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FREGE’S PERMUTATION ARGUMENT REVISITED�

1. INTRODUCTION

In Section 10 of Grundgesetze, Volume I, Frege advances a mathematical
argument (known as the permutation argument), by means of which he
intends to show that an arbitrary value-range may be identified with the
True, and any other one with the False, without contradicting any stipu-
lations previously introduced (we shall call this claim the identifiability
thesis, following Schroeder-Heister (1987)). As far as we are aware, there
is no consensus in the literature as to (i) the proper interpretation of the
permutation argument and the identifiability thesis, (ii) the validity of the
permutation argument, and (iii) the truth of the identifiability thesis.1 In
this paper, we undertake a detailed technical study of the two main lines
of interpretation, and gather some evidence for favoring one interpretation
over the other.

2. GRUNDGESETZE I, SECTIONS 1 THROUGH 9

To give the reader some background to the problem discussed in Section
10, we briefly review what is going on in the preceding sections.

In Sections 1, 2, and 4 we find some general and condensed explana-
tions of the notions of (unary and binary) function, function-name, object,
and proper name. Section 3 is a very short introduction of the notions of
value-range and concept-extension. The explanation Frege (1893, 7) offers
for value-ranges is the following:

I use the words ‘the function �(ξ) has the same value-range as the function �(ξ)’ gen-
erally as meaning the same [gleichbedeutend] as the words ‘the functions �(ξ) and �(ξ)
always assume the same value for the same argument’.2

In Section 5 Frege introduces, besides the assertion sign that will not con-
cern us here, a function −ξ mapping the True to the True and everything
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else to the False, i.e., the characteristic function of the True, as it were.
Section 6 is devoted to the negation function ¬ξ , mapping the True to the
False and everything else to the True.3 Identity is introduced in Section
7 as a binary function ξ = ζ , i.e., as the characteristic function of the
identity relation (as we would say today). The first-order universal (and,
derivatively, existential) quantifier makes its first appearance in Section 8.
Frege’s official explanation is the following (1893, 12):

(. . . ) let ‘∀x�(x)’ denote the True, if the value of the function �(ξ) is the True for every
argument, and otherwise, the False.4

The value-ranges, already briefly introduced in Section 3, are the subject
of Section 9. Frege opens his discussion of them by reiterating (1893, 14):

If ∀x(�(x) = �(x)) is the True, then we may also say, according to our earlier stipulation
(§3), that the function �(ξ) has the same value-range as the function �(ξ); that is: we may
transform the generality of an equality into an equality of value-ranges, and vice versa.5

Following Heck (1999), we shall call this Frege’s Initial Stipulation. There
is, however, also another explanation that resembles that given for the
quantifier (Frege 1893, 15):

(. . . ) let ‘x̂�(x)’ denote the value-range of the function �(ξ)6

and as in the quantifier case, this is immediately supplemented with
conventions regarding the scope of the value-range operator x̂ .

3. LATER DEVELOPMENTS

It is interesting to note which notions Frege has not yet introduced when he
comes to Section 10. These are, most importantly, the definite description
operator (Section 11), the conditional function (Section 12), and second-
order quantification (Sections 20 and 24). Neither has Frege mentioned any
of his Basic Laws yet; in particular, Basic Law V has not been enunciated:

(x̂ f(x) = ŷg(y)) = (∀z)(f(z) = g(z)),

where the free first-order function variables are understood to be bound by
initial second-order universal quantifiers. This law occurs for the first time
in Section 20, although, of course, the Initial Stipulation is just an informal
version of it. For future use, we note that Frege, in Section 52, splits his
Basic Law V up into

(Va) (∀z)(f(z) = g(z)) → (F(x̂ f(x)) = F(ŷg(y)))7
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and

(Vb) (x̂ f(x) = ŷg(y)) → (f(z) = g(z)),

which, by Frege’s rules for ‘free’ variables, is the same as

(x̂ f(x) = ŷg(y)) → (∀z)(f(z) = g(z)).

4. THE CRUCIAL PASSAGES IN SECTION 10

For the reader’s convenience, we provide translations of the two passages
in Section 10 containing the permutation argument and the identifiability
thesis.8 Note that the first passage, designated ‘A’ here, contains a general
version of the argument, which is then applied in the second passage (‘B’)
to arrive at the identifiability thesis.

[A] Let us suppose that X (ξ) is a function that never receives the same value for distinct
arguments; then the same criterion of recognition holds for objects whose names have the
form ‘X (x̂�(x))’ as for those objects whose signs have the form ‘x̂�(x)’. For in that case,
‘X (x̂�(x)) = X (ŷ�(y))’ then also means the same as ‘(∀z)(�(z) = �(z))’ [footnote:
This is not to say that the sense is the same.]. Hence, the denotation of a name like ‘x̂�(x)’
is by no means completely determined by equating the denotation of ‘x̂�(x) = ŷ�(y)’
with that of ‘(∀z)(�(z) = �(z))’, at least if there is such a function X (ξ) whose value for
a value-range as argument is not always equal to that value-range. (Frege 1893, 16)

[B] It is possible to stipulate generally that ‘ã�(a) = b̃�(b)’ should mean the same as
‘(∀z)(�(z) = �(z))’, without it thereby being possible to infer the identity of x̂�(x) and
ã�(a). We would then have, say, a class of objects which would have names of the form
‘ã�(a)’ and for whose differentiation and recognition the same criterion would hold, as for
the value-ranges. We could now determine the function X (ξ) by saying that its value is to
be the True for ã�(a) as argument and to be ã�(a) for the True as argument; further, that
the value of the function X (ξ) is to be the False for the argument b̃M(b) and to be b̃M(b)
for the False as argument; that for every other argument the value of the function �(ξ)
[sic; read: X (ξ)] is to coincide with the argument itself. If now the functions �(ξ) and
M(ξ) do not always have the same value for the same argument, then our function X (ξ)
never has the same value for distinct arguments, and therefore, ‘X (ã�(a)) = X (b̃�(b))’
always means the same as ‘(∀z)(�(z) = �(z))’, too. The objects whose names would
have the form ‘X (ã�(a))’ would therefore then be recognized by the same means as the
value-ranges, and X (ã�(a)) would be the True and X (b̃M(b)) the False. Thus it is always
possible, without contradicting the identification of ‘x̂�(x) = x̂�(x)’ with ‘(∀z)(�(z) =
�(z))’, to stipulate that an arbitrary value-range be the True and an arbitrary other one the
False! (Frege 1893, 17)
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5. THE TWO INTERPRETATIONS

There are, it seems to us, at least two initially reasonable ways of interpret-
ing Frege’s procedure in Section 10. The first reading, which we shall call
the metalogical one, seems to be implicit in Thiel (1976, p. 288), Moore
and Rein (1986, p. 375), Dummett (1991, p. 213), and Heck (1999, pp.
267–270), among others, but was first explicitly formulated and systemat-
ically investigated by Schroeder-Heister (1984, 1987). The following is a
rough summary of that interpretation.

METALOGICAL READING. Prior to Section 10, Frege has introduced
a fragment of a formal language, the begriffsschrift, whose primitive
symbols combine to complex terms in various ways. Frege has in mind,
if only implicitly, a certain notion of interpretation for this fragment
of begriffsschrift. Such an interpretation I, with respect to a domain of
objects U and two designated elements � (the True) and ⊥ (the False) of
U ,9 is, more or less, just a function assigning an object of U to each
value-range name ‘x̂�(x)’ formed from a begriffsschrift term �(x),
where this assignment is subject to the Initial Stipulation, that is, the
condition that ‘x̂�(x)’ receive the same value as ‘ŷ�(y)’ if and only if
the functions determined by �(x) and �(x) are extensionally the same.
The interpretations of the function-names ‘−ξ ’, ‘¬ξ ’, ‘ξ = ζ ’, and of the
quantifier are then determined by Frege’s explanations for these symbols.
The point of passage A is to show that, if we have one such interpretation
I (with respect to U , �, and ⊥), then any 1–1 function X from U into U
gives rise to another such interpretation X ◦ I (again over U , �, ⊥) that
also respects the Initial Stipulation. In passage B, Frege then applies this
general argument to a specific permutation X : Given an interpretation I
and two value-range names ‘x̂�(x)’ and ‘ŷM(y)’ that are assigned distinct
objects by I, we may define X by requiring that it interchange the True
with the value under I of ‘x̂�(x)’ and the False with the value under I of
‘ŷM(y)’, and map every other object in U to itself. The interpretation X ◦I
will then not only, as argued in passage A, satisfy the Initial Stipulation,
but will also assign the True to the value-range name ‘x̂�(x)’ and the
False to the value-range name ‘ŷM(y)’. Whence the identifiability thesis,
as the metalogical interpretation reads it: Without contradicting the Initial
stipulation, we may define any two value-range names, that are assigned
distinct objects under some interpretation, to be names of the True and the
False, respectively (in another interpretation).10
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There is another reading of passages A and B, one that does not invoke
notions like interpretation or assignment of values to value-range names.
We shall call it the mathematical interpretation, as the permutation argu-
ment and the identifiability thesis may, according to it, be stated entirely
in informal mathematical terms. As far as we are aware, this reading was
first formulated explicitly and coherently by Ricketts (1997). In a way, it is
implicit already in Moore’s and Rein’s work (1986) and especially (1987);
however, the fact that they do not discriminate between their description
of the permutation argument in (1986, p. 375), which is precisely the one
used by Schroeder-Heister (1984, 1987), and the one in (1986, p. 382), and
(1987), makes it hard to understand exactly where they see the differences.
In any case, here is a rough description of the mathematical interpretation
of Section 10.

MATHEMATICAL READING. Prior to Section 10, Frege has introduced
a number of first- and second-order functions, such as the first-order
function mapping the True to the True, and everything else to the False,
which he writes as −ξ , and the second-order value-range function, written
as x̂ϕ(x). This latter function has the property, according to Frege, that
it maps functions �(ξ) and �(ξ) to the same value if and only if the
functions �(ξ) and �(ξ) always return the same values for the same argu-
ments. That is, expressed in modern terms: The value-range function maps
the first-order functions, extensionally construed, 1–1 into the objects.
Let us call this higher-order condition the injectivity constraint; so the
Initial Stipulation, under the mathematical reading, is just the injectivity
constraint.11 The point of passage A then is to argue that, if X (ξ) is a func-
tion mapping the domain of objects 1–1 into itself, then the composition of
X (ξ) with the value-range function also maps the first-order functions 1–1
into the objects, that is, if ϕ(ξ) �→ x̂ϕ(x) satisfies the injectivity constraint,
then so does ϕ(ξ) �→ X (x̂ϕ(x)). In passage B, Frege applies this general
argument to a specific permutation X (ξ), namely the one interchanging
the value-range of some function �(ξ) with the True, and the value-range
of some function M(ξ), assumed to be extensionally distinct from �(ξ),
with the False, and mapping every other object to itself. As X (ξ) is clearly
1–1, by passage A the function ϕ(ξ) �→ X (x̂ϕ(x)) satisfies the injec-
tivity constraint, and it maps �(ξ) to the True, and M(ξ) to the False.
Whence the identifiability thesis: Assuming the existence of a second-
order function abiding by the injectivity constraint, it follows that there
are (other) second-order functions satisfying the injectivity constraint and
mapping some arbitrary first-order function to the True and some other,
extensionally distinct function, to the False.
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It may seem, at first sight, that the metalogical and the mathematical
interpretation of Section 10 amount to the same thing, that they differ
only in the way they are presented. Nothing could be further from the
truth. While the argument as read by the mathematical interpretation is
obviously correct, and in fact trivial, as it is just a straightforward applica-
tion of the elementary fact that the composition of 1–1 functions is again
1–1, the metalogical version of the argument is actually invalid, and the
metalogical version of the identifiability thesis false, as was demonstrated
by Schroeder-Heister (1984, 1987).

6. SCHROEDER-HEISTER’S MODEL-THEORETIC RECONSTRUCTION

In this section, we shall make the metalogical interpretation more pre-
cise by providing a detailed account of the syntax and semantics that
it sees at work in Grundgesetze I, Section 10. We then review how
Schroeder-Heister (1984, 1987) arrives at his conclusions about permuta-
tion argument and identifiability thesis. Finally, we shall put forward some,
as we feel, fatal objections to the metalogical interpretation.

SYNTAX. The syntactic primitives of the Fregean language L1 are: an
infinite stock of individual variables x, y, z, . . ., the horizontal stroke −,
the negation symbol ¬, the equality symbol =, the conditional symbol →,
the universal quantifier ∀, and the value range operator ˆ . The symbols −
and ¬ behave as unary function symbols, = and → are binary function
symbols (for which we use infix notation). The class of L1-terms is built
up inductively by letting all individual variables count as terms, allowing
application of the function symbols −, ¬, = and → to form new terms
from old, and allowing, for any individual variable x and any term t al-
ready constructed, the formation of new terms ∀xt and x̂ t (terms of this
latter form shall be called value-range terms or VR terms for short). If C
is any set, then the terms of L1(C) are constructed according to the same
inductive definition as those of L1, but allowing, besides the individual
variables, also members of C as primitive terms (that is, as individual
constants). The operators ∀ and ˆ bind individual variables as usual. We
write tx [s] for the result of substituting the term s for all free occurrences
of x in t , where it is understood that s is substitutible for x in t . A closed
term is a term with no free occurrences of any variable.

REMARK. The reader will have noticed that we are restricting our
attention (for the time being) to the first-order fragment of Frege’s lan-
guage. This is (a) reasonable, as Frege has not introduced second-order
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quantification prior to Section 10, and (b) a good idea anyway, as the first-
order fragment of the Grundgesetze theory is known to be consistent (cf.
Parsons 1987).

SEMANTICS. A structure for L1 is a triple

U = (U,�,⊥),

consisting of a domain of objects U (possibly the domain of all objects),
and two distinguished elements � (the True) and ⊥ (the False) of U . A
pseudo-interpretation of L1 over such an L1-structure U is a function I
assigning an element of U to each closed VR term of L1(U ). With respect
to a pseudo-interpretation I over U, the closed terms t of L1(U ) are as-
signed elements [[t ]]I of U as values recursively as follows: For elements
c of U , [[c ]]I is just c itself. [[−t ]]I is � if [[t ]]I is; otherwise [[−t ]]I is ⊥;
in other words, where χ� is the characteristic function of the singleton {�}
over U , [[−t ]]I is χ�([[t ]]I). [[¬t ]]I is ⊥ if [[t ]]I is �; otherwise [[¬t ]]I is
�. [[s = t ]]I is � if [[s ]]I is the same object as [[t ]]I; otherwise [[s = t ]]I
is ⊥. In other words, where χ= is the characteristic function of the identity
relation over U , [[s = t ]]I is χ=([[s ]]I, [[t ]]I). [[s → t ]]I is ⊥ if [[s ]]I is �
and [[t ]]I is not �; otherwise [[s → t ]]I is �. [[∀xt ]]I is � if for all a in
U , [[tx [a]]]I is �; otherwise [[∀xt ]]I is ⊥. Finally, [[x̂ t ]]I is just I(x̂ t). For
closed terms t of L1(U ) we say that I satisfies t , or I |� t , if [[t ]]I = �.
For arbitrary terms t of L1(U ), I |� t is defined to mean that I satisfies
some (and hence every) universal closure of t . It should be obvious that
pseudo-interpretations for L1 exist.

REMARK 1. This is essentially the emendation of Schroeder-Heister’s
(1984, 1987) semantics proposed by Parsons (1987), except that, where
Parsons uses variable assignments, we use parameters from the domain of
individuals.

REMARK 2. In pseudo-interpretations, logic generally goes awry. This is
because value-range terms are treated as unstructured constants, thereby
destroying compositionality. There is, for instance, no guarantee that in
a pseudo-interpretation, x̂(x = x) and ŷ(y = y) receive the same de-
notation. In the same vein, x̂(x = x) and x̂(x → x) may well receive
distinct values under a pseudo-interpretation, even though every pseudo-
interpretation must validate ∀x((x = x) = (x → x)). This leads to the
failure of certain logical principles such as (∀x)s → sx [t]. To see this,
note that any pseudo-interpretation I assigns � to both ∀x(x = x) and
∀y(y → y). As the VR terms ẑ(z = ∀x(x = x)) and ẑ(z = ∀y(y → y))
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are syntactically distinct, there are pseudo-interpretations I assigning them
distinct values. Such pseudo-interpretations invalidate the term

(∀x(x = x) = ∀y(y → y)) → (
ẑ(z = ∀x(x = x)) = ẑ(z = ∀y(y → y))

)
.

Nevertheless, the term ∀x∀y
(
x = y → ẑ(z = x) = ẑ(z = y)

)
denotes �

in all pseudo-interpretations, and so the principle (∀x)s → sx [t] cannot
generally hold in pseudo-interpretations.

To eliminate such maverick pseudo-interpretations, we invoke one di-
rection of the Initial Stipulation: Let us say that an interpretation over
the structure U = (U,�,⊥) is a pseudo-interpretation I over U that
assigns the same value to VR terms x̂s and ŷt if, for all a in U ,
[[sx [a]]]I and [[ty[a]]]I coincide. In other words, an interpretation is a
pseudo-interpretation I that satisfies the L1-schema

∀z(s = t) → (x̂sz[x] = ŷtz[y]),(sVa)

which is just a first-order schematic version of Frege’s Basic Law (Va).
Interpretations are logically well-behaved. Indeed, we can give a nice

compositional description of the semantics of interpretations: Any L1(U )-
term t in at most one free variable defines a function on U , namely, the
function mapping each object a ∈ U to the object [[tx [a]]]I. Using lambda-
notation, we may write this function as λa.[[tx [a]]]I. In this way, I gives
rise to a space F of unary functions over U , namely, the space of all func-
tions defined by some term t as above. On F , we may define a function
VRI by letting VRI( f ) be I(x̂ t) for some term t in at most the free variable
x that defines the function f . As I is an interpretation, the function VRI

is well-defined, because by (sVa) the value of VRI for the argument f is
independent of the choice of a defining term for f . Now VRI serves nicely
as the semantic value of the VR operator ˆ . Let us give two examples: First,
consider the VR term x̂ − x . The term −x defines the function λa.[[−a ]]I,
which we also write as χ�. So −x signifies χ�, and now x̂ − x signifies
VRI(χ�), that is, the syntactic operation of applying the VR operator x̂ to
the term −x corresponds to the semantic operation of applying the function
VRI to the semantic value of the term −x . Second, consider the VR term
ŷ(y = x̂ − x). By definition of VRI, we know that I(ŷ(y = x̂ − x)) is
VRI(λb.[[b = x̂ −x ]]I). For any b in U , [[b = x̂ −x ]]I is χ=(b,I(x̂(−x))).
I(x̂(−x)), we already know, is VRI(χ�). Putting things together, we see
that I(ŷ(y = x̂ − x)) is equal to VRI(λb.χ=(b, VRI(χ�))). Again, this
shows nicely how the syntactic VR operator corresponds, in an entirely
compositional way, to the function VRI. It must be noted, however, that we
have not defined the notion of interpretation independently of the logically
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odd notion of pseudo-interpretation. In order to decide whether a pseudo-
interpretation is in fact an interpretation, we have to apply the peculiar
semantics of pseudo-interpretations first.

We still have not captured the right notion of interpretation for Frege’s
purposes, as there is no guarantee that the other half of the Initial Stipu-
lation holds in arbitrary interpretations. Thus, let us call an interpretation
I good if it assigns distinct objects to VR terms x̂s and ŷt whenever for
some a in the domain of objects U , [[sx [a]]]I is distinct from [[ty[a]]]I. In
other words, an interpretation is good if it satisfies the L1-schema

(x̂s = ŷt) → ∀z(sx [z] = ty[z]),(sVb)

mimicking, in our first-order setting, Frege’s second-order Basic Law
(Vb). Putting things together, we see that a good interpretation is a
pseudo-interpretation satisfying the schematic version of Basic Law (V),
viz.

∀z(s = t) = (x̂sz[x] = ŷtz[y]).(sV)

Recall that by Parsons’ (1987) result, good interpretations for L1 exist.
We are now ready to rehearse Schroeder-Heister’s refutations of the per-

mutation argument and the identifiability thesis, metalogically construed.
First, for the identifiability thesis. Suppose given a good interpretation

I over the structure (U,�,⊥) such that I(x̂ −x) is not � (such good inter-
pretations exist, by Parsons (1987)). Then I |� ¬∀y

(
(y = x̂ − x) = −y

)
.

By (sVb), I(x̂ − x) is distinct from I(ŷ(y = x̂ − x)). If the identifiability
thesis were true, there would have to be a good interpretation I′ over some
structure (U ′,�′, ⊥′) such that I′(x̂−x) would be �′ and I′(ŷ(y = x̂−x))
would be ⊥′. But if I′(x̂ − x) = �′, then I′ |� ∀y

(
(y = x̂ − x) = −y

)
.

By (sVa) in I′, we would then have I′(x̂ − x) = I′(ŷ(y = x̂ − x)), and so
I′(ŷ(y = x̂ − x)) cannot be ⊥′ (the argument shows, in effect, that there
is not even an interpretation, and hence a fortiori no good interpretation,
with the desired property).

The identifiability thesis (metalogically read) being false, it is clear that
the permutation argument (metalogically read) must be invalid. Schroeder-
Heister demonstrates this directly as follows: Let I be a good interpretation
over U = (U,�,⊥), let t be any closed VR term of L1 and suppose that
I(t) is distinct from �. I then satisfies the closed term ∀x((−t = x) =
(⊥ = x)).12 As I is an interpretation, I(x̂(−t = x)) and I(x̂(⊥ = x))
are the same. Now let X be any function from U into U (we need not even
assume that X is 1–1) mapping I(t) to �. Then the pseudo-interpretation
X ◦ I over U is not a good interpretation: As X is a function, we still have
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X ◦ I(x̂(−t = x)) = X ◦ I(x̂(⊥ = x)). So if (sVb) were valid in X ◦ I,
we should have X ◦I |� ∀x((−t = x) = (⊥ = x)). But this cannot be the
case, as X ◦ I(t) = �. Hence X ◦ I is not a good interpretation.

This is what Schroeder-Heister (1987) proves about the operation
I �→ X ◦ I. But in fact, things are even worse: In general, X ◦ I is
not even an interpretation! Assume, in addition to all of the above, that
X is actually 1–1. As X maps an object that is not � to �, we know that
X (�) 
= �. Suppose that for some closed VR term s, I(s) is �. Then I |�
¬∀x ((x = −s) = (x = ⊥)), so by (sVb) in I, I(x̂(x = −s)) 
= I(x̂(x =
⊥)). As X is 1–1, we still have X ◦ I(x̂(x = −s)) 
= X ◦ I(x̂(x = ⊥)).
However, as [[−s ]]X◦I is not �, X ◦I validates ∀x ((x = −s) = (x = ⊥)),
contradicting (sVa). Thus, not even the class of interpretations – much less
the class of good interpretations – is closed under the operation I �→ X ◦I.

Why is it that things go so terribly wrong? Suppose I is an interpre-
tation in U, and let s be any closed VR term of L1(U ). Suppose I(s) is
the element a of U , and that b := X (a) 
= a. Then clearly, the value of
s under X ◦ I is b. So in the context of, say, a term of the form y = s,
the pseudo-interpretation X ◦ I interprets s as b. The trouble is that, when
s occurs embedded under a VR operator, X ◦ I interprets s not as b, as it
should, but rather assigns it its old value under I: X ◦ I(ŷ(y = s)) is of
course X (I(ŷ(y = s))); now since I is an interpretation and I(s) = a, we
have I(ŷ(y = s)) = I(ŷ(y = a)), and hence X ◦ I(ŷ(y = s)) becomes
equal to X ◦ I(ŷ(y = a)), and not to X ◦ I(ŷ(y = b)). We thus have
X ◦ I |� ¬ (

b = s → (ŷ(y = b) = ŷ(y = s))
)
. It turns out that in all but

trivial cases (where X is the identity function on the I-values of VR terms),
X ◦ I is not an interpretation – the permutation argument, metalogically
construed, never works! This is because the definition of X ◦ I is such
that it can achieve a re-interpretation of outermost occurrences of the VR
operator only, so VR terms receive different values according as they occur
within the scope of another VR operator or not.

Reflecting about this situation a bit, it seems that we could have known
there to be a problem right from the beginning. Consider again passage
A. Frege notes that, due to the injectivity of X (ξ), X (x̂�(x)) equals
X (x̂�(x)) if and only if �(ξ) and �(ξ) always return the same value
for the same argument. This much is true. But supposing that � and �
are schematic variables ranging over arbitrary terms of begriffsschrift,
what does that consideration show? Certainly not what the metalogical
interpretation takes Frege to be claiming, and quite obviously so. Recall
our description of the semantics of (good) interpretations I by means of
the function VRI. What one would want to show is that, if we move from
a good interpretation based on VRI to a pseudo-interpretation based on
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X ◦ VRI, then that pseudo-interpretation is again a good interpretation.
Now if the terms �(ξ) and �(ξ) contain subterms of the form ŷt (y), then,
under the pseudo-interpretation based on X ◦ VRI, these inner occurrences
of the VR operator should also be interpreted by X ◦ VRI. In short, the
correct claim to be argued would be that X (x̂�X (x)) equals X (x̂�X (x))
if and only if �X (ξ) and �X (ξ) always return the same value for the same
argument, where �X (ξ) results from �(ξ) by replacing every occurrence
of a term ŷt (y) within � by an occurrence of X (ŷt (y)), and similarly
for �. It seems to us that Frege, who repeatedly calls the VR operator a
second-level function, and so almost certainly thought of the semantics of
that operator in terms of our VRI function, would not have made the kind
of mistake that the metalogical interpretation must here attribute to him.
This, then, is our first objection to the metalogical interpretation: It makes
Frege look like a rather careless mathematician.

But the story is not over at this point. For unless Frege was extremely
confused while writing Section 10, he must have been aware of the phe-
nomena Schroeder-Heister (1987) uses to refute the identifiability thesis:
Consider the extended footnote in Section 10 of Grundgesetze. Frege there
discusses the proposal that every object be identified with the value-range
of a concept under which it alone falls, i.e., that x̂(
 = x) = 
 hold gen-
erally (and not just, as Frege has stipulated in Section 10, for truth values

). In arguing against this proposal, Frege asks the reader to consider the
case where 
 is a value-range x̂�(x), and points out that the proposed
stipulation in this case amounts to requiring ŷ(x̂�(x) = y) = x̂�(x),
which, by Basic Law V, is equivalent to ∀y

(
(x̂�(x) = y) = �(y)

)
, ex-

pressing the circumstance that x̂�(x) is the unique object falling under
�(ξ). It seems hard to believe that Frege could, at this point, have over-
looked the fact that the simplest possible instance for �(ξ), viz., −ξ , yields
the equivalence of ŷ((x̂ − x) = y) = x̂ − x with −x̂ − x . That is, given
that Frege obviously thought about the matter in some detail, he could
hardly have failed to notice that ‘x̂ − x’ cannot be made to denote the True
without thereby also making ‘ŷ((x̂ − x) = y)’ a name of the True – and
these are precisely Schroeder-Heister’s counterexamples to the metalogical
identifiability thesis.

7. A MODEL-THEORETIC RECONSTRUCTION OF THE MATHEMATICAL

READING

We have seen that the assumption that Frege takes the letters ‘�’ and ‘�’
in passage A to be schematic variables ranging over arbitrary terms of
begriffsschrift is implausible. The mathematical reading of Section 10 sug-



54 KAI FREDERICK WEHMEIER AND PETER SCHROEDER-HEISTER

gests that we should read them rather as function parameters, and both the
permutation argument and the identifiability thesis turn out true when seen
in this light. We mentioned earlier that there is no need for the adherent of
the mathematical interpretation to present Frege’s system as consisting of
an uninterpreted formal language and a general notion of interpretation for
this language. Indeed, one may simply say that ‘−ξ ’, for instance, denotes
the function −ξ , which is determined by the stipulation that it map the
True (which is assumed to be a fixed object) to the True and everything
else to the False (which is likewise assumed to be a specific fixed object),
or that the sign ‘x̂ϕ(x)’ denotes the function x̂ϕ(x), mapping any first-level
function F(ξ) to its value-range x̂F(x) (which is more or less what Frege
says in Section 9). To facilitate comparison with the metalogical recon-
struction discussed in the preceding section, we may nevertheless recast
Frege’s discussion in the formal framework of a term logic, without unduly
distorting the mathematical interpretation. As we are assuming Frege to
be using function quantification, such a term logic clearly has to be (at
least) second-order; for the purposes of comparison, we shall therefore
extend, in the obvious way, the language L1 of the preceding section to the
second-order language L2.

L2 thus has, as additional syntactic primitives, unary function variables
f, g, . . ., as additional term-forming operations the application of a function
variable to a term, yielding f(t) from term t , and the application of the
second-order quantifier to a term, yielding ∀ft from t . A structure for L2

is a quadruple U = (U,S,�,⊥), where (U,�,⊥) is an L1-structure, and
S ⊆ UU is the range of the second-order quantifier. Again, we may extend
L2 by a set F of function constants and a set C of individual constants to
obtain the language L2(F ,C). In practice, F will always be S and C will
be U , for some L2-structure U = (U,S, �,⊥). A pseudo-interpretation
I in U is now a mapping from the set of closed VR terms of L2(S, U ) to
U ; it should be obvious how terms are to be evaluated with respect to such
a pseudo-interpretation I, that is, how the map t �→ [[t ]]I is defined. A
pseudo-interpretation is an interpretation if it satisfies (sVa), now viewed
as an L2-schema, and it is a good interpretation if it moreover satisfies
(sVb), again taken as an L2-schema.

The language at work in the mathematical interpretation will be called
Lw, as it was first investigated (in a predicate logic version) by Wehmeier
(1999).13 It has the same syntactic primitives as L2; however, the VR oper-
ator is construed as a second-order function constant. The terms of Lw are
hence built up from individual variables by applying the function constants
−, ¬, =, and →, and first-order and second-order quantification to terms
already constructed, by applying any function variable f to any term t ,
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and, finally, by applying the function constant ˆ to any function variable f,
yielding terms of the form f̂. So the VR operator is, in Lw, only applied to
syntactically primitive items, viz., the function variables, whereas in L2, it
can be applied to arbitrary terms.

The notion of structure is the same for L2 and Lw. Given such a struc-
ture U = (U,S,�,⊥), we again extend Lw to Lw(S, U ) by using the
elements F of S as function constants to be interpreted by themselves,
and the elements a of U as individual constants, also to be interpreted by
themselves. An interpretation now simply consists in assigning a function
VR, mapping the elements of S into U , to the VR operator ˆ , and so we
will speak of VR as being an interpretation. We assume that it is obvious
to the reader how an Lw(S, U )-term t receives its value [[t ]]VR, when VR
interprets the VR operator.

It will not have gone unnoticed that, in the case of Lw, we have not
defined a notion of pseudo-interpretation prior to the introduction of in-
terpretations. This is obviously unnecessary, as the semantics of Lw is
entirely compositional anyway. In other words, Frege’s Basic Law (Va),
in its second-order form, is a logical truth of Lw.

Prima facie, one might object to Lw that it cannot be an adequate lan-
guage for reconstructing Frege’s system because, unlike L1 and L2, it does
not allow for the formation of complex VR terms, of which the Grundge-
setze abound. Such an objection has little force, however, as we may, on the
basis of certain other Fregean principles, introduce complex VR terms into
Lw by means of definitional extension. In fact, we will show below that any
Lw structure satisfying full second-order (function) comprehension can be
expanded uniquely to an L2-interpretation.

Digression on Comprehension. Frege’s Basic Law (IIb) (cf. Section 25),
together with his instantiation rule for free second-order variables (rule
9 in Section 48), and some propositional logic, immediately yields the
following comprehension principle:

(Term-CA) ∃f∀x (f(x) = t),

where t is any term of begriffsschrift not containing a free occurrence of the
function variable f. That is, there is a function in the second-order domain
that is defined, with respect to the free variable x , by the term t . But more
can be shown to hold. Due to the presence of a description operator, there
even is a function corresponding to any term which describes a function
graph:

(CA) (∀x∃!zt) → ∃f∀x∀z ((f(x) = z) = t) ,
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where t is again an arbitrary term, f does not occur free in t , and ∃!zt
abbreviates ∃u∀w(tz[w] = (u = w)). These instances of (CA) follow from
(Term-CA), some elementary logic, and Basic Law (VI), which governs
Frege’s description operator. It should be noted that neither (Term-CA)
nor (CA) depend on Basic Law (Vb) – the only assumption needed about
the VR operator occurring in Basic Law (VI) is that it abides by Basic
Law (Va) (although, of course, the validity of Basic Law (VI) does further
constrain the value range function, in that extensionally distinct singleton
concepts must receive distinct value ranges). It should further be noted that
(Term-CA) follows from (CA) by elementary logical means if, in (CA), we
take t to be t = z (assuming that z is not free in t). Given that Frege was
committed to these comprehension principles, we will, at least for the time
being, appeal to them as well. Indeed, (CA) is the standard formulation of
function comprehension today (see e.g., Enderton 2001, p. 284). �
Here, then, is the promised expansion theorem for Lw:

THEOREM 1. Let VR be an interpretation of Lw in U = (U,S,�,⊥),
i.e., let VR be a function with domain S ⊆ UU and values in U . Suppose
that the interpretation VR satisfies (CA) as an Lw-schema. Then there is a
unique L2-interpretation IVR in U such that

1. for each element F of S and each individual variable x , IVR(x̂F(x)) =
VR(F), and

2. IVR satisfies (CA) as an L2-schema.

Proof. Define the rank rk(t) of an L2(S, U )-term t recursively as fol-
lows. Individual variables and elements of U are terms of rank 0. The
terms −t , ¬t , ∀xt , ∀ft , and φ(t), where φ is either a function variable or
an element of S, all have the same rank as t itself. The rank of s = t and
of s → t is the maximum of the ranks of s and t , and finally, the rank of a
VR term x̂ t is 1 + rk(t). Thus, the rank of a term t is the maximal depth of
nestings of the VR operator in t .

We first prove that there is at most one L2-interpretation IVR satisfy-
ing conditions 1 and 2 of the theorem. By condition 2 there must be,
for any term t , a function F in S such that IVR |� ∀x(F(x) = t); so
λa.[[tx [a]]]IVR = F ∈ S. As IVR, being an interpretation, satisfies (sVa),
we have IVR(x̂F(x)) = IVR(x̂ t). By condition 1, we further know that
IVR(x̂F(x)) = VR(F). Putting things together, we see that for any t ,
IVR(x̂ t) must be equal to VR(λa.[[tx [a]]]IVR). Now if t is of rank 0, then
[[tx [a]]]IVR is determined by the structure U alone, and so VR uniquely
determines IVR on VR terms of rank 1. Now suppose that IVR is uniquely
determined on VR terms of rank at most n. If t is any term of rank n,
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then [[tx [a]]]IVR is thereby always uniquely determined; but IVR(x̂ t) must
be VR(λa.[[tx [a]]]IVR). So IVR is uniquely determined on VR terms of rank
n + 1; by induction, it follows that there is at most one interpretation IVR

as required in the theorem.
Now for existence. We define a sequence of mappings In (n ≥ 1) such

that In assigns values to all closed VR terms of L2(S, U ) of rank at most
n, and In extends Im if n > m. IVR will be the union of all the In . I1 is
defined in such a way that IVR satisfies condition 1. Every In is defined so
as to make true all L2(S, U )-instances of (sVa) and (CA) of ranks at most
n, so that IVR is indeed an interpretation satisfying condition 2. Before we
start, let us note that the L2-terms of rank 0 are precisely the terms of Lw

in which the VR operator does not occur. The values of such terms are
determined solely by the structure U. Therefore, all L2(S, U )-instances of
(CA) of rank 0 hold under any pseudo-interpretation in U, because they
are also Lw(S, U )-instances of (CA).

INDUCTION BASIS. Let t be an L2(S, U )-term of rank 0. By the com-
prehension axioms of rank 0, we know that λa.[[tx [a]]]VR is an element
of S, and so we may put I1(x̂ t) equal to VR(λa.[[tx [a]]]VR). This obvi-
ously takes care of condition 1 and of all L2(S, U )-instances of (sVa)
of rank 1. Comprehension is slightly more tricky. We will need the fol-
lowing translation procedure, both here and in the induction step. For
any L2(S, U )-term t and every individual variable y not occurring in t ,
we define an L2(S, U )-term I (t, y) recursively as follows. When σ is
an individual variable or individual constant, we let I (σ, y) be σ = y.
I (φ(t), y) is ∃z (I (t, z) ∧ φ(z) = y) for function variables or function
constants φ (where ∧ is defined in the obvious way and z is a fresh in-
dividual variable). I (−t, y) is ∃z ((z = �) ∧ (I (t, z) = y)), and I (¬t, y)
is ∃z ((z = �) ∧ ((¬I (t, z)) = y)). For ◦ being either equality or im-
plication, I (s ◦ t, y) is ∃z∃w (I (s, z) ∧ I (t, w) ∧ ((z ◦ w) = y)). We set
I (∀ρt, y) equal to ∃z ((z = �) ∧ ((∀ρ I (t, z)) = y)), where ρ is either
an individual variable or a function variable. Most importantly, we define
I (x̂ t, y) to be the term ∃f

(∀x(f(x) = t) ∧ (x̂ f(x) = y)
)
. For the remainder

of the induction basis, let t be of rank 1. Since I1 validates the comprehen-
sion axioms of rank 0 and all instances of (sVa) of rank 1, it follows from
our definition that (t = y) and I (t, y) receive the same value under I1.
We also note that I (t, y) contains VR terms of the form x̂ f(x) only. Now
suppose that (a pseudo-interpretation extending) I1 satisfies ∀x∃!zt , i.e.,
∀x∃u∀w (tz[w] = (u = w)). It follows, first, that ∀x∀z(t = −t); more-



58 KAI FREDERICK WEHMEIER AND PETER SCHROEDER-HEISTER

over, we have ∀x∃!z∃v((v = �) ∧ (t = v)). By our considerations above,
this is I1-equivalent to

(*) ∀x∃!z∃v((v = �) ∧ I (t, v)).

Except for the occurrence of VR terms x̂ f(x) in I (t, v), (∗) is the an-
tecedent of some comprehension axiom of Lw. But of course I1 evaluates
x̂ f(x) just as the interpretation VR evaluates f̂, so modulo the identification
of x̂ f(x) and f̂, (∗) holds in the Lw-interpretation VR. Therefore, the con-
sequent of the pertinent comprehension axiom also holds under VR, from
which it follows again that ∃f∀x∀z ((f(x) = z) = ∃v ((v = �) ∧ I (t, v)))
holds under I1. Now I (t, v) is I1-equivalent to t = v , so
∃v ((v = �) ∧ I (t, v)) is I1-equivalent to −t , which, as we already know,
is the same as t . We conclude that I1 guarantees the truth of all rank 1
L2-instances of (CA).

INDUCTION STEP. Suppose In has been defined so as to make true
all L2(S, U )-instances of (sVa) and (CA) of ranks at most n. Let t be a
term of rank n. By the appropriate rank n instance of (CA), we know that
λa.[[tx [a]]]In is in S, and so we may define In+1(x̂ t) as VR(λa.[[tx [a]]]In ).
Again, this immediately takes care of the instances of (sVa) of rank n + 1.
It remains to verify the comprehension axioms of rank n + 1. We note
that, in In+1, I (t, y) is equivalent to t = y for terms t of rank at most
n + 1, due to the instances of (CA) and (sVa) of rank n. Furthermore,
I (t, y) is of rank n if rk(t) = n + 1. As in the induction basis, ∀x∃!zt
implies t = −t and ∀x∃!z∃v(v = � ∧ I (t, v)). Also, (f(x) = z) = t
is equivalent to (f(x) = z) = ∃v(v = � ∧ I (t, v)), because t = −t .
Hence the comprehension axioms of rank n + 1 are In+1-equivalent to
comprehension axioms of rank n, and so their truth under In+1 follows
from the inductive hypothesis. This concludes the proof of our theorem.

We observe that an L2-interpretation I over some structure U satisfying
(CA) induces in a natural way an Lw-interpretation VRI over U satisfy-
ing (CA) (this time as an Lw-schema), whose unique expansion IVRI to
L2 is just I itself, by setting VRI(F) := I(x̂F(x)). We may therefore
identify the class of L2-interpretations satisfying (CA) with the class of
Lw-interpretations satisfying (CA). So in the presence of (CA), we have a
natural way of describing the L2-interpretations without having to invoke
the deviant semantics of pseudo-interpretations. It might be remarked that
the class of L2-interpretations IVR satisfying (CA) is closed under the op-
eration IVR �→ IX◦VR, for any function X ∈ S, but, as our earlier results
imply, not under Schroeder-Heister’s operation IVR �→ X ◦ IVR.
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The situation is of course less clear-cut when it comes to good inter-
pretations: Due to Russell’s antinomy, there are no good interpretations,
whether in terms of L2 or Lw, that satisfy the full schema (CA). By
a straightforward adaptation of Heck’s consistency proof in (1996) to
Frege’s term-logical setting, it can be shown, however, that there are
good L2-interpretations satisfying predicative comprehension, that is, the
schema

(Pred-CA) (∀x∃!zt) → ∃f∀x∀z ((f(x) = z) = t) ,

where t does not contain function quantifiers. Such a good L2-
interpretation naturally determines a good Lw-interpretation VR satisfying
(Pred-CA) as an Lw-schema, and if X is a 1–1 function present in the
function universe of the underlying structure, then X ◦ VR is again a good
Lw-interpretation satisfying (Pred-CA). This, we suggest, is the most felic-
itous way of reconstructing Frege’s permutation argument in a non-trivial
model-theoretic setting.
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NOTES

1 Given the inconsistency of the Grundgesetze theory, one might object the following
to our formulation: ‘The identifiability thesis is of course, strictly speaking, false, as the
stipulations previously introduced already contradict each other. Similarly, as one premise
of the permutation argument is the existence of a model (to speak anachronistically) for
the previous stipulations, the argument is trivially valid’. It is not entirely clear whether the
situation is so clear-cut (cf. footnote 5). One way to phrase (ii) and (iii) more cautiously
would thus be the following: It has remained unclear whether, in the framework of a rea-
sonable consistent reconstruction of the original Fregean setting, the permutation argument
should turn out valid and the identifiability thesis true. This unclarity is of course due to
an unclarity regarding the notion of a reasonable consistent reconstruction, of which more
below.
2 All English translations from Grundgesetze are ours. The reader may wish to also
consult Furth (1964, p. 36).
3 In order not to inconvenience our typesetters (that is, in these days of LATEX, ourselves),
we use present-day symbolism instead of Frege’s original notation throughout this paper. It
should be kept in mind, however, that the modern symbols are to be understood in Frege’s
sense, so that, e.g., the negation sign is not a sentence connective, but rather a function
symbol.
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4 Cf. Furth (1964 p. 42).
5 Cf. Furth (1964, pp. 43–44).
6 Cf. Furth (1964, p. 44).
7 In the presence of the other logical rules, one may, and we will, simplify this to
(∀z)(f(z) = g(z)) → (x̂ f(x) = ŷg(y)).
8 Again, the reader may wish to compare Furth (1964, pp. 46–48).
9 The metalogical interpreter may leave it open whether Frege envisaged this notion of
interpretation to involve the possibility of varying the domain of objects U , or whether
it should always be assumed to be the domain of all objects whatsoever. Similarly, she
need not decide whether the two truth values are fixed once and for all, or whether they
are allowed to vary with the interpretation. For all purposes of the present paper, it simply
does not matter.
10 Cf. Christian Thiel’s (1976, p. 288) reading of Section 10: “The ‘identification’ of the
truth values with value-ranges (. . . ) is nothing more than the explicit stipulation that two
specific expressions having the given form of value-range names serve to denote the True
and the False, respectively” (our translation). See also Heck (1999, pp. 267–268).
11 Note that Frege has not, prior to Section 10, introduced any axioms or rules that imply
any kind of function comprehension. In fact, function quantification itself has not even
made its appearance. Therefore, the assumption Frege makes (or seems to make) on the
mathematical interpretation, that there is some injection from the first-order functions into
the objects, does not, strictly speaking, contradict anything Frege has stipulated so far.
In other words, nothing forces the function space to be too large to be injected into the
individual domain at this point.
12 Instead of the parameter ⊥, we could equally well use the closed L1-term ¬∀x(x = x).
13 For a discussion of the relation between L2 and Lw in the setting of second-order
predicate logic, see the final section of Ferreira and Wehmeier (2002).

REFERENCES

Dummett, Michael: 1991, Frege – Philosophy of Mathematics, Harvard University Press,
Cambridge, MA.

Enderton, Herbert B.: 2001, A Mathematical Introduction to Logic, 2nd edn., Har-
court/Academic Press, Burlington.

Ferreira, Fernando, and Kai F. Wehmeier: 2002, ‘On the Consistency of the 
1
1-CA

Fragment of Frege’s Grundgesetze’, Journal of Philosophical Logic 31, 301–311.
Frege, Gottlob: 1893, Grundgesetze der Arithmetik: Begriffsschriftlich abgeleitet, I. Band,

Hermann Pohle, Jena (reprinted 1962 and 1998: Georg Olms Verlagsbuchhandlung,
Hildesheim).

Frege, Gottlob: 1964, The Basic Laws of Arithmetic, edited and translated by Montgomery
Furth, University of California Press, Berkeley and Los Angeles.

Heck, Richard G.: 1996, ‘The Consistency of Predicative Fragments of Frege’s Grundge-
setze der Arithmetik’, History and Philosophy of Logic 17, 209–220.

Heck, Richard G.: 1999, ‘Grundgesetze der Arithmetik I §10’, Philosophia Mathematica
7, 258–292.

Moore, Adrian W. and Andrew Rein: 1986, ‘Grundgesetze, Section 10’, in L. Haaparanta
and J. Hintikka (eds.), Frege Synthesized, D. Reidel, Dordrecht, pp. 375–384.



FREGE’S PERMUTATION ARGUMENT REVISITED 61

Moore, Adrian W. and Andrew Rein: 1987, ‘Frege’s Permutation Argument’, Notre Dame
Journal of Formal Logic 28, 51–54.

Parsons, Terence: 1987, ‘On the Consistency of the First-Order Portion of Frege’s Logical
System’, Notre Dame Journal of Formal Logic 28, 161–168.

Ricketts, Thomas: 1997, ‘Truth-Values and Courses-of-Value in Frege’s Grundgesetze’, in
W. W. Tait (ed.), Early Analytic Philosophy: Frege, Russell, Wittgenstein, Open Court,
Chicago, pp. 187–211.

Schroeder-Heister, Peter: 1984, ‘Frege’s Permutationsargument. Zu §10 der Grundge-
setze der Arithmetik’, in G. Wechsung (ed.), Frege Conference 1984, Akademie-Verlag,
Berlin, pp. 182–188.

Schroeder-Heister, Peter: 1987, ‘A Model-Theoretic Reconstruction of Frege’s Permuta-
tion Argument’, Notre Dame Journal of Formal Logic 28, 69–79.

Thiel, Christian: 1976, ‘Wahrheitswert und Wertverlauf: Zu Freges Argumentation im §10
der Grundgesetze der Arithmetik’, in M. Schirn (ed.), Studien zu Frege I: Logik und
Philosophie der Mathematik, Frommann-Holzboog, Stuttgart-Bad Cannstatt, pp. 287–
299.

Wehmeier, Kai F.: 1999, ‘Consistent Fragments of Grundgesetze and the Existence of Non-
Logical Objects’, Synthese 121, 309–328.

Kai F. Wehmeier
Department of Logic and Philosophy of Science
University of California, Irvine
3151 Social Science Plaza
Irvine, CA 92697
U.S.A.
E-mail: wehmeier@uci.edu

Peter Schroeder-Heister
Wilhelm-Schickard-Institut
Universität Tübingen
Sand 13
72076 Tübingen
Germany
E-mail: psh@informatik.uni-tuebingen.de




