s[v1, . . . , vn] ⇒

The rule E421 is just a special case of this rule. Thus in order to show that F1(T)
and F2(T) are equivalent, it suffices to show that the rule ET21 is admissible,
i.e.



Lemma2. If a sequent M,2s+1v,2sv ⇒ is deducible by F2(T), then so is
M,2s+1v ⇒.

Proof. If s is 0, then this is rule ET22. Otherwise suppose our sequent is an
axiom M,2s+1v,2sv,¬2

s+1v ⇒. Then M,2s+1v,¬2
s+1v ⇒ is also an axiom.

If it is an axiom of the form M,2s+1v,2sv,¬2
sv ⇒ , then we obtain the required

sequent from the axiom v,¬v ⇒ by one application of ET22 leading to 2v,¬v ⇒
and s consecutive applications of IK21 leading to 2

s+1v,¬2v ⇒ and finally
using admissibility of weakening to introduce M .
If our sequent is neither an axiom nor the conclusion of an IK21- inference nor
the conclusion of an ET22-inference with prinicipal formula 2

s+1v or 2
sv, then

these two formulas are present in every premiss and by the induction hypoth-
esis the latter formula may be dropped. Applying the same inference on the
transformed premisses therefore results in a deduction of the required sequent.
If our sequent is of the form L,2M,2s+1v,2sv,¬2w ⇒ and it is the conclu-
sion of an IK21-inference, then its premiss is of the form M,2sv,2s−1v, w ⇒,
where s − 1 ≥ 0. Thus by the induction hypothesis the sequent M,2sv, w ⇒
is deducible and by an application of IK21 we obtain the required sequent. If
M,2s+1v,2sv ⇒ is the conclusion of an application of ET22 with principal
formula 2

s+1v or 2
sv, then its premisses are of the form M,2s+1v,2sv, ai ⇒

and by the induction hypothesis we may deduce the sequents M,2s+1v, ai ⇒ .
From these we obtain the sequent M,2s+1v ⇒ by an application of ET22. ⊓⊔

The rule EK∨1 of F1(K) is also just a special case of ET22. Therefore it suffices
to show parts b) and c) of the

Lemma3. a) There is a transformation converting every F1(K)-deduction of a
given sequent into another deduction of the same sequent such that in the new
deduction every premiss M,¬2b ⇒ of an EK∨1-inference with principal formula
[a,¬2b] is the conclusion of an IK21-inference with principal formula 2b.
b) There is a transformation converting every F2(T)-deduction of a given sequent
into another deduction of the same sequent such that in the new deduction every
premiss M,2[a,¬2b],¬2b ⇒ of an ET22- inference is the conclusion of an
IK21- inference with principal formula 2b.
c) There is a transformation converting every F1(4)-deduction of a given sequent
into another deduction of the same sequent such that in the new deduction every
premiss M,2[a,¬2b],¬2b ⇒ of an E421- inference is the conclusion of an I421-
inference with principal formula 2b.

Proof. b) For every such premiss P of ET22 we consider the number n(P ) which
is the maximal number of sequents preceding P in which 2b appears and for a
given deduction d we let n(d) be the sum of all 4n(P )−1 for all such premisses P

in d. If this number is 0, then all these premisses are conclusions of an application
of IK21. But if the principal formula of such an IK21-inference I is different
from 2b, then we may drop the ET22-inference and derive its conclusion directly



from the premiss of I by means of IK21. Thus we arrive at a deduction having
the required property.
If n(d) is greater than 0, then we consider a maximal application of ET22 with
a premiss of this form which is not the conclusion of an IK21- inference, w.l.o.g.
a situation of the form

M,2s−1[a,¬2b],2t−1[c,¬2d], e ⇒
IK21

K,¬2b, c ⇒ K,¬2b,¬2d ⇒
ET22

K, a ⇒ K,¬2b ⇒

K ⇒
ET22

where K abbreviates L,2M,2s[a,¬2b],2t[c,¬2d]. If e equals d, then we replace
this by

ET22
K, c, a ⇒ K, c,¬2b ⇒

K, c ⇒

M,2s−1[a,¬2b],2t−1[c,¬2d], d ⇒

K,¬2d ⇒
IK21

K ⇒
ET22

Here the deduction of the sequent K, c, a ⇒ is obtained from the deduction of
K, a ⇒ by weakening (which obviously does not increase n(d)). Thus one premiss
P of measure n(P ) is replaced by atmost 3 new premisses each of measure atmost
n(P ) − 1 and therefore the measure n of the new deduction has decreased.
If e is different from d, then ¬2e is in K and we may replace this series of
inferences by a single IK21-inference with principal formula ¬2e.
c) is proved in the same way, just dropping the superscripts from the 2 and
placing a 2 in front of the M at appropriate places. ⊓⊔

This result implies that the family C0 of calculi is complete for clausal sequents
where all the calculi C0 have the usual axioms and moreover C0(K) has the only
rule

(CK20)
L,2M,a1 ⇒ . . . L,2M,am ⇒ M,¬b ⇒

L,2M,v ⇒

C0(T) has the only rule

(CT20)
L,2M,2sv, a1 ⇒ . . . L,2M,2sv, am ⇒ M,2s−1v,¬b ⇒

L,2M,2sv ⇒

and C0(4) has the rule

(C420)
L,2M,2v, a1 ⇒ . . . L,2M,2v, am ⇒ 2M,2v,¬b ⇒

L,2M,2v ⇒



where in all rules the rightmost premiss is only present, when v is of the form
[a1,¬2b]. Note that in the C0-calculi any deduction of a clausal sequent consists
entirely of clausal sequents.

Now for the rule CK20 all premisses have less connectives than the conclusion.
Therefore the length of every C0(K)-deduction of a given sequent is bounded by
the number of connectives of its endsequent.

3 Extended Clausal Calculi

For C0(T), however, the premisses of CT20 of the form L,2M,2sv, ai ⇒ in
general have more connectives than the conclusion. Therefore we extend our
language by a new connective © and we consider the calculus C1(T) consisting
of the usual axioms, additional axioms of the form M,©a,¬a ⇒ and the rule
(CT21):

K,©L,2M,©su, a1 ⇒
· · · K,©L,2M,©sv, a1 ⇒ K,©L,2M,©sw, a1 ⇒

(CT21)
K,©L,2M,©su, al ⇒

K,©L,2M,2su ⇒

K,©L,2M,©sv,©b ⇒

K,©L,2M,2sv ⇒

L,M,2s−1w,¬c ⇒

K,©L,2M,2sw ⇒

where u = [a1, . . . , al], v = [a1,2b], and w = [a1,¬2c] and ©sv stands for
©2

s−1v.
For C1(T) we call the premisses of the form K,©L,2M,2sv, ai ⇒ α-premisses,
those of the form K,©L,2M,©sv,©b ⇒ β-premisses and those of the form
L,M,2s−1v,¬c ⇒ γ-premisses.

Lemma4. a) If L,©M ⇒ is deducible by C1(T), then L,2M ⇒ is deducible
by C0(T).
b) If M,v, v ⇒ is deducible by C1(T), where v is either a propositional variable
or v = ©w or v = ¬w and w is a propositional variable, then M,v ⇒ is deducible
by C1(T).
c) Weakening is an admissible rule for C1(T).

Proof. a) If our sequent is an axiom M,©a,¬a ⇒ , then M,2a,¬a ⇒ is de-
ducible by C0(T). If it is the conclusion of a CT21-inference, then the α- and
β- premisses contain ©sv which by the induction hypothesis may be changed
to 2v, whereas the γ-premiss contains 2

s−1v. Hence all premisses necessary for
an inference leading to M,2v ⇒ are deducible and therefore this sequent is
deducible, too.
b) For axioms this is obvious. But if our sequent M,v, v ⇒ is the conclusion of
a CT21- inference, then v cannot be its principal formula, so in the α- and β-
premisses both v’s are present and in the γ- premiss either both or none of them
is present. Thus by the induction hypothesis all these double occurrences may
be contracted in the premisses and by the same CT21-inference the required
sequent M,v ⇒ is deducible.
c) is trivial. ⊓⊔



This implies:

Lemma 5. a) If M,v ⇒ is deducible, where v is a propositional variable, then
so is M,©v ⇒.
b) M,2v ⇒ , where v is a propositional variable is deducible iff M,©v ⇒ is.
c) If M,2s[A, v], v ⇒ is deducible, then so is M,©s[A, v], v ⇒ .

Proof. a) For axioms this is obvious. If M,v ⇒ is the conclusion of a CT21-
inference, then in the α- and β-premisses v occurs and by the induction hypoth-
esis it may be replaced by ©v, but in the γ-premiss v disappears and may be
reintroduced by weakening. Thus all premisses of a CT21-inference leading to
M,©v ⇒ are deducible and so is this latter sequent.
b) If M,2v ⇒ is an axiom or the conclusion of an inference with principal
formula different from 2v, then this is obvious. Otherwise the only premiss of the
final CT21-inference is M,©v, v ⇒. By a) this may be changed to M,©v,©v ⇒
and from this by part b) of the preceding lemma we obtain M,©v ⇒.
c) Case 1: v is a propositional variable or of the form ¬w, where w is a proposi-
tional variable:
If 2

s[A, v] is the principal formula of the final inference of the given deduction,
then one of its premisses is M,©s[A, v], v, v ⇒ and from this sequent we obtain
M,©s[A, v], v ⇒ by an application of the preceding lemma. If M,2s[A, v], v ⇒
is the conclusion of an application of CT21 with principal formula different
from 2

s[A, v], then in the α- and β-premisses both 2
s[A, v] and v occur, whence

2
s[A, v] may be changed to ©s[A, v] by the induction hypothesis and in the

γ-premiss only 2
s−1[A, v] occurs. Thus all the premisses for an application of

CT21 leading to M,©s[A, v], v ⇒ are deducible.
Case 2: v is of the form 2w, where w is a propositional variable:
If 2

s[A, v] is the principal formula of the final inference of the given deduction,
then one of its premisses is M,©s[A, v],©w,2w ⇒ and from this sequent by
b) we obtain M,©s[A, v],©w,©w ⇒ and by the preceding lemma we obtain
M,©s[A, v],©w ⇒ and again by b) M,©s[A, v], v ⇒ . If 2

s[A, v] is not the
principal formula of the last inference, then as in case 1 the induction hypothesis
applies. ⊓⊔

This immediately implies:

Lemma 6. The rule CT20 is admissible for C1(T). ⊓⊔

Thus C0(T) and C1(T) coincide on sequents without ©. Now for C1(T) the
parameter

d(s) := the number of connectives of a sequent s plus twice the number
of 2 of s

decreases under backwards application of the rule CT21. Thus every deduction
of a sequent s has length at most d(s).



For C0(4) we also use the connective ©, and we start from the calculus C1(4)
which has the usual axioms and a rule

(C421)
K,©L,2M,2v, a1 ⇒ . . . K,©L,2M,2v, am ⇒ ©L,2M,2v,¬b ⇒

K,©L,2M,2v ⇒

Thus C421 results from C420 by simply adding parameters ©L in premisses
and conclusion. Therefore the following holds trivially:

Lemma7. M ⇒ is deducible by C0(4) iff ©L,M ⇒ is deducible by C1(4). ⊓⊔

Thus the cut rule in the form

(Cut)
M,v ⇒ M,¬v ⇒

M ⇒

is admissible for C1(4), where ¬v is an abbreviation for the set of clauses resulting
from the negation of v.

Next we consider the calculus C2(4) with the usual axioms and two rules

K,©L,2M,©u, a1 ⇒
· · · K,©L,2M,©v, a1 ⇒

(C422σ)
K,©L,2M,©u, al ⇒

K,©L,2M,2u ⇒

K,©L,2M,2b ⇒

K,©L,2M,2v ⇒

where u and v are shallow formulas, i.e. either the form [a1, . . . , al] or of the form
[a1,2b], and

(C422δ)
K,2L,2M,2a1, a1 ⇒ 2L,2M,2v,¬b ⇒

K,©L,2M,2v ⇒

where v is a deep formula, i.e. of the form [a1,¬2b]. We call the two types
of premisses of the C422σ-rule ασ- and β-premisses respectively and the two
premisses of the C422δ -rule we call αδ- and γ-premisses. The following lemma
shows that the rule C421 is admissible for C2(4):



Lemma 8. a) If M,v, v ⇒ is deducible by C2(4), where v is a propositional
variable or v is of the form ¬w or ©w, where w is a propositional variable, then
M,v ⇒ is deducible, too.
b) If M,2v, ai ⇒ is deducible, where v is shallow, then so is M,©v, ai ⇒.
c) If M,2[A, v] ⇒ or M,©[A, v] ⇒ is deducible, then so is M,2A ⇒.
d) If M,2v,2v⇒ is deducible, where v is a propositional variable, then M,2v ⇒
is deducible, too.
e) If M,2[A,2v] ⇒ is deducible, then so is M,2v ⇒ .

Proof. a) is trivial. b) If M,2v, ai ⇒ is an axiom, then so is M,©v, ai ⇒. If
it is the conclusion of an inference with principal formula 2v, then one of the
premisses is M,©v, ai, ai ⇒. From this we obtain the required sequent by a). If
it is the conclusion of a C422σ-inference with principal formula different from

2v, then both 2v and ai occur in all premisses and 2v may thus be changed
to ©v by the induction hypothesis. If it is the conclusion of a C422δ-inference,
then the αδ- and γ- premisses leading to a conclusion with ©v are the same as
those for 2v. Therefore in this case, too, M,©v, ai ⇒ may be derived.
c) If M,2[A, v] ⇒ or M,©[A, v] ⇒ is an axiom, then so is M,2A ⇒ . If it is
the conclusion of a C422σ-inference with principal formula 2[A, v], then by the
induction hypothesis ©[A, v] in the ασ- and β-premisses may be changed to ©A

and with these new premisses the given inference yields a deduction of M,2A ⇒.
If it is the conclusion of a C422δ-inference with principal formula 2[A, v], then
either A is a propositional variable or a negated propositional variable and v is
of the form ¬2b with b a propositional variable or vice versa. In the first case the
formula 2A is shallow and by b) we may change the αδ-premiss of this inference
to M,©A,A ⇒ and from this sequent by an application of C422σ we arrive at
the desired sequent M,2A ⇒ . In the second case the formula 2[A, v] occurs
in the γ-premiss and by the induction hypothesis may be changed to 2A and
from this new γ-premiss by an application of C422δ we arrive at the desired
sequent. Finally if our sequent is the conclusion of an inference with principal
formula different from 2[A, v], then this formula occurs in every premiss and by
the induction hypothesis it may be replaced by 2A.
d) If M,2v,2v ⇒ is not the conclusion of an inference with principal formula 2v,
then this is trivial. Otherwise this sequent has a single premiss M,©v, v,2v⇒ .
Thus by b) we obtain from this the sequent M,©v, v,©v ⇒ and by a) we obtain
M,©v, v ⇒ . From this we obtain M,2v ⇒ by an application of C422σ.
e) If M,2[A,2v] ⇒ is not the conclusion of an inference with principal formula

2[A, v], then by the induction hypothesis this formula may be changed to 2v in
all premisses. Otherwise the required sequent is the β-premiss. ⊓⊔

From this follows:

Lemma 9. The rule C421 is admissible for C2(4).

Proof. For suppose we are given sequents . . . M,2v, ai ⇒, . . . , M,2v,2b ⇒,
where v is shallow, then by b), e) and d) of the preceding lemma we obtain the



sequents . . . M,©v, ai ⇒ . . . , M,2b ⇒, i.e. the premisses of an application
of C422σ leading to the sequent M,2v ⇒.
If we have sequents . . . L,2M,2v, ai ⇒, . . . , L,2M,2v,¬b ⇒ , where v is
deep, then by c), e), and d) of the preceding lemma we obtain . . . L,2M,2ai, ai

⇒, . . . , 2M,2v,¬b ⇒ and from these by an application of C422δ we obtain
L,2M,2v ⇒. ⊓⊔

On the other hand the rules C422 are also admissible for C1(4). This is seen
by successive cuts with some C1(4)-deducible sequent. For the C422σ-rule this
is obvious and for the C422δ-rule we cut the first premiss and the sequent

2L,2M,2v,¬2b ⇒ obtained from the second premiss by an application of
C421 with the C1(4)- deducible sequent

2[a,¬2b],¬(2a ∧ a),¬(2[a,¬2b] ∧ ¬2b) ⇒

and obtain the required conclusion. Thus the calculi C1(4) and C2(4) are equiv-
alent.

Now we call a formula 2v distant in a C2(4)-deduction d iff below any conclusion
of an inference with principal formula 2v there is an αδ-, β- or γ-premiss. Using
this definition one observes

Lemma10. If there is a C2(4)-deduction of a sequent M,2v ⇒ in which 2v is
distant, then the sequent M,©v ⇒ is deducible by C2(4).

Proof. Since 2v has to be distant, this sequent can neither be an axiom nor the
conclusion of an inference with principal formula 2v. So if the last inference of
this deduction is by an application of C422σ, then 2v is distant in all deductions
of the ασ-premisses and by the induction hypothesis it may be changed to ©v.
From the transformed ασ-premisses together with the β-premiss we therefore
obtain the sequent M,©v ⇒ . But if the last inference is by an application of
C422δ, then the premisses of M,©v ⇒ are the same as those of M,2v ⇒. ⊓⊔

Lemma11. There is a transformation sending every deduction of a sequent into
another deduction of the same sequent such that in the new deduction for every
deep formula 2v and every ασ-premiss M,2v ⇒ the formula 2v is distant in
the deduction of M,2v ⇒.

Proof. To every ασ-premiss P in a deduction d we assign a number n(P ), i.e.
the maximal number of conclusions of C422δ on a branch of d ending in P which
only contains ασ- and γ-premisses. Then we let n(d) be the sum of all 4n(P ) − 1
for all such premisses P in d.
If this number is 0, then all the n(P ) are 0 and for every ασ-premiss Q of the
form M,2v ⇒ and every path ending in Q which contains the conclusion R of a
C422δ- inference with principal formula 2v, there is some sequent S between Q

and R which is neither an ασ-premiss nor a γ-premiss. Therefore 2v is distant
in the deduction of M,2v ⇒.



If this number is greater than 0, then w.l.o.g. there is in d some maximal pair of
inferences of the form

L,2M,2v, a,2c, c ⇒ 2M,2v,2w,¬d ⇒

L,2M,©v, a,2w ⇒ L,2M,2b,2w ⇒

L,2M,2v,2w ⇒

where v = [a,2b] and w = [c,¬2d]. We may change this pair of inferences to

L,2M,©v, a,2c, c ⇒ L,2M,2b,2c, c ⇒

L,2M,2v,2c, c ⇒ 2M,2v,2w,¬d ⇒

L,2M,2v,2w ⇒

where the deduction of the sequent L,2M,©v, a,2c, c ⇒ results from the deduc-
tion of L,2M,2v, a,2c, c ⇒ by lemma 8 and the deduction of L,2M,2b,2c, c ⇒
results from the deduction of L,2M,2b,2w ⇒ by the same lemma and by
weakening. Thus one ασ-premiss P of measure n(P ) is replaced by atmost 3
new ασ-premisses each of measure at most n(P )−1 and therefore the induction
parameter has decreased. ⊓⊔

The preceding two lemmas show that the following calculus C3(4) is complete
which consists of the usual axioms, the rule C423δ = C422δ and the rule

J,©K,©L,2M,©u, a1 ⇒
· · · J,©K,©L,2M,©v, a1 ⇒

(C423σ)
J,©K,©L,2M,©u, al ⇒

J,©K,2L,2M,2u ⇒

J,2K,2L,2M,2b ⇒

J,©K,2L,2M,2v ⇒

where u is [a1, . . . , al] and v is [a1,2b] and all formulas of L are deep.

Now we observe:

Lemma 12. In a C3(4)-deduction d of a sequent without © any subdeduction of
d ending in a C423δ-inference has an endsequent without ©. ⊓⊔

This means that the calculus C4(4) is complete which has the usual axioms, the
rule C424σ = C423σ and the rule

(C424δ)
K,2L,2M,2a, a ⇒ ©L,2M,2v,¬b ⇒

K,©L,2M,2v ⇒

where v is [a,¬2b]. (Note that the sequence L is always empty!)

Now we call a formula 2v distant in a C4(4)-deduction d iff below any inference
with principal formula 2v in d there is an αδ-, ασ-, or β-premiss. Then from
lemma 10 follows



Lemma13. If there is a C4(4)-deduction of a sequent M,2v ⇒, where v is deep
and 2v is distant, then the sequent M,©v ⇒ is deducible by C4(4). ⊓⊔

From this follows:

Lemma14. A sequent 2M,2[a,¬2b],¬b ⇒ is deducible by C4(4) iff the sequent

2M,©[a,¬2b],¬b ⇒ is.

Proof. This is proved by induction on the maximal number of successive γ-
premisses preceding 2M,2[a,¬2b],¬b ⇒ . If it is 0, then our sequent is either
an axiom or it is the conclusion of an application of C424σ. The first case
is trivial, and in the second case the α-premisses already have ©[a,¬2b] and
the β- premiss is the same for both 2[a,¬2b] and ©[a,¬2b]. Thus the same
inference applied to the transformed premisses yields the required deduction. If
this number is greater than 0, then we distinguish cases according to whether
one of these successive C424δ- inferences has principal formula 2[a,¬2b] or not.
In the latter case 2[a,¬2b] is distant, and we may replace it by ©[a,¬2b]. In the
former case the induction hypothesis applies to the γ-premisses of this inference,
and by repeating the following inferences with the transformed formula we obtain
the required deduction of 2M,©[a,¬2b],¬b ⇒. ⊓⊔

This finally shows that the calculus C5(4) is complete which consists of the usual
axioms, the rule C425σ = C424σ and the rule

(C425δ)
K,2L,2M,2a, a ⇒ ©L,2M,©v,¬b ⇒

K,©L,2M,2v ⇒

Now for C5(4) we observe that for the measure

d(s) =(the total number of connectives of the sequent s times (the num-
ber of 2 plus the number of ©)) minus the number of ©

and for both rules the measure of the conclusions is greater than the measure
of all premisses. Therefore every deduction of a given sequent is bounded in
length by some quadratically growing function of the number of connectives of
its endsequent.

4 Space Bounds for the Calculi

In order to obtain space bounds for the decision procedures resulting from back-
wards application of the rules of our calculi C0(K), C1(T), and C5(4) we consider
the set of subclauses sc(s) of a given sequent s:
For the logic K we let sc(2sv) be {v, a1, . . . , am,¬b1}, where v is [a1, . . . , am,¬2b]
and for T we let sc(2sv) be {v, a1, . . . , al, b,¬c}, where v is [a1, . . . , al,2b,¬2c]
and for S4 we let sc(2v) be {v, [a1, . . . , al,2b], a1, . . . , al, b,¬c} for the same v.
Then it is obvious that in any deduction of a given sequent s all the occurring



formulas are of the form 2
sv or ©sv, where v is a subclause of one of the formulas

of s. Therefore we may denote any sequent in such a deduction by a string of
numbers shorter than twice the greatest exponent in s which has one entry for
every subclause of s: If the entry corresponding to a certain subclause v is 0, then
this subclause does not occur in the respective sequent; if it is 2(n+1), then the
formula 2

nv occurs, and if it is 2(n+1)+1, then the formula ©nv occurs. Thus
given any string of this form which denotes a premiss of one of our inferences
together with the principal formula of this inference we may obtain both its
conclusion and the next premiss. Therefore we need not store whole branches
of our deductions but only one sequent string at a time together with a list of
the principal formulas on the current branch. Since the number of subclauses
of a sequent s is linear in the number of connectives of s we need space n log n

to store this one sequent string. Moreover to store the list of principal formulas
we need space log n times the maximal length of a deduction of s. Thus for K
and T we arrive at a decision procedure which requires space n log n and for S4
we need space n2 log n, where n is the number of connectives of the endsequent
which is in clausal form. But in reducing any given sequent to clausal form we
add linearly many connectives; therefore we arrive at the

Theorem 15. Provability in the modal logics K and T is in the complexity class
SPACE(n log n) and provability in the modal logic S4 is in SPACE(n2 log n).

5 Conclusion

We have presented so called contraction free sequent calculi for the three promi-
nent PSPACE complete modal logics K, T, and S4. Using these calculi we have
demonstrated how to define decision procedures for these logics which both ad-
mit simpler implementation, relying entirely on depth first search, and require
less space than conventional decision procedures. Thus we could lower space
bounds for the logic K from the previously known bound of n2 to log n and for
the logic T from n3 to n log n and for S4 from n4 to n2 log n.
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