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1 Binary classification under sample selection

bias

Matthias Hein

The problem of general sample selection bias is studied from a decision-theoretic
perspective in the case of binary classification. We show necessary and sufficient
conditions for the equivalence of the Bayes classifiers of training and test distri-
bution and give bounds for the excess risk if they disagree. Moreover, we show
without any assumptions on the type of sample selection bias that the knowledge
about unlabeled data allows one to identify regions where the sign of the regression
functions of training and test is guaranteed to coincide.

In the second part we use the insights gained from the theoretical analysis. We
provide a nonparametric framework for learning under general sample selection bias
motivated by a modified cluster assumption. The connection to semi-supervised
learning is discussed. Further, we present experimental results for data sets with
explicit control of the selection bias.

1.1 Introduction

In econometrics and sociology it is widely accepted that often the sample one uses
for learning or estimation comes from a different distribution than the one used
in testing. In the machine learning community only very recently this problem has
been discussed [Zadrozny, 2004, Smith and Elkan, 2004]. The reason for this might
be that one can argue that sample selection bias only occurs due to a bad choice
of the training set. We agree that this can be the reason for sample selection bias,
however there are problems where even the most careful choice of the training
set would not prevent sample selection bias. One example is the prediction of the
income of people based on a questionnaire. Usually the richer people are the less
they tend to answer such a questionnaire. Clearly the prediction based on the data
of the questionnaire will be biased towards low income. Another case is when we
have only training data from some proportion of the test population. This occurs if
a bank wants to predict if someone who is applying for a loan will eventually repay
it. The credit bank has only data from customers whose loan has been approved.
This set of customers will be generally a biased sample of the whole population or
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the set of potential customers.
In the machine learning literature so far the main emphasis has been laid on

a special kind of sample selection bias, the so called covariate shift [Shimodeira,
2000, Sugiyama and Müller, 2005, Huang et al., 2007], where the conditional
distribution p(y|x) of training and test distribution is the same. For the general
sample selection bias problem several parametric models have been proposed in the
econometrics literature, see e.g. Heckman [1979], Winship and Mare [1992], Dubin
and Rivers [1989]. In this article we study the general scenario of sample selection
bias, in particular we derive necessary and sufficient conditions for the equivalence
of the Bayes classifiers of training and test distributions. Moreover, we analyze
the situation where one has access to an unlabeled sample of the test distribution
which can be either a part of the training data which has not been labeled or an
independent sample of the marginal test distribution. A similar approach with the
goal of identifying the possible range of probability measures responsible for the
training data without making any prior assumptions on the sampling process has
been studied by Manski and Horowitz [Manski, 1989, Horowitz and Manski, 2006].

Originating from this analysis we propose a new nonparametric principle to
deal with sample selection bias in the case where one has access to unlabeled
test data. The setting where one has unlabeled test data is similar to semi-
supervised learning. However, in semi-supervised learning one assumes that training
and test data come from the same distribution. We show that implementing the
new principle via adaptive regularization leads to an algorithm which is similar
to existing ones for semi-supervised learning [Zhu et al., 2003, Zhou et al., 2004].
Whereas the performance is similar when training and test data come from the same
distribution, the new algorithm performs better in cases where also the conditional
distribution changes. Therefore this algorithm can also be seen as an extension of
semi-supervised learning which is robust to sample selection bias.

1.2 Model for sample selection bias

In this chapter we consider binary classification. Our goal is to learn a classifier
f : X → Y, where X and Y are the input and output domain. For binary classification
we have Y = {−1,+1}. We assume that there exists a (stationary) distribution P on
X×Y, the true distribution of X and Y . However, we are only given a biased sample.
This can be formally described using a random binary selection variable s, where
s = 1 means that we accept the point for the training sample and s = 0 means that
we will not observe it in the training phase. Of interest is how p(y|x, s = 1), the
conditional distribution of the training sample, behaves with respect to the true
conditional distribution p(y|x).

We always assume in the following that both probability measures Ptr and Pte

have densities ptr and pte with respect to some dominating measure e.g. if X = Rd

we take as the dominating measure the Lebesgue measure. Thus we avoid an overly
technical presentation. However, the results still hold in the general case.
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In order to keep the presentation as clear as possible we will keep the explicit
dependency on the selection variable s. We give the following dictionary to be
consistent with the notation in the rest of the book.

training distribution ptr(y, x) = p(y, x|s = 1)

test distribution pte(y, x) = p(y, x)

We further assume in the following that the sampling of training and test data is
done i.i.d. from p(y, x|s = 1) and p(y, x) respectively.

A central role will be played by p(s = 1|x, y), that is the probability that a given
joint pair (x, y) is observed in the training sample. The following relationships can
be derived by straightforward application of Bayes’ rule,

p(y|x, s = 1) =
p(y|x)p(s = 1|x, y)

p(s = 1|+, x)p(+|x) + p(s = 1|−, x)p(−|x)
,

p(x|s = 1) =
p(s = 1|x,+)p(+, x) + p(s = 1|x,−)p(−, x)∫

X
p(s = 1|x, +)p(+, x) + p(s = 1|x,−)p(−, x) dx

, (1.1)

where we have introduced the shorthand notation + and − for y = 1 and y = −1
e.g. p(+, x) for p(y = 1, x) and p(−, x) for p(y = −1, x). Since we can estimate
p(y|x, s = 1 and p(x|s = 1) from the training data, it is more interesting to express
the quantities of the test data in terms of the training data.

p(y|x) =
p(y|x, s = 1)p(x|s = 1)p(s = 1) + p(y|x, s = 0)p(x|s = 0)p(s = 0)

p(x|s = 1)p(s = 1) + p(x|s = 0)p(s = 0)

=
p(s = 1|x)

p(s = 1|y, x)
p(y|x, s = 1)

p(x) = p(x|s = 0)p(s = 0) + p(x|s = 1)p(s = 1) =
p(s = 1)

p(s = 1|x)
p(x|s = 1).

(1.2)

Using these relations one can characterize different special cases of sample selection
bias.

Random selection This is the case we usually assume to be true in standard
binary classification. The selection is completely random, that is independent of
x and y. This implies p(s = 1|y, x) = p(s = 1). Obviously we have in this case
p(y|x, s = 1) = p(y|x) and p(x|s = 1) = p(x) so that the distributions of training
and test data are identical.

Class conditionally independent selection In this case the selection is inde-
pendent of the class label y given the feature x or equivalently given x the knowledge
of the selection variable s gives no information about the class label y. Due to this
property this scenario is sometimes called ‘missing at random (MAR)’. We have

p(s|x, y) = p(s|x) ⇐⇒ p(y|x, s) = p(y|x).
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The conditional probabilities of training and test data agree and therefore also the
Bayes classifiers of training and test data. However, the marginal distribution of
the training data is in general different,

p(x|s = 1) =
p(s = 1|x)p(x)∫

X
p(s = 1|x)p(x) dx

.

Sometimes this scenario is also called covariate shift, see Shimodeira [2000],
Sugiyama and Müller [2005]. Note that the support of the training data has to
be contained in the support of the test data. Under covariate shift we can trust the
labels we are given, but the true/test marginal distribution is different from the
training distribution. In this case often reweighting of the loss function is done in
order to get an unbiased estimate of true loss, see e.g. Manski [1977], Shimodeira
[2000], Huang et al. [2007]. We will come back to this issue in a later section.

Class dependent selection In this case the selection variable s is independent
of the feature x given the label y,

p(s|x, y) = p(s|y) ⇐⇒ p(x|y, s) = p(x|y).

This means that the class conditional distributions stay the same. However, the
class probabilities p(y|s = 1) and p(y) of training and test data differ and thus
the class conditional probabilities p(y|x, s = 1) and p(y|x) are different as well. In
particular one has

p(y|s = 1) =
p(s = 1|y)p(y)

p(s = 1|+)p(+) + p(s = 1|−)p(−)
,

p(y|x, s = 1) =
p(s = 1|y)p(y|x)

p(s = 1|+)p(+|x) + p(s = 1|−)p(−|x)
.

Having knowledge about p(s = 1|y) or equivalently the true class probabilities p(y)
one can easily correct for the modification of p(y|x, s = 1). Namely by setting
p(+|x) = p(−|x) = 1

2 we observe that the threshold for a Bayes-optimal decision
with respect to the test distribution is given by

γ =
p(s = 1|+)

p(s = 1|+) + p(s = 1|−)
,

that is we decide for + if p(+|x, s = 1) > γ and for − otherwise. This problem
is closely related to cost-sensitive learning, see Elkan [2001]. Suppose that c−1,1

denotes the cost of predicting the positive class when the negative is true and c1,−1

the corresponding opposite cost. It is then easy to show that the Bayes optimal
threshold γ, that is one predicts + if p(+|x) > γ, is given by

γ =
c−1,1

c−1,1 + c1,−1
.

We observe that both expressions are equal if we identify c−1,1 = p(s = 1|+) and
c1,−1 = p(s = 1|−). Thus the costs tell us how we should change the training
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distribution such that for the test distribution we can decide with the normal
threshold 1

2 .
Note, that in practice one often artificially balances the classes for training in

order to get a better estimate of the decision boundary, in particular if the classes
are very unbalanced. The process of balancing can be equivalently seen as a class
dependent selection. However, the correction for this simple form of sample selection
bias is straightforward using the modified threshold which we introduced above.

The general case Sample selection bias is a very general model for differing
training and test distributions. In this paragraph we will analyze conditions on the
probability measures Ptr and Pte such that Ptr can be seen as selected from Pte.
Not all different training and test distributions can be modelled in such a way.
The first basic requirement is the support condition: the support of the probability
measure of the training data has to be a subset of the support of the probability
measure of the test data.

Suppose that the support condition holds and we are given the densities of the
joint measures ptr(y, x) and pte(y, x) of training and test distribution. Does there
exist a sampling mechanism such that one can see ptr as ptr(y, x) = p(y, x|s = 1)
and pte(y, x) = p(y, x) ? We can check this using

p(y, x) = p(y, x|s = 0)p(s = 0) + p(y, x|s = 1)p(s = 1).

The part p(y, x|s = 0)p(s = 0) can be modelled arbitrarily. We are searching for a
nontrivial solution with p(s = 1) > 0. For every (y, x) ∈ Y× X, we require

p(y, x)− p(s = 1)p(y, x|s = 1) ≥ 0.

Thus the selection condition, a necessary and sufficient requirement that ptr can be
seen as generated by selecting from pte, can be stated as

sup
(y,x)∈Y×X

ptr(y, x)
pte(y, x)

< ∞,

where we are slightly sloppy regarding the supremum1. If the above condition holds
then we can model Ptr as being selected from Pte. The probability of selection
p(s = 1) is upper bounded as p(s = 1) ≤ infy,x

pte(y,x)
ptr(y,x) .

Note that the support condition rules already out some cases. Namely ptr(y|x) >

0 is not possible if pte(y|x) = 0. Secondly, suppose X = Rd and both measures have a
marginal density with respect to the Lebesgue measure. Then the selection condition
rules out cases where pte(x) = 0 and ptr(x) > 0. But also the tails of training and
test distribution have to be well-behaved. Suppose both have a Gaussian density

1. The support condition can be equivalently formulated that for any measurable set A
it holds Pte(A) = 0 ⇒ Ptr(A) = 0. Thus Ptr is absolutely continuous with respect to Pte

which implies by the Radon-Nikodym theorem that there exists a density f ∈ L1(X) such
that Ptr(A) =

∫
A

f dPte. Then the selection condition is given by, ‖f‖∞ < ∞.
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with different means but equal covariance. Then the quotient ptr(x)
pte(x) can not be

upper bounded on Rd. On the positive side one can make the following statement.

Lemma 1.1 Let X be a compact subset of Rd and suppose the probability mea-
sures Ptr and Pte have continuous marginal densities with respect to the Lebesgue
measure. Let further the support condition hold. If pte(x) > 0 for all x ∈ X and
supx∈X maxy∈{−1,1}

ptr(y|x)
pte(y|x) < ∞ then Ptr and Pte can be modelled in the sample

selection framework.

Proof: We decompose the selection condition into

sup
(y,x)∈Y×X

ptr(y, x)
pte(y, x)

≤ sup
x∈X

ptr(x)
pte(x)

sup
x∈X

max
y∈{−1,1}

ptr(y|x)
pte(y|x)

.

The first supremum is finite since both ptr(x) and pte(x) are continuous and
therefore both achieve their maximum and minimum due to compactness of X

with infx pte(x) > 0 by assumption. The second supremum is finite by assumption.
Let us finally discuss the situation where the support of training and test distri-
bution differ. There are in principle two situations. If the training distribution has
probability mass on a set where the test distribution has not, then the information
about this set is completely useless for learning on the remaining test set without
making assumptions on the relation of training and test distribution. For us this
means that we can safely discard this information and instead work with the prob-
ability measure Ptr

(
y, x|x ∈ supp (Pte)

)
, where supp (Pte) is the support of the

test distribution. On the other hand if the test distribution has probability mass
where the training distribution has not then we cannot hope to make any useful
predictions on this portion of the test distribution without any further assumptions
on how training and test data have been generated. The support condition seems
therefore not to be too restrictive.

1.3 Necessary and sufficient conditions for the equivalence of the Bayes classifier

The essential element for classification is the conditional distribution p(y|x) We
have seen in the previous section that in the case of covariate shift one has
p(y|x, s = 1) = p(y|x). The goal of this section is to analyze the general case
of sample selection bias. In particular, we are interested under which conditions the
Bayes classifier of training and test data agree. Since this is a much weaker condition
than equivalence of the conditional distribution p(y|x), this is usually said to be
the reason why classification is easier than regression. Moreover, we give an exact
expression of the excess error of the Bayes classifier of the training distribution
compared to the error of the Bayes classifier of the test distribution. This will allow
us to characterize cases where sample selection bias does not matter substantially.

We define the regression functions ηtr and ηte and the Bayes classifiers btr of bte
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of the training and test distribution as,

ηtr(x) = 2p(+|x, s = 1)− 1, ηte(x) = 2p(+|x)− 1,

btr(x) = sign ηtr(x) bte(x) = sign ηte(x).

A necessary and sufficient condition that the Bayes classifiers agree is,

ηtr(x) ηte(x) ≥ 0, ∀ x ∈ X.

Using essentially Equation 1.2 one can then derive necessary and sufficient condi-
tions for the equivalence of the Bayes classifiers of training and test distribution.
We give all results in terms of quantities related to the training distribution since
this is the distribution we have access to. The statement about equivalence will
depend on the selection index, which measures the amount of bias in the labels at
a given point.

Definition 1.2 The selection index s(x) : X → [−1, 1] is defined as

s(x) =
p(s = 1|+, x)− p(s = 1|−, x)
p(s = 1|+, x) + p(s = 1|−, x)

.

The following theorem will state the equivalence of the Bayes classifiers in terms of
the selection index.

Theorem 1.3 Let p(s = 1|y, x) > 0 for all x ∈ X and y ∈ {−1, 1}. The regression
function of the test data ηte can be expressed as

ηte(x) =
ηtr(x)− s(x)
1− s(x)ηtr(x)

.

The Bayes classifiers bte and btr of test and training distribution agree at x if and
only if∣∣ηtr(x)

∣∣ ≥ sign
(
ηtr(x)

)
s(x).

Moreover the risk of the Bayes classifier btr of the training distribution p(y, x|s = 1)
with respect to the test distribution p(y, x) is given as

R
(
btr

)
= R

(
bte

)
+

∫
{x | |ηtr(x)|<sign(ηtr(x)) s(x)}

∣∣∣∣ ηtr(x)− s(x)
1− s(x)ηtr(x)

∣∣∣∣ pte(x) dx.

Proof: Using p(+|x) = p(+|x, s = 1) p(s=1|x)
p(s=1|+,x) we arrive after a straightforward

calculation at

p(+|x) =
p(+|x, s = 1)p(s = 1|−, x)

p(s = 1|+, x)− p(+|x, s = 1)[p(s = 1|+, x)− p(s = 1|−, x)]
.
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Using now p(+|x) = ηte(x)+1
2 and p(+|x, s = 1) = ηtr(x)+1

2 we get the result

ηte(x) =
ηtr(x)− s(x)
1− s(x)ηtr(x)

.

Equivalence of the Bayes classifiers is given if ηtr(x)ηte(x) ≥ 0 for all x ∈ X. Since
s(x) ∈ [−1, 1] we have s(x)ηtr(x) ≤ 1 and thus,

ηtr(x)ηte(x) ≥ 0 ⇔ ηtr(x)2 ≥ ηtr(x)s(x),

which gives the desired result. Finally, the risk R(f) of a function f : X → {−1,+1}
with respect to the test distribution is given as:

R(f) = R(bte) + EX

[
If(X)ηte(X)<0|ηte(X)|

]
.

Note, that ηtr(x)ηte(x) < 0 is equivalent to btr(x)ηte(x) < 0. Plugging in btr(x) for
the function f and the expressions for ηte and ηtr(x)ηte(x) < 0 finishes the proof.
The interpretation of Theorem 1.3 is not straightforward. From the form of the
regression function ηte of the test distribution it becomes clear that s(x) quantifies
the amount of bias in the labels. If s(x) → ±1 (we do not allow s(x) = ±1) then
the training data is maximally biased. If s(x) is positive, one has a bias towards the
positive class and vice versa. Figure 1.1 shows the dependency of ηte on the selection
index s(x) and the regression function of the training data. Two statements can

Figure 1.1 Contour lines of ηte in dependency of the selection index s(x) and the
regression function of the training data.

be made. We have p(+|x) = p(+|x, s = 1) or equivalently ηtr(x) = ηte(x) if and
only if the selection index s(x) is zero, that is p(s = 1|+, x) = p(s = 1|−, x).
This is the special case of sample selection bias often called covariate shift, where
the labels are missing at random. However, this is a much stronger condition
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then the derived condition for the equivalence of the Bayes classifiers. There as
one could have expected we only need that the selection index s(x) is zero at
the decision boundary defined as {x ∈ X | p(y|x) = 1

2}. Away from the decision
boundary one can allow for nonzero values of the selection index s(x), that is
p(s = 1|+, x) 6= p(s = 1|−, x). In the “easy” regions where the training distribution
is noise-free that is ηtr(x) = ±1 all non-zeros values for p(s = 1|y, x) are allowed.
However, note that e.g. ηtr(x) = 1 ⇔ p(+|x, s = 1) = 1 is only equivalent to
p(+|x) = 1 if p(s = 1|−, x) > 0. In general if p(s = 1|+, x) = 0 or p(s = 1|−, x) = 0
then no statements about the conditional test distribution p(y|x) can be made using
knowledge about the conditional training distribution p(y|x, s = 1).

If one has upper and lower bounds on p(s = 1|y, x), one can derive the following
corollary which gives an easier bound on the excess risk R

(
btr

)
− R

(
bte

)
than

Theorem 1.3.

Corollary 1.4 Assume |s(x)| ≤ δ for all x ∈ X. Then the Bayes classifiers bte

and btr agree at x if
∣∣ηtr

∣∣ ≥ sign
(
ηtr(x)

)
δ. The risk of the Bayes classifier of the

training distribution btr with respect to the test distribution can be upper bounded
as

R
(
btr

)
≤ R

(
bte

)
+ δ Pte

(∣∣ηtr

∣∣ < δ
)

Proof: The Bayes classifier btr makes an error if
∣∣ηtr

∣∣ ≥ sign
(
ηtr(x)

)
δ. Sup-

pose ηtr(x) > 0, then an error happens if ηtr(x) < s(x) and s(x) > 0. We have
|ηte(x)| = s(x)−ηtr(x)

1−s(x)ηtr(x) . A straightforward analysis shows that |ηte(x)| is monoton-
ically decreasing with increasing ηtr(x). Therefore the maximum of |ηte(x)| is at-
tained at ηtr(x) = 0 and its value is δ. The same bound can be derived for the other
case, which finishes the proof.
This corollary has a nice and easy interpretation. If the sampling process is not too
nasty, that is δ is small, and the probability mass of the test distribution around
the decision boundary of the training distribution is small, then using the Bayes
classifier of the training distribution is not much worse than the Bayes classifier of
the test distribution.

One can also tackle the problem from a different direction. Similar to cost-
sensitive learning the optimal decision threshold under sample selection bias for
p(y|x, s = 1) with respect to the test distribution will in general not be 1

2 . In other
words one can also define a new threshold function which leads then to an optimal
decision with respect to the test distribution but not with respect to the training
distribution. This can be done through knowledge about p(s = 1|y, x).

Theorem 1.5 Define the threshold function

Thresh(x) =
2 p(s = 1|+, x)

p(s = 1|+, x) + p(s = 1|−, x)
,
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and the new regression function ηtr of the training distribution as

ηtr(x) = 2p(+|x, s = 1)− Thresh(x).

If p(s = 1|y, x) > 0, ∀x ∈ X, then the new Bayes classifier btr(x) = sign ηtr(x) of
the training distribution and the Bayes classifier of the test distribution bte(x) agree
for all x ∈ X.

Proof: Set p(+|x) = p(−|x) = 1
2 in Equation 1.1, then one has p(+|x, s = 1) =

Thresh(x).
Of course given only information about the training distribution there is no way
to get any information about p(s = 1|y, x). But this result indicates how one can
improve the performance under sample selection bias if more information about the
sampling mechanism is available.

1.4 Bounding the selection index via unlabeled data

In the last section we indicated how bounds on the selection index can help to
identify parts of the the regression function ηte. By identification we mean that
given complete knowledge about p(y|x, s = 1) we can at least be sure about the
sign of the regression function ηte of the test distribution in some regions and
thus predict the correct label. The process of so called “partial identification of
probability measures” has been pioneered by Manski [Manski, 1989, Horowitz and
Manski, 2006].

In this section we will analyze the value of unlabeled data in order to determine
bounds on the selection index. We will distinguish two situations. In the first one
we assume that we know p(y, x|s = 1) and we are given the marginal density p(x) of
the test distribution. Both quantities can be estimated consistently from a training
sample (Xtr, Y tr) and an independent unlabeled test sample Xte. In the second one
we know p(y|x, s = 1), the marginal density p(x|s = 0) of the sample points which
have not been selected to be labeled and the probability p(s = 1) of being selected.
This corresponds to a setting where we have an unlabeled sample {Xte

i }i=1,...,T

of size T and then a subset of size S is being selected to be labeled yielding the
training sample of labeled data {(Xtr

j , Y tr
j )}j=1,...,S and a set of unlabeled data

{Xi}i=S+1,...,T where we assume without loss of generality that the data has been
reordered after the selection. Note that p(s = 1) can then be estimated via the
ration S/T .

This distinction seems at first to be rather artificial. We illustrate both cases with
an example. The first one corresponds e.g. to a test study of a new medical treat-
ment. There one has information about the patients which decided to participate in
the study. But usually no information is stored about the patients who refused to
take part in the study. However, one might know the distribution of people where
this medical treatment is supposed to be applied. This could be either the whole
population or a certain subset. The second case where one has unlabeled data is
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usually more generic. Assume a credit bank wants to assess how well their selection
of customers works out. Potential customers are all persons who applied for a loan
in the bank. The bank has labeled data of the customers who have been given a
credit and they also have data about the customers who did not get one.

We see that both cases can occur in practice. In the second case one has the
probability of selection p(s = 1) as an important additional piece of information.
We will see that without this information the knowledge about the marginal density
p(x) does not help to gain information about the selection index. However, given
that we know p(s = 1) also in the first case, then both cases are completely
equivalent. This can be easily seen from

p(x) = p(x|s = 0)p(s = 0) + p(x|s = 1)p(s = 1),

where knowledge about p(x|s = 1), p(x) and p(s = 1) identifies p(x|s = 0) and vice
versa. The following lemma restricts the selection index using information about
p(x) and p(s = 1).

Lemma 1.6 The selection index s(x) can be bounded as,

sign(ηtr(x))s(x) ≥ 1− p(s = 1|x)
p(s = 1|x)

.

Thus the Bayes classifier of training and test data agree at x ∈ X, if

|ηtr(x)| ≥ 1− p(s = 1|x)
p(s = 1|x)

.

Proof: One can decompose

p(s = 1|x) = p(s = 1|+, x)p(+|x) + p(s = 1|−, x)p(−|x).

Thus with λ = p(+|x) we get p(s = 1|+, x) = 1
λ [p(s = 1|x)− (1− λ)p(s = 1|−, x)]

and plugging this into the expression for the selection index we can lower bound
s(x) for λ ≥ 1

2 as,

s(x) =
p(s = 1|x)− p(s = 1|−, x)

p(s = 1|x)− (1− 2λ)p(s = 1|−, x)
≥ p(s = 1|x)− p(s = 1|−, x)

p(s = 1|x)

≥ p(s = 1|x)− 1
p(s = 1|x)

.

Therefore, for ηte > 0 the selection bias towards negative labels is lower bounded
by p(s=1|x)−1

p(s=1|x) . Thus, if ηtr < 0 and ηtr < p(s=1|x)−1
p(s=1|x) then we can be sure that also

ηte < 0. The other direction follows by considering the case ηte < 0.
The second assertion follows directly from Theorem 1.3. However, the following

proof is quite instructive. We have

p(+|x) = p(+|x, s = 0)p(s = 0|x) + p(+|x, s = 1)p(s = 1|x).
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In particular

p(+|x, s = 1)p(s = 1|x) ≤ p(+|x) ≤ 1− p(s = 1|x) + p(+|x, s = 1)p(s = 1|x).

Thus given that p(+|x, s = 1) ≥ 1
2 we have to ensure that p(+|x) ≥ 1

2 which using
the inequality holds if p(+|x, s = 1) ≥ 1

2 p(s=1|x) or equivalently ηtr(x) ≥ 1−p(s=1|x)
p(s=1|x) .

The other direction can be done similarly.
Note that p(s = 1|x) = p(x|s=1)

p(x) p(s = 1) and therefore the quantity in the lower
bound can be computed using the available knowledge about the marginal test
density and the selection probability. Further, note that the bound is only nontrivial
given that p(s = 1|x) < 1

2 . At a first glance, it might seem odd why the bound for the
selection index has this strange form. This has a simple explanation. If ηte(x) > 0
and we have positive selection bias, then clearly ηtr(x) > 0 and vice versa. Therefore
the selection index needs only be bounded with respect to the label of the training
data e.g. if ηtr(x) > 0 then it could be that ηte < 0 and we have a positive selection
bias. Thus only an upper bound on the positive selection bias is required.

Lemma 1.6 shows that using unlabeled data we can be sure about our estimated
function wherever |ηtr| is sufficiently large. This result holds without making any
assumption on the form of the selection. Unfortunately, the bound is only non-
trivial if p(s = 1|x) < 1

2 or equivalently p(x) < 2 p(x|s = 1)p(s = 1). This condition
holds in regions where the marginal test density is rather small with respect to the
marginal training density. Thus the total mass of the test distribution of the region
where this condition holds might be quite small.

1.5 Classifiers of small and large capacity

Until now we have analyzed how the Bayes optimal classifiers of training and test
data are related. In this section we will discuss the difference of classifiers of small
and large capacity in the case of sample selection bias. The first statement is an
easy corollary of Theorem 1.3. Let us first recall the definition of a Bayes consistent
classifier.

Definition 1.7 A Bayes or universally consistent classifier is a sequence of
classifiers fn for which for every ε > 0 and every probability measure on X× Y,

lim
n→∞

P(R(fn)−R(b) > ε) = 0,

where n denotes the sample size, fn is the selected classifier for a sample of size n

and b is the Bayes classifier.

Corollary 1.8 Let p(s = 1|y, x) > 0 for all x ∈ X and y ∈ {−1, 1}. Any Bayes
consistent classifier trained on the biased sample is also Bayes consistent for the
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test distribution if and only if

∀x ∈ X,
∣∣ηtr(x)

∣∣ ≥ sign
(
ηtr(x)

)
s(x). (1.3)

Formulating this (almost) trivial corollary in simple terms: at least in the asymp-
totic regime it does not matter if we train our classifier with the biased sample or
the unbiased sample if condition 1.3 holds. The only criterion we have to fulfill is
that we use a Bayes consistent classifier. For several classifiers Bayes consistency
has been shown e.g. KNN-classifiers [Devroye et al., 1996] or the SVM with a Gaus-
sian kernel [Steinwart, 2002] and many more results are known. A Bayes consistent
classifier has asymptotically maximal capacity because in the limit as the sample
size goes to infinity any target function can be learned.

For the moment we assume that the Bayes classifiers of training and test dis-
tribution are equal e.g. as in the covariate shift problem. What happens now if
one uses a classifier of smaller capacity? A simple example shows that classifiers of
small capacity can perform arbitrary badly even if the conditional distribution of
training and test data agrees. As a classifier of large capacity we take the SVM with
a Gaussian kernel and for the one with small capacity the SVM with a linear kernel.
We use the checkerboard data illustrated in Figure 1.2. The sample selection bias is
in this case just a covariate shift between training and test distribution. Since it is

Class 1, p=0.1 Class −1, p=0.1

Class −1, p=0.4 Class 1, p=0.4  

Class 1, p=0.7 Class −1, p=0.1

Class −1, p=0.1 Class 1, p=0.1

Figure 1.2 The checkerboard data as an example of covariate shift. Left: the training
distribution, Right: the test distribution. Each square is sampled uniformly. The proba-
bility of each square is denoted by p.

noise-free, the optimal Bayes error is zero in that case. We test the learned classifier
once on samples drawn from the training distribution and once on samples from
the test distribution. Table 1.3 shows the mean errors together with the standard
deviation over 20 runs for 200 training points. The test error of the SVM with
Gaussian kernel increases significantly but the performance is still reasonable. The
results of the linear SVM are hopeless. The linear SVM is significantly worse than
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Error on Train. Dist. Error on Test. Dist.

SVM with linear kernel 28.8 ± 8.1 72.4 ± 17.0

SVM with Gaussian kernel 5.3 ± 2.6 7.9 ± 4.5

Figure 1.3 The mean error over 20 runs of the training and test data for the checker-
board data of Figure 1.2 for a SVM with linear and Gaussian kernel with 200 datapoints.

random guessing. Such a phenomenon is also known as Anti-Learning. It is obvious
that one could modify the test distribution such that the error of the linear SVM
would be even worse. It becomes clear from this simple experiment that classifiers
of small capacity are much more sensitive to sample selection bias than classifiers
of large capacity. This can also seen directly by comparing the loss with respect to
training and test distribution:

Training dist. : Etr [l(f(X), Y )] =
∫

X

p(x|s = 1)
∫

Y

l(f(x), y) p(y|x, s = 1) dy dx,

Test dist. : Ete [l(f(X), Y )] =
∫

X

p(x)
∫

Y

l(f(x), y) p(y|x) dy dx,

A classifier of large capacity can fit the function (almost) pointwise and therefore
only the term

∫
Y

l(f(x), y) p(y|x, s = 1) dy matters. If we assume that the Bayes
classifiers of training and test distribution agree then minimization of this part will
lead in both cases to the same value of f at x. The weighting with p(x|s = 1) or p(x)
does then not matter anymore for determining the optimal function. A classifier of
small capacity can only fit a limited amount of data and pointwise minimization
is not possible. Therefore one has to minizmize Etr [l(f(X), Y )] globally. In that
case it matters a lot how the errors are weighted and therefore the weighting
with p(x|s = 1) instead of p(x) can lead to huge differences in the minimizer. In
particular, for classifiers of small capacity it is therefore very important to reweight
the loss with g(x) = p(x)

p(x|s=1) given that one has information about the marginal
test distribution p(x):

1
n

∑n
i=1 l(f(Xi), Yi) −→ 1

n

∑n
i=1 l(f(Xi), Yi)g(Xi).

For classifiers of large capacity the reweighting is (asymptotically) neither improving
the results nor does it harm if one has covariate shift as sample selection bias. See
Shimodeira [2000], Zadrozny [2004], Sugiyama and Müller [2005] and Chapters ??,
??, ?? and ?? for more on reweighting in this volume. For the SVM using different
kernels one has to distinguish between kernels which lead to Bayes consistency
and those which do not. In this respect the statement of Zadrozny [2004] that
linear SVM’s are asymptotically affected by sample selection bias can be sharpened
to that SVM’s are asymptotically affected by sample selection bias even if the
Bayes classifiers agree if one is not using a kernel which leads to a Bayes consistent
classifier.

Up to now we dealt with the special case of covariate shift. In the case of general
sample selection bias it is not clear if reweighting is a good strategy. Note, that
we know from Lemma 1.6 the larger p(s = 1|x) = p(x|s=1)

p(x) p(s = 1) the more we
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are sure about that sign(ηtr(x)) = sign(ηte(x)). However, the reweighting factor
g(x) = p(x)

p(x|s=1) is reciprocal to p(s = 1|x) which means that by reweighting
one downweights the regions of X where one is sure about that sign(ηtr(x)) =
sign(ηte(x)). On the other hand one increases the weight of regions where one does
not know if the signs of ηtr and ηte agree. It remains a point for future work to
resolve this apparent contradiction.

1.6 A nonparametric framework for general sample selection bias using adaptive
regularization

Basically we have seen in the last sections that without further assumptions on
the nature of the sample selection bias there is no way to find the correct sign
of ηte(x). Using unlabeled data from the test distribution and information about
the selection probability we could show that in regions where |ηtr(x)| > 1−p(s=1|x)

p(s=1|x)

we can be sure that sign(ηtr(x)) = sign(ηte(x)). In order to make any assertions
about the remaining regions we have to make assumptions how the selection bias
was generated. The existing approaches for the general case of sample selection
bias make explicit parametric assumptions on the relationship between training
and test distribution e.g. the bivariate probit model of Heckman [Heckman, 1979]
or other more general models [Dubin and Rivers, 1989]. It is often questionable if
these assumptions hold in real data. A natural assumption should be one which is
general enough to be true for a large class of data sets. In this remaining part we
propose a nonparametric principle to deal with general sample selection bias under
the assumption that one has a sample of unlabeled data from the test distribution
and eventually knows the selection probability p(s = 1). Both assumptions are
fulfilled in the traditional setting of sample selection bias, see Section 1.4 for a
discussion. The main underlying principle will be a modified cluster assumption.
The cluster assumption has been proposed in semi-supervised learning (SSL) and
can be formulated as follows.

Cluster assumption: Two points which can be connected by a path through
high-density regions are likely to have the same label.

In semi-supervised learning one usually assumes that labeled and unlabeled data
come from the same distribution. In the case of sample selection bias it makes only
sense to use the cluster structure of the unlabeled data from the test distribution.
Therefore we modify slightly the cluster assumption of SSL

Modified Cluster assumption: Two points which can be connected by a path
through high-density regions of the test data are likely to have the same label.

We think that the modified cluster assumption is quite natural and holds for a
large class of data sets.

The other important question is which part of the labels of the training data
we should use. In principle, we know by Lemma 1.6 that without any assumptions
we can only trust the sign of the regression function of the training distribution if
|ηtr(x)| exceeds a certain threshold. This implies that in the worst case we should
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not use any information on Y of the training data in regions where |ηtr(x)| is
below the threshold. On the other hand if one has random selection or the labels
are missing at random then we have p(y|x, s = 1) = p(y|x) and it would be not
reasonable to discard any label information. Both ways can be integrated into the
learning framework using different weights in the loss function.

As learning framework we will use regularized empirical risk minimization,

fn = arg min
f∈F

1
n

n∑
i=1

l(f(Xi), Yi) γ(Xi) + µΩ(f),

where Ω : F → R+ denotes the regularization functional, l the loss function and
γ : X → R+ a weighting function. In order to implement the modified cluster
assumption we need a regularizer Ω which enforces the cluster structure in the test
data, that is it should prefer functions which are almost constant on the clusters
and are allowed to change in between. A similar regularization principle is used
in semi-supervised learning (SSL), where one uses unlabeled data to build graph-
based regularizers which adapt to the cluster structure of training and test data,
see Bousquet et al. [2004]. We will show that the adaptation to the cluster structure
of the test data leads to a modification of an existing learning algorithm for SSL.
Our experiments indicate that this modification leads to robustness against sample
selection bias.

1.6.1 Adaptive graph-based regularization

Our input space X will be in the following always a compact subset of the d-
dimensional Euclidean space Rd. A regularizer which implements the cluster as-
sumption for SSL where training and test distribution are equal can be built using
a graph based on training and test data, see Bousquet et al. [2004], Hein [2006].

take the sample of test and training data {Xi}n
i=1 as the set of vertices,

edge weight w(Xi, Xj) = 1
hd k(‖Xi −Xj‖ /h) if ‖Xi −Xj‖ ≤ h, otherwise no

edge, where k : R+ → R+ is the kernel function, h > 0 is the neighborhood
parameter of the resulting graph and d the dimension of the input space.

The data-dependent graph-based regularization functional is then defined as:

S̃n,h,λ(f) =
1

2n2 h2

n∑
i,j=1

w(Xi, Xj)
(d(Xi)d(Uj))λ

(f(Xi)− f(Xj))2,

where d(Xi) = 1
n

∑n
j=1 w(Xi, Xj) is the degree function. The parameter λ > 0

controls the influence of the density as can be seen from the following theorem.

Theorem 1.9 [Hein, 2006] Let {Xi}n
i=1 be an i.i.d. sample of a probability measure

P on a compact set X ⊂ Rd. If f ∈ C3(X) and h → 0 and nhd/ log n → ∞, then
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almost surely

lim
n→∞

S̃h,n,λ(f) =
C2

2Cλ
1

∫
X

‖∇f‖2 p(x)2−2λ dx,

where C1, C2 are constants depending on the kernel function k and the dimension
d.

This theorem has been strengthened to uniform convergence over the class of Hölder
functions on X and still holds when the data lies on a low-dimensional submanifold
M , see Hein [2006]. Since ‖∇f‖ is weighted by the density, this functional is only
small if the function varies only very little in high-density regions, whereas variations
in low-density regions are hardly penalized. However, in our setting it cannot be
applied directly since training and test data are not from the same distribution. In
order to implement the cluster structure of the test data we need the density of
the test data in the limit functional. One can achieve this via reweighting of the
regularization functional S̃n,h,λ(f). For simplicity we set λ = 0 in the following.
But the results can be generalized to all values of λ. We have the following setting:

{Xtr
i }n

i=1 from the training distribution p(x|s = 1),

{Xte
j }m

j=1 from the test distribution p(x).

concatenated sample
U = {Xtr

1 , . . . , Xtr
n , Xte

1 , . . . , Xte
m}, l = n + m.

Then we define two kernel density estimators based on {Xtr
i }n

i=1 and {Xte
i }m

i=1,

dXtr(x) = 1
n hd

n

∑n
i=1 k

(
‖x−Xi‖/ hn

)
,

dXte(x) = 1
m hd

m

∑m
i=1 k

(
‖x− Zi‖/ hm

)
,

where hm and hn are the bandwidth of the kernel density estimators. One can
use alternatively any other (consistent) density estimator. An estimate2 of the
reweighting function g(x) = p(x)

p(x|s=1) can be computed as ĝ(x) = dXte (x)
dXtr (x) on the

training points. We define:

φ(Ui) =

{
ĝ(Ui) , if i ≤ n, training points

1 , i > n, test points.

Moreover, we define the adaptive regularization functional which implements the
modified cluster assumption as:

Sl,h(f) =
1

2l2 h2

l∑
i,j=1

wij φ(Ui) φ(Uj) (f(Ui)− f(Uj))2,

where the weights wij = w(Ui, Uj) are defined as before with a common scaling
function h.

2. Estimates of a certain function g will be denoted by ĝ.
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Theorem 1.10 Let X ⊂ Rd be compact and f , p(x), p(x|s = 1) ∈ C3(X).
Furthermore let p(x) and p(x|s = 1) be lower bounded and p(x|s = 1) be absolutely
continuous with respect to p(x), then if

n finite, m →∞, hm → 0 such that mhd
m →∞ and l hd →∞.

or

n →∞, hn → 0 such that nhd
n/ log n →∞,

m →∞, hm → 0 such that mhd
m/ log m →∞,

and h = max{hn, hm},

it holds almost surely,

lim
l→∞

Sh,l(f) =
C2

2

∫
X

‖∇f‖2 p(x)2 dx,

where C2 are constants depending on the kernel function k.

Proof: We sketch the proof which is similar to Hein [2006]. First one shows that
ĝ(Ui) and g(Ui) are close with high probability. Furthermore the functional Sl,h(f)
can be decomposed in two one-sample U -statistics and one two-sample U -statistic.
Then one uses Bernstein-type large deviation inequalities for U -statistics to show
the convergence.

1.6.2 The learning problem

We have shown that the adaptive regularization functional Sl,h(f) adapts to the
cluster structure of the test data as desired. Similar to existing SSL algorithms, see
Zhou et al. [2004], we formulate now the learning problem as a regularized least
squares problem:

F = arg min
f∈Rl

n∑
i=1

(f(Xi)− Yi)2γ̂(Xi) + µSl,h(f), (1.4)

where we reweight the loss with different functions γ̂. In the functional Sl,h(f) we
use weights of the form

w′(Ui, Uj) =

{
0 , if i, j ≤ n,

w(Ui, Uj) , otherwise.

The solution of this regularized least squares problem can be computed as the
solution of the linear system

(Γ̂ + µ∆′
l)F = Γ̂Y,

where ∆′
l = D′−W ′ is the graph Laplacian of the graph with weights w′(Ui, Uj) and

degree function d′(Ui) =
∑l

j=1 w′(Ui, Uj). D′ and Γ̂ denote the diagonal matrices
with the functions d′, γ̂ on the diagonal. Note that we have merged the remaining
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factors of n, l and h in Sl,h(f) into the regularization constant µ.
Three different weighting functions γ̂ will be used in the loss function in the

following.

Standard (SL): γ̂(x) = 1, standard least squares loss.

Reweighting I (RL1): γ̂(x) = ĝ(x), if the sample selection type is random or the
labels are misssing at random, this reweighting leads to an unbiased estimate of the
true loss.

Reweighting II (RL2): Let f̂ be a classifier only based on the training data. Then
we define for c > 0,

γ̂(Xi) =

{
ĝ(Xi) , if |f̂(Xi)| ≥ c ĝ(Xi)−p(s=1)

p(s=1) ,

0 , otherwise
.

Note that
p(x)

p(x|s=1)−p(s=1)

p(s=1) = 1−p(s=1|x)
p(s=1|x) . The last weighting function is motivated by

Lemma 1.6 and only keeps the labels which are not potentially misleading. As a
classifier f̂ for the training data we use the SVM with a Gaussian kernel and the
squared hinge loss since the minimizer of the squared hinge loss is given by the
regression function

ηtr = arg min
f

EPtr

[
max{0, 1− Y f(X)}2

]
.

1.6.3 Difference to semi-supervised learning

The algorithm in Equation (1.4) looks very similar to existing SSL algorithms.
However, there is a fundamental difference between SSL and our framework. Namely
in SSL one assumes that training and test data come from the same distribution.
A large class of SSL algorithms transfer the labels to the unlabeled points by
propagating them along the data, thereby using manifold and cluster structure of
the data. Since training and test data come from the same distribution, the cluster
structure obviously coincides for training and test data. However, under sample
selection bias this assumption need not hold. In general the cluster structure of
training and test data will be different. Therefore under sample selection bias only
the cluster structure of the test data should be used in order to propagate the labels.
Therefore we have set in the proposed algorithm the adjacency matrix between the
training points to zero. Thereby we ensure that label information only propagates
along the test data. We would like to emphasize that the change of the adjacency
matrix does not affect the limit of the regularization functional stated in Theorem
1.10.

The change of the adjacency matrix mainly makes a difference if the number of
training points is larger or at least on the scale of the number of test points. In
this case the proposed algorithm can also be seen as a robust extension of SSL.
In the sense that the algorithm is robust to small differences between test and
training distribution and performs as good as standard SSL when training and test
distribution are equal. In the extreme case of SSL where one has only a few labeled
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points but lots of unlabeled ones the difference of both approaches is negligible,
since it is then likely that a labeled point is only connected to unlabeled points. We
refer to Chawla and Karakoulas [2005] for further discussion of the relation of SSL
and learning under sample selection bias.

1.7 Experiments

We have done experiments on a specific toy data set, where different types of
sample selection bias could be easily simulated. We compare all combinations of the
different losses, SL and RL1 and RL2, and standard and reweighted regularization
functional, S̃(f) resp. S(f), abbreviated as SR and AR. The combination SL+SR

is very similar to existing SSL algorithms, see Zhu et al. [2003], Zhou et al. [2004].
In all experiments we use a symmetric kNN -graph with k = {5, 10, 20, 40} and

Gaussian weights, where the σ of the Gaussian is chosen as the average kNN -
distance. The parameters hn and hm for the kernel density estimation are set as
the average kNN -distance 3 for kn = log(n) + 10 and km = log(m) + 10. For the
regularization parameter µ we use log10 µ = {−4,−2, 0, 2, 4}. The best parameters
are found by cross-validation. In order to be consistent with the loss we use for
learning, we use for the cross-validation the same loss, that is SL, RL1 or RL2. In
all experiments the total number of training and test points is fixed to 1000. All
experiments are repeated 20 times. For numerical stability and to limit the influence
of outliers we cut off the estimate of ĝ used in RL1 and RL2 at 10 and 0.1. For the
weighting function γ of the loss RL2 we need to determine the classifier f̂ and the
constant c. The classifier f̂ is a SVM with squared hinge loss where we set the error
parameter C to C = 10 in all experiments. We use the implementation described in
Chapelle [2007]. The parameter c is determined in the following way. We choose the
largest c such that at least half of the labels of the positive and negative class are
used. Here we have a certain trade-off between keeping labeled data and discarding
it in regions where we do not trust the labels.

In all experiments the test distribution is the same. The test class conditional
distributions are two two-dimensional Gaussians of isotropic variance σ = 0.6.
The means are at (−1, 0) and (1, 0). The class probabilities are equal, that is
p(+) = p(−) = 0.5. The distribution is shown in Figure 1.4. We will always explore
the two scenarios of unlabeled data discussed in Section 1.4.

Unlabeled data type 1: As training data we have a sample from p(y, x|s = 1). As
unlabeled data we are given an independent sample of the marginal test density
p(x).

Unlabeled data type 2: We are given a sample of the marginal test density p(x).

3. This choice for hn and hm satisfies the condition of Theorem 1.10 since the kNN -

distance Rk is prop. to
(

k
n

) 1
d .
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Figure 1.4 A sample of 5000 points of the test distribution with contour lines of p(+|x).

Some of them are selected to be labeled via p(s = 1|x) and the labels are drawn
from p(y|x, s = 1). This will be the training set. The rest of the sample which
was not selected will be the unlabeled data. It has distribution p(y, x|s = 0). The
marginal test density is estimated in this case with all the samples.

We will always report results for both cases. The amount of unlabeled data of type
1 is chosen such that the amount of training and test data is equal for both cases.
Moreover, apart from the test error for the parameters chosen by cross validation
on the training set, we also report the minimal test error over all parameters. This
is done in order to check if model selection works by cross validation. We will see
in the case of general sample selection bias that this is not the case.

1.7.1 Random selection

This is the ideal learning scenario. Test and Training data come from the same
distribution. Here using the losses SL and RL1 and the regularization SR and
AR should not make any difference except that with RL and AR we expect more
variance since the estimation of ĝ(x) = dXte (x)

dXtr (x) is noisy. Our experimental results
verify this fact. Astonishingly also using the loss RL2 does not lead to a significant
reduction of performance despite the fact that we discard up to 50% of the labels.
The reason is possibly that this dataset has a cluster structure and therefore our
SSL-type algorithm performs well even with only a small number of labeled points.
1.7.2 Covariate Shift

In this scenario the conditional distributions of training and test data agree:
p(y|x, s = 1) = p(y|x). However, the marginal distribution p(x|s = 1) and p(x)
differ. The selection probability p(s = 1|x) has the form,

p(s = 1|x) =

{
8
10

|x1|
1+|x1| , if x1 < 0,

5
10

|x1|
1+|x1| , otherwise.
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Table 1.1 Results for the random selection shift.

Unlabeled 1 SL+SR RL1+SR RL2+SR SL+AR RL1 +AR RL2 + AR

Min. Test Err. 4.1± 0.7 4.1± 0.8 4.1± 0.7 4.1± 0.8 4.1± 0.8 4.1± 0.7

Error from CV 4.4± 0.8 4.4± 0.8 4.7± 0.9 4.5± 0.8 4.5± 0.8 4.7± 1.0

Unlabeled 2 SL+SR RL1+SR RL2+SR SL+AR RL1 +AR RL2 + AR

Min. Test Err. 4.3± 1.0 4.3± 1.0 4.4± 1.1 4.3± 0.9 4.3± 1.0 4.4± 1.1

Error from CV 4.9± 1.1 4.8± 1.0 4.9± 1.1 4.9± 1.1 4.9± 1.0 5.0± 1.1

This form of selection implies that only a small number of points are sampled in
the region of the decision boundary. Moreover, we sample more points of the red
class than of the blue class, see Figure 1.5. This corresponds to a scenario where
the training set was generated by only selecting cases where the label is obvious
and where one has more samples of one class than the other one, despite in the test
case both classes occur equally often.

The results show that neither one of the combinations is significantly better. As
in the case of random selection the combinations with RL2-loss are slightly worse
which is due to their reduced amount of labels they use. The loss on unlabeled data
of type 2 is slightly higher than for type 2. The reason is that p(x|s = 0) is more
concentrated on the decision boundary than p(x) and therefore one has more label
noise.

Figure 1.5 Covariate Shift: Left: The training set of the covariate shift data drawn
from p(y, x|s = 1), Right: The set of unlabeled points of type 2. Both plots show also the
contour lines of p(y|x, s = 1) resp. p(y|x, s = 0) (the differences come from interpolation
in Matlab).
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Table 1.2 Results for the covariate shift.

Unlabeled 1 SL+SR RL1+SR RL2+SR SL+AR RL1 +AR RL2 + AR

Min. Test Err. 4.7± 0.9 4.7± 0.8 5.0± 0.9 4.7± 0.9 4.7± 0.8 4.9± 0.8

Error from CV 5.3± 0.9 5.4± 1.1 5.7± 1.0 5.4± 0.9 5.4± 0.8 5.6± 1.1

Unlabeled 2 SL+SR RL1+SR RL2+SR SL+AR RL1 +AR RL2 + AR

Min. Test Err. 6.1± 1.1 6.2± 1.1 6.5± 1.2 6.2± 1.0 6.1± 1.0 6.4± 1.2

Error from CV 6.8± 1.3 6.9± 1.4 7.2± 1.2 6.7± 1.1 6.7± 1.1 7.1± 1.2

1.7.3 General sample selection bias

In this case both the conditional probability and the marginal density differ between
training and test data. The selection probability p(s = 1|x) is given by

p(s = 1|x) =
1
2

〈w, x1〉2

〈w, x1〉2 + 2
+

1
10

and the conditional probability for the selected samples is given by

p(y|x, s = 1) = θ(x) pmod(y|x) + (1− θ(x)) p(y|x),

where θ(x) = 0.8 exp(− ‖x‖2
20σ2

2
) with σ2 = 0.4 and pmod(y|x) is the conditional

distribution generated by two Gaussians with means at (1, 1) and (−1,−1) and
variance σ2 = 0.4 as class conditional probabilities p(x|+) and p(x|−) and equal
class probabilities p(+) = p(−) = 0.5. Thus we can see the training conditional
distribution p(y|x, s = 1) as the test conditional distribution which is perturbed by
another conditional distribution near the origin.

The results show that the use of the RL2-loss performs in this case significantly
better than all other combinations of loss and regularizers. The adaptive regularizer
is slightly better than the standard regularizers for the RL2-loss but the difference
is not significant. The success of the RL2-loss is basically due to the fact that labels
are discarded where we are not sure about them. This also helps to select the correct
model as we can see from the minimal possible test errors over all parameters. All
combinations of loss and regularizer have roughly the same minimal test error. The
problem is that one can not identify the correct model using cross-validation on
the training set since the conditional probability of the training data p(y|x, s = 1)
and the test data p(y|x) differ. Therefore the RL2 loss outperforms the other losses
since it discards labels in regions where we are not sure about them.

1.8 Conclusion

We have discussed the general problem of sample selection bias from a decision
theoretic perspective. We have shown that the information about unlabeled data
helps to restrict the difference between training and test distribution. It remains
an open question if there exist other ways of characterizing additional information
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Table 1.3 Results for general sample selection bias.

Unlabeled 1 SL+SR RL1+SR RL2+SR SL+AR RL1 +AR RL2 + AR

Min. Test Err. 5.0± 0.8 5.2± 0.9 4.9± 0.7 5.0± 0.8 5.0± 0.9 4.8± 0.8

Error from CV 7.3± 2.0 7.4± 1.7 6.4± 3.8 7.6± 1.8 7.5± 1.6 5.3± 0.8

Unlabeled 2 SL+SR RL1+SR RL2+SR SL+AR RL1 +AR RL2 + AR

Min. Test Err. 5.7± 1.4 5.8± 1.3 5.6± 1.0 5.5± 1.3 5.5± 1.3 5.2± 0.8

Error from CV 9.0± 3.0 9.1± 3.1 6.3± 1.1 9.1± 3.2 9.6± 3.0 6.0± 0.9

Figure 1.6 General Sample Selection: Left: The training data for the general sample
selection problem, Right: Unlabeled data of type 2 with labels drawn from p(y|x, s = 0).
Both plots show also the contour lines of p(y|x, s = 1) resp. p(y|x, s = 0).

about the learning problem which could restrict the type of sample selection bias.
The problem of general sample selection bias cannot be solved without additional

assumptions on the data generating process. Another open question is the charac-
terization of natural assumptions on how training and test data are related. We
have discussed a modified cluster assumption which seems reasonable for a large
class of datasets. Another interesting direction would be the integration of causal
relationships into a model about sample selection bias.
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