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Abstract

Many problems in machine learning and statistics can be formulated as (general-
ized) eigenproblems. In terms of the associated optimization problem, comput-
ing linear eigenvectors amounts to finding critical points of a quadratic function
subject to quadratic constraints. In this paper we show that a certain class of con-
strained optimization problems with nonquadratic objective and constraints can be
understood as nonlinear eigenproblems. We derive a generalization of the inverse
power method which is guaranteed to converge to a nonlinear eigenvector. We
apply the inverse power method to 1-spectral clustering and sparse PCA which
can naturally be formulated as nonlinear eigenproblems. In both applications we
achieve state-of-the-art results in terms of solution quality and runtime. Moving
beyond the standard eigenproblem should be useful also in many other applica-
tions and our inverse power method can be easily adapted to new problems.

1 Introduction

Eigenvalue problems associated to a symmetric and positive semi-definite matrix are quite abundant
in machine learning and statistics. However, considering the eigenproblem from a variational point
of view using Courant-Fischer-theory, the objective is a ratio of quadratic functions, which is quite
restrictive from a modeling perspective. We show in this paper that using a ratio of p-homogeneous
functions leads quite naturally to a nonlinear eigenvalue problem, associated to a certain nonlin-
ear operator. Clearly, such a generalization is only interesting if certain properties of the standard
problem are preserved and efficient algorithms for the computation of nonlinear eigenvectors are
available. In this paper we present an efficient generalization of the inverse power method (IPM)
to nonlinear eigenvalue problems and study the relation to the standard problem. While our IPM
is a general purpose method, we show for two unsupervised learning problems that it can be easily
adapted to a particular application.

The first application is spectral clustering [21]. In prior work [5] we proposed p-spectral clustering
based on the graph p-Laplacian, a nonlinear operator on graphs which reduces to the standard graph
Laplacian for p = 2. For p close to one, we obtained much better cuts than standard spectral clus-
tering, at the cost of higher runtime. Using the new IPM, we efficiently compute eigenvectors of the
1-Laplacian for 1-spectral clustering. Similar to the recent work of [20], we improve considerably
compared to [5] both in terms of runtime and the achieved Cheeger cuts. However, opposed to the
suggested method in [20] our IPM is guaranteed to converge to an eigenvector of the 1-Laplacian.

The second application is sparse Principal Component Analysis (PCA). The motivation for sparse
PCA is that the largest PCA component is difficult to interpret as usually all components are nonzero.
In order to allow a direct interpretation it is therefore desirable to have only a few features with
nonzero components but which still explain most of the variance. This kind of trade-off has been
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widely studied in recent years, see [15] and references therein. We show that also sparse PCA has a
natural formulation as a nonlinear eigenvalue problem and can be efficiently solved with the IPM.

All proofs had to be omitted due to space restrictions and can be found in the supplementary material.

2 Nonlinear Eigenproblems

The standard eigenproblem for a symmetric matric A ∈ Rn×n is of the form

Af − λf = 0, (1)

where f ∈ Rn and λ ∈ R. It is a well-known result from linear algebra that for symmetric matrices
A, the eigenvectors of A can be characterized as critical points of the functional

FStandard(f) =
〈f,Af〉
‖f‖22

. (2)

The eigenvectors of A can be computed using the Courant-Fischer Min-Max principle. While the
ratio of quadratic functions is useful in several applications, it is a severe modeling restriction. This
restriction however can be overcome using nonlinear eigenproblems. In this paper we consider
functionals F of the form

F (f) =
R(f)
S(f)

, (3)

where with R+ = {x ∈ R |x ≥ 0} we assume R : Rn → R+, S : Rn → R+ to be convex,
Lipschitz continuous, even and positively p-homogeneous1 with p ≥ 1. Moreover, we assume that
S(f) = 0 if and only if f = 0. The condition that R and S are p-homogeneous and even will imply
for any eigenvector v that also αv for α ∈ R is an eigenvector. It is easy to see that the functional of
the standard eigenvalue problem in Equation (2) is a special case of the general functional in (3).

To gain some intuition, let us first consider the case where R and S are differentiable. Then it holds
for every critical point f∗ of F ,

∇F (f∗) = 0 ⇐⇒ ∇R(f∗)− R(f∗)
S(f∗)

· ∇S(f∗) = 0 .

Let r, s : Rn → Rn be the operators defined as r(f) = ∇R(f), s(f) = ∇S(f) and λ∗ = R(f∗)
S(f∗) ,

we see that every critical point f∗ of F satisfies the nonlinear eigenproblem

r(f∗)− λ∗ s(f∗) = 0, (4)

which is in general a system of nonlinear equations, as r and s are nonlinear operators. If R and S
are both quadratic, r and s are linear operators and one gets back the standard eigenproblem (1).

Before we proceed to the general nondifferentiable case, we have to introduce some important con-
cepts from nonsmooth analysis. Note that F is in general nonconvex and nondifferentiable. In the
following we denote by ∂F (f) the generalized gradient of F at f according to Clarke [9],

∂F (f) = {ξ ∈ Rn
∣∣ F 0(f, v) ≥ 〈ξ, v〉 , for all v ∈ Rn},

where F 0(f, v) = limg→f, t→0 sup F (g+tv)−F (g)
t . In the case where F is convex, ∂F is the subdif-

ferential of F and F 0(f, v) the directional derivative for each v ∈ Rn. A characterization of critical
points of nonsmooth functionals is as follows.

Definition 2.1 ([7]) A point f ∈ Rn is a critical point of F , if 0 ∈ ∂F .

This generalizes the well-known fact that the gradient of a differentiable function vanishes at a
critical point. We now show that the nonlinear eigenproblem (4) is a necessary condition for a
critical point and in some cases even sufficient. A useful tool is the generalized Euler identity.

Theorem 2.1 ([22]) Let R : Rn → R be a positively p-homogeneous and convex continuous func-
tion. Then, for each x ∈ Rn and r∗ ∈ ∂R(x) it holds that 〈x, r∗〉 = pR(x).

1A function G : Rn → R is positively homogeneous of degree p if G(γx) = γpG(x) for all γ ≥ 0.

2



The next theorem characterizes the relation between nonlinear eigenvectors and critical points of F .

Theorem 2.2 Suppose that R,S fulfill the stated conditions. Then a necessary condition for f∗
being a critical point of F is

0 ∈ ∂R(f∗)− λ∗ ∂S(f∗), where λ∗ =
R(f∗)
S(f∗)

. (5)

If S is continuously differentiable at f∗, then this is also sufficient.

Proof: Let f∗ fulfill the general nonlinear eigenproblem in (5), where r∗ ∈ ∂R(f∗), s∗ ∈ ∂S(f∗),
such that r∗ − λ∗ s∗ = 0. Then by Theorem 2.1,

0 = 〈f∗, r∗〉 − λ∗ 〈f∗, s∗〉 = pR(f∗)− p λ∗ S(f∗),

and thus λ∗ = R(f∗)/S(f∗). As R,S are Lipschitz continuous, we have, see Prop. 2.3.14 in [9],

∂
(R
S

)
(f) ⊆ S(f) ∂R(f)−R(f) ∂S(f)

S(f)2
. (6)

Thus if f∗ is a critical point, that is 0 ∈ ∂F (f∗), then 0 ∈ ∂R(f∗) − R(f∗)
S(f∗) ∂S(f∗) given that

f∗ 6= 0. Moreover, by Prop. 2.3.14 in [9] we have equality in (6), if S is continuously differentiable
at f∗ and thus (5) implies that f∗ is a critical point of F . �

Finally, the definition of the associated nonlinear operators in the nonsmooth case is a bit tricky as
r and s can be set-valued. However, as we assume R and S to be Lipschitz, the set where R and S
are nondifferentiable has measure zero and thus r and s are single-valued almost everywhere.

3 The inverse power method for nonlinear Eigenproblems

A standard technique to obtain the smallest eigenvalue of a positive semi-definite symmetric matrix
A is the inverse power method [12]. Its main building block is the fact that the iterative scheme

Afk+1 = fk (7)

converges to the smallest eigenvector of A. Transforming (7) into the optimization problem

fk+1 = arg min
u

1
2
〈u,Au〉 −

〈
u, fk

〉
(8)

is the motivation for the general IPM. The direct generalization tries to solve

0 ∈ r(fk+1)− s(fk) or equivalently fk+1 = arg min
u

R(u)−
〈
u, s(fk)

〉
, (9)

where r(f) ∈ ∂R(f) and s(f) ∈ ∂S(f). For p > 1 this leads directly to Algorithm 2, however
for p = 1 the direct generalization fails. In particular, the ball constraint has to be introduced in
Algorithm 1 as the objective in the optimization problem (9) is otherwise unbounded from below.
(Note that the 2-norm is only chosen for algorithmic convenience). Moreover, the introduction of
λk in Algorithm 1 is necessary to guarantee descent whereas in Algorithm 2 it would just yield a
rescaled solution of the problem in the inner loop (called inner problem in the following).

For both methods we show convergence to a solution of (4), which by Theorem 2.2 is a neces-
sary condition for a critical point of F and often also sufficient. Interestingly, both applications are
naturally formulated as 1-homogeneous problems so that we use in both cases Algorithm 1. Never-
theless, we state the second algorithm for completeness. Note that we cannot guarantee convergence
to the smallest eigenvector even though our experiments suggest that we often do so. However, as
the method is fast one can afford to run it multiple times with different initializations and use the
eigenvector with smallest eigenvalue.

The inner optimization problem is convex for both algorithms. In turns out that both for 1-spectral
clustering and sparse PCA the inner problem can be solved very efficiently, for sparse PCA it has
even a closed form solution. While we do not yet have results about convergence speed, empirical
observation shows that one usually converges quite quickly to an eigenvector.
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Algorithm 1 Computing a nonlinear eigenvector for convex positively p-homogeneous functions R
and S with p = 1

1: Initialization: f0 = random with
∥∥f0

∥∥ = 1, λ0 = F (f0)
2: repeat
3: fk+1 = arg min

‖u‖2≤1

{
R(u)− λk

〈
u, s(fk)

〉}
where s(fk) ∈ ∂S(fk)

4: λk+1 = R(fk+1)/S(fk+1)

5: until |λ
k+1−λk|
λk < ε

6: Output: eigenvalue λk+1 and eigenvector fk+1.

Algorithm 2 Computing a nonlinear eigenvector for convex positively p-homogeneous functions R
and S with p > 1

1: Initialization: f0 = random, λ0 = F (f0)
2: repeat
3: gk+1 = arg min

u

{
R(u)−

〈
u, s(fk)

〉}
where s(fk) ∈ ∂S(fk)

4: fk+1 = gk+1/S(gk+1)1/p

5: λk+1 = R(fk+1)/S(fk+1)

6: until |λ
k+1−λk|
λk < ε

7: Output: eigenvalue λk+1 and eigenvector fk+1.

To our best knowledge both suggested methods have not been considered before. In [4] they propose
an inverse power method specially tailored towards the continuous p-Laplacian for p > 1, which
can be seen as a special case of Algorithm 2. In [15] a generalized power method has been proposed
which will be discussed in Section 5. Finally, both methods can be easily adapted to compute the
largest nonlinear eigenvalue, which however we have to omit due to space constraints.

Lemma 3.1 The sequences fk produced by Alg. 1 and 2 satisfy F (fk) > F (fk+1) for all k ≥ 0 or
the sequences terminate.

Theorem 3.1 The sequences fk produced by Algorithms 1 and 2 converge to an eigenvector f∗
with eigenvalue λ∗ ∈

[
0, F (f0)

]
in the sense that it solves the nonlinear eigenproblem (5). If S is

continuously differentiable at f∗, then F has a critical point at f∗.

Throughout the proofs, we use the notation Φfk(u) = R(u)−λk
〈
u, s(fk)

〉
and Ψfk(u) = R(u)−〈

u, s(fk)
〉

for the objectives of the inner problems in Algorithms 1 & 2, respectively.

Proof of Lemma 3.1 for Algorithm 1: First note that the optimal value of the inner problem is
non-positive as Φfk(0) = 0. Moreover, as Φfk is 1-homogeneous, the minimum of Φfk is always
attained at the boundary of the constraint set. Thus any fk fulfills

∥∥fk∥∥2

2
= 1 and thus is feasible,

and

min‖f‖22≤1 Φfk(f) ≤ Φfk(fk) = R(fk)− λk
〈
fk, s(fk)

〉
= R(fk)− F (fk) · S(fk) = 0 ,

where we used
〈
fk, s(fk)

〉
= S(fk) from Theorem 2.1. If the optimal value is zero, then fk is a

possible minimizer and the sequence terminates and fk is an eigenvector see proof of Theorem 3.1
for Algorithm 1. Otherwise the optimal value is negative and at the optimal point fk+1 we get
R(fk+1) < λk

〈
fk+1, s(fk)

〉
. The definition of the subdifferential s(fk) together with the 1-

homogeneity of S yields

S(fk+1) ≥ S(fk) +
〈
fk+1 − fk, s(fk)

〉
=
〈
fk+1, s(fk)

〉
,

and finally F (fk+1) = R(fk+1)
S(fk+1)

< λk = F (fk). �

Proof of Theorem 3.1 for Algorithm 1: By Lemma 3.1 the sequence F (fk) is monotonically
decreasing. By assumption S and R are nonnegative and hence F is bounded below by zero. Thus
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we have convergence towards a limit

λ∗ = lim
k→∞

F (fk) .

Note that
∥∥fk∥∥2

2
≤ 1 for every k, thus the sequence fk is contained in a compact set, which implies

that there exists a subsequence fkj converging to some element f∗. As the sequence F (fkj ) is a
subsequence of a convergent sequence, it has to converge towards the same limit, hence also

lim
j→∞

F (fkj ) = λ∗ .

As shown before, the objective of the inner optimization problem is nonpositive at the optimal point.
Assume now that min‖f‖22≤1 Φf∗(f) < 0. Then the vector f∗∗ = arg min

‖f‖22≤1

Φf∗(f) satisfies

R(f∗∗) < λ∗ 〈f∗∗, s(f∗)〉 = λ∗ (S(f∗) + 〈f∗∗ − f∗, s(f∗)〉) ≤ λ∗S(f∗∗) ,

where we used the definition of the subdifferential and the 1-homogeneity of S. Hence

F (f∗∗) < λ∗ = F (f∗) ,

which is a contradiction to the fact that the sequence F (fk) has converged to λ∗. Thus we must
have min‖f‖22≤1 Φf∗(f) = 0, i.e. the function Φf∗(f) is nonnegative in the unit ball. Using the fact
that for any α ≥ 0,

Φf∗(αf) = αΦf∗ ,
we can even conclude that the function Φf∗(f) is nonnegative everywhere, and thus minf Φf∗(f) =
0. Note that Φf∗(f∗) = 0, which implies that f∗ is a global minimizer of Φf∗ , and hence

0 ∈ ∂Φf∗(f∗) = ∂R(f∗)− λ∗∂S(f∗) ,

which implies that f∗ is an eigenvector with eigenvalue λ∗. Note that this argument was independent
of the choice of the subsequence, thus every convergent subsequence converges to an eigenvector
with the same eigenvalue λ∗. Clearly we have λ∗ ≤ F (f0). �

The following lemma is useful in the convergence proof of Algorithm 2.

Lemma 3.2 Let R be a convex, positively p-homogeneous function with p ≥ 1. Then for any
x ∈ Rn, t ≥ 0 and any r∗ ∈ ∂R(x) we have tp−1r∗ ∈ ∂R(tx).

Proof: Using the definition of the subgradient, we have for any y ∈ Rn and any t ≥ 0,

tpR(y) ≥ tpR(x) + tp 〈r∗, y − x〉 .

Using the p-homogeneity of R, we can rewrite this as

R(ty) ≥ R(tx) +
〈
tp−1r∗, ty − tx

〉
,

which implies tp−1r∗ ∈ ∂R(tx). �

The following Proposition generalizes a result by Zarantonello [23].

Proposition 3.1 Let R : Rn → R be a convex, continuous and positively p-homogeneous and even
functional and ∂R(f) its subdifferential at f . Then it holds for any f, g ∈ Rn and r(f) ∈ ∂R(f),

|〈r(f), g〉| ≤ 〈r(f), f〉1−
1
p 〈r(g), g〉

1
p = p ·R(f)1− 1

pR(g)
1
p .

Proof: First observe that for any k points x0, . . . xk−1 ∈ Rn, the subdifferential inequality yields

R(xl) ≥ R(xl−1) + 〈r(xl−1), xl − xl−1〉 , ∀1 ≤ l ≤ k − 1
R(x0) ≥ R(xk−1) + 〈r(xk−1), x0 − xk−1〉 ,

and hence, by summing up,

〈r(x0), x1 − x0〉+ · · ·+ 〈r(xk−2), xk−1 − xk−2〉+ 〈r(xk−1), x0 − xk−1〉 ≤ 0 . (10)
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Let now f, g ∈ Rn, and r(f) ∈ ∂R(f), r(g) ∈ ∂R(g). We construct a set of 2m points
x0, . . . x2m−1 in Rn, where m ∈ N, as follows:

xi =
{

i+1
m f , 0 ≤ i ≤ m− 1

2m−1−i
m g , m ≤ i ≤ 2m− 1 .

By Lemma 3.2 for all i ∈ {0, . . . 2m− 1} there exists an r∗(xi) ∈ ∂R(xi) s.t.

r∗(xi) =

{ (
i+1
m

)p−1
r(f) , 0 ≤ i ≤ m− 1(

2m−1−i
m

)p−1
r(g) , m ≤ i ≤ 2m− 1

.

Eq. (10) now yields

m−2∑
i=0

〈(
i+ 1
m

)p−1

r(f),
1
m
f

〉
+
〈
r(f),

m− 1
m

g − f
〉

−
2m−2∑
i=m

〈(
2m− 1− i

m

)p−1

r(g),
1
m
g

〉
+
〈

0 · r(g),
1
m
f − 0 · g

〉
≤ 0

which simplifies to 1
m

m−1∑
j=1

(
j

m

)p−1

− 1

 〈r(f), f〉 −

 1
m

m−1∑
j=1

(
j

m

)p−1
 〈r(g), g〉+

m− 1
m

〈r(f), g〉 ≤ 0 .

(11)

By letting m→∞ we obtain for the two sums

lim
m→∞

 1
m

m−1∑
j=1

(
j

m

)p−1
 = lim

m→∞

 1
m

m−1
m∑

j= 1
m , 2

m ,...

jp−1

 =
∫ 1

0

jp−1dj =
1
p
.

Hence in total in the limit m→∞ Eq. (11) becomes

〈r(f), g〉 −
(

1− 1
p

)
〈r(f), f〉 − 1

p
〈r(g), g〉 ≤ 0 .

As the above inequality holds for all f, g ∈ Rn, clearly we can now perform the substitution f →
t−1f, g → tp−1g, r(f)→ t−(p−1)r(f), r(g)→ t(p−1)2r(g), where t ∈ R+, which gives

〈r(f), g〉 −
(

1− 1
p

)
t−p 〈r(f), f〉 − 1

p
tp(p−1) 〈r(g), g〉 ≤ 0 . (12)

A local optimum with respect to t of the left side satisfies the necessary condition

0 = (p− 1) t−p−1 〈r(f), f〉 − (p− 1)tp
2−p−1 〈r(g), g〉

= t−p−1(p− 1)
(
〈r(f), f〉 − tp

2
〈r(g), g〉

)
,

which implies that

tp =
(
〈r(f), f〉
〈r(g), g〉

) 1
p

.

Plugging this into (12) yields

0 ≥〈r(f), g〉 −
(

1− 1
p

)
〈r(g), g〉

1
p 〈r(f), f〉1−

1
p − 1

p
〈r(f), f〉1−

1
p 〈r(g), g〉

1
p

= 〈r(f), g〉 − 〈r(f), f〉1−
1
p 〈r(g), g〉

1
p .

By the homogeneity of R we then have

〈r(f), g〉 ≤ 〈r(f), f〉1−
1
p 〈r(g), g〉

1
p = p ·R(f)1− 1

pR(g)
1
p .
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Finally, note that we can replace the left side by its absolute value since replacing g with −g yields

〈r(f),−g〉 ≤ p ·R(f)1− 1
pR(−g)

1
p = p ·R(f)1− 1

pR(g)
1
p ,

where we used the fact that R is even. �

Proof of Lemma 3.1 for Algorithm 2: Note that as R(u) ≥ 0, the minimum of the objective of
the inner problem is attained for some u with

〈
u, s(fk)

〉
> 0. Choose u such that

〈
u, s(fk)

〉
> 0.

Then we minimize Ψfk on the ray tu, t ≥ 0. We have

Ψfk(tu) = R(tu)−
〈
t u, s(fk)

〉
= tpR(u)− t

〈
u, s(fk)

〉
and hence

∂

∂t
Ψfk(tu) = p tp−1R(u)−

〈
u, s(fk)

〉
and thus the minimum is attained at t∗(u) =

( 〈u,s(fk)〉
pR(u)

) 1
p−1

> 0 and

Ψfk(t∗(u)u) = t∗(u)pR(u)− t∗(u)
〈
u, s(fk)

〉
= (1− p)

(〈u, s(fk)
〉p

ppR(u)

) 1
p−1

.

Assume there exists u that satisfies Ψfk(u) < Ψfk(f̂) where f̂ = F (fk)
1

1−p fk. Hence, also
Ψfk(t∗(u)u) < Ψfk(f̂), which implies

(1− p)
(〈u, s(fk)

〉p
ppR(u)

) 1
p−1

< F (fk)
p

1−pR(fk)− F (fk)
1

1−p
〈
fk, s(fk)

〉
= F (fk)

1
1−p (1− p) ,

where we used the fact that
〈
fk, s(fk)

〉
= pS(fk) and S(fk) = 1. Rearranging, we obtain

F (fk) >
ppR(u)
〈u, s(fk)〉p

.

Using the Hölder-type inequality of Proposition 3.1 and S(fk) = 1, we obtain〈
u, s(fk)

〉
≤ pS(fk)1− 1

pS(u)
1
p = pS(u)

1
p ,

which gives F (fk) > F (u). Let now f∗ be the minimizer of Ψfk . Then f∗ satisfies Ψfk(f∗) ≤
Ψfk(f̂). If equality holds then f̂ = F (fk)

1
1−p fk is a minimizer of the inner problem and the

sequence terminates. In this case fk is an eigenvector, see proof of Theorem 3.1 for Algorithm 2.
Otherwise Ψfk(f∗) < Ψfk(f̂) and thus u = f∗ fulfills the above assumption and we get F (fk) >
F (f∗), as claimed. �

Proof of Theorem 3.1 for Algorithm 2: Note that as F (f) ≥ 0, the sequence F (fk) is bounded
from below, and by Lemma 3.1 it is monotonically decreasing and thus converges to some λ∗ ∈
[0, F (f0)]. Moreover, S(fk) = 1 for all k. As S is continuous it attains its minimum m on the unit
sphere in Rn. By assumption m > 0. We obtain

1 = S(fk) = S
( fk

‖fk‖2

∥∥fk∥∥
2

)
≥ m

∥∥fk∥∥p
2
, =⇒

∥∥fk∥∥
2
≤
( 1
m

) 1
p

.

Thus the sequence fk is bounded and there exists a convergent subsequence fkj . Clearly,
limj→∞ F (fkj ) = limk→∞ F (fk) = λ∗. Let now f∗ = limj→∞ fkj , and suppose that there
exists u ∈ Rn with Ψf∗(u) < Ψf∗(f̂) where f̂ = F (f∗)

1
1−p f∗. Then, analogously to the proof of

Lemma 3.1, one can conclude that F (u) < F (f∗) = λ∗ which contradicts the fact that F (fkj ) has
as its limit λ∗. Thus f̂ is a minimizer of Ψf∗ , which implies

0 ∈ ∂Ψf∗
(
F (f∗)

1
1−p f∗

)
= ∂R

(
F (f∗)

1
1−p f∗

)
− s(f∗) =

(
F (f∗)

1
1−p

)p−1

∂R(f∗)− s(f∗)

=
1

F (f∗)

(
∂R(f∗)− F (f∗)s(f∗)

)
,

so that f∗ is an eigenvector with eigenvalue λ∗. As this argument was independent of the subse-
quence, any convergent subsequence of fk converges towards an eigenvector with eigenvalue λ∗.
�
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Practical implementation: By the proof of Lemma 3.1, descent in F is not only guaranteed for
the optimal solution of the inner problem, but for any vector u which has inner objective value
Φfk(u) < 0 = Φfk(fk) for Alg. 1 and Ψfk(u) < Ψfk(F (fk)

1
1−p fk) in the case of Alg. 2. This

has two important practical implications. First, for the convergence of the IPM, it is sufficient to use
a vector u satisfying the above conditions instead of the optimal solution of the inner problem. In
particular, in an early stage where one is far away from the limit, it makes no sense to invest much
effort to solve the inner problem accurately. Second, if the inner problem is solved by a descent
method, a good initialization for the inner problem at step k + 1 is given by fk in the case of Alg. 1
and F (fk)

1
1−p fk in the case of Alg. 2 as descent in F is guaranteed after one step.

4 Application 1: 1-spectral clustering and Cheeger cuts

Spectral clustering is a graph-based clustering method (see [21] for an overview) based on a re-
laxation of the NP-hard problem of finding the optimal balanced cut of an undirected graph. The
spectral relaxation has as its solution the second eigenvector of the graph Laplacian and the final par-
tition is found by optimal thresholding. While usually spectral clustering is understood as relaxation
of the so called ratio/normalized cut, it can be equally seen as relaxation of the ratio/normalized
Cheeger cut, see [5]. Given a weighted undirected graph with vertex set V and weight matrix W ,
the ratio Cheeger cut (RCC) of a partition (C,C), where C ⊂ V and C = V \C, is defined as

RCC(C,C) :=
cut(C,C)

min{|C| ,
∣∣C∣∣} , where cut(A,B) =

∑
i∈A,j∈B

wij ,

where we assume in the following that the graph is connected. Due to limited space the normalized
version is omitted, but the proposed IPM can be adapted to this case. In [5] we proposed p-spectral
clustering, a generalization of spectral clustering based on the second eigenvector of the nonlinear
graph p-Laplacian (the graph Laplacian is recovered for p = 2). The main motivation was the
relation between the optimal Cheeger cut hRCC = minC⊂V RCC(C,C) and the Cheeger cut h∗RCC
obtained by optimal thresholding the second eigenvector of the p-Laplacian, see [5, 8],

∀ p > 1,
hRCC

maxi∈V di
≤ h∗RCC

maxi∈V di
≤ p

(
hRCC

maxi∈V di

) 1
p

,

where di =
∑
i∈V wij denotes the degree of vertex i. While the inequality is quite loose for spectral

clustering (p = 2), it becomes tight for p→ 1. Indeed in [5] much better cuts than standard spectral
clustering were obtained, at the expense of higher runtime. In [20] the idea was taken up and they
considered directly the variational characterization of the ratio Cheeger cut, see also [8],

hRCC = minf nonconstant

1
2

∑n
i,j=1 wij |fi − fj |

‖f −median(f)1‖1
= min f nonconstant

median(f)=0

1
2

∑n
i,j=1 wij |fi − fj |
‖f‖1

. (13)

In [20] they proposed a minimization scheme based on the Split Bregman method [11]. Their method
produces comparable cuts to the ones in [5], while being computationally much more efficient.
However, they could not provide any convergence guarantee about their method.

In this paper we consider the functional associated to the 1-Laplacian ∆1,

F1(f) =
1
2

∑n
i,j=1 wij |fi − fj |
‖f‖1

=
〈f,∆1f〉
‖f‖1

, (14)

where

(∆1f)i =
{ n∑
j=1

wijuij |uij = −uji, uij ∈ sign(fi − fj)
}

and sign(x) =

{ −1, x < 0,
[−1, 1], x = 0,
1, x > 0.

and study its associated nonlinear eigenproblem 0 ∈ ∆1f − λ sign(f).

Proposition 4.1 Any non-constant eigenvector f∗ of the 1-Laplacian has median zero. Moreover,
let λ2 be the second eigenvalue of the 1-Laplacian, then if G is connected it holds λ2 = hRCC.
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Proof: The subdifferential of the enumerator of F1 can be computed as

∂
(1

2

n∑
i,j=1

wij |fi − fj |
)
i

=
{ n∑
j=1

wijuij |uij = −uji, uij ∈ sign(fi − fj)
}
,

where we use the set-valued mapping

sign(x) =

{ −1, x < 0,
[−1, 1], x = 0,
1, x > 0.

Moreover, the subdifferential of the denominator of F1 is

∂ ‖f‖1 = sign(f).
Note that, assuming that the graph is connected, any non-constant eigenvector f∗ must have λ∗ > 0.
Thus if f∗ is an eigenvector of the 1-Laplacian, there must exist uij with uij = −uji and uij ∈
sign(f∗i − f∗j ) and αi with αi ∈ sign(f∗i ) such that

0 =
n∑
j=1

wijuij − λ∗αi.

Summing over i yields due to the anti-symmetry of uij ,
∑
i αi = |f∗+| − |f∗−| +

∑
f∗i =0 αi = 0,

where |f∗+|, |f∗−| are the cardinalities of the positive and negative part of f∗ and |f∗0 | is the number
of components with value zero. Thus we get∣∣|f∗+| − |f∗−|∣∣ ≤ |f∗0 |,
which implies with |f∗+|+ |f∗−|+ |f∗0 | = |V | that |f∗+| ≤

|V |
2 and |f∗−| ≤

|V |
2 . Thus the median of f∗

is zero if |V | is odd. If |V | is even, the median is non-unique and is contained in [max f∗−,min f∗+]
which contains zero.

If the graph is connected, the only eigenvector corresponding to the first eigenvalue λ1 = 0 of the
1-Laplacian is the constant one. As all non-constant eigenvectors have median zero, it follows with
Equation 13 that λ2 ≥ hRCC. For the other direction, we have to use the algorithm we present
in the following and some subsequent results. By Lemma 4.2 there exists a vector f∗ = 1C with
|C| ≤

∣∣C∣∣ such that F1(f∗) = hRCC. Obviously, f∗ is non-constant and has median zero and thus
can be used as initial point f0 for Algorithm 3. By Lemma 4.1 starting with f0 = f∗ the sequence
either terminates and the current iterate f0 is an eigenvector or one finds a f1 with F1(f1) <
F1(f0), where f1 has median zero. Suppose that there exists such a f1, then F1(f1) < F1(f0) =
min f nonconstant

median(f)=0
F1(f) which is a contradiction. Therefore the sequence has to terminate and thus by

the argument in the proof of Theorem 4.1 the corresponding iterate is an eigenvector. Thus we get
hRCC ≥ λ2 and thus with λ2 ≥ hRCC we arrive at the desired result. �

For the computation of the second eigenvector we have to modify the IPM which is discussed in the
next section.

4.1 Modification of the IPM for computing the second eigenvector of the 1-Laplacian

The direct minimization of (14) would be compatible with the IPM, but the global minimizer is the
first eigenvector which is constant. For computing the second eigenvector note that, unlike in the
case p = 2, we cannot simply project on the space orthogonal to the constant eigenvector, since
mutual orthogonality of the eigenvectors does not hold in the nonlinear case.

Algorithm 3 is a modification of Algorithm 1 which computes a nonconstant eigenvector of the 1-
Laplacian. The notation |fk+1

+ |, |fk+1
− | and |fk+1

0 | refers to the cardinality of positive, negative and
zero elements, respectively. Note that Algorithm 1 requires in each step the computation of some
subgradient s(fk) ∈ ∂S(fk), whereas in Algorithm 3 the subgradient vk has to satisfy

〈
vk,1

〉
= 0.

This condition ensures that the inner objective is invariant under addition of a constant and thus
not affected by the subtraction of the median. Opposite to [20] we can prove convergence to a
nonconstant eigenvector of the 1-Laplacian. However, we cannot guarantee convergence to the
second eigenvector. Thus we recommend to use multiple random initializations and use the result
which achieves the best ratio Cheeger cut.
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Algorithm 3 Computing a nonconstant 1-eigenvector of the graph 1-Laplacian
1: Input: weight matrix W
2: Initialization: nonconstant f0 with median(f0) = 0 and

∥∥f0
∥∥

1
= 1, accuracy ε

3: repeat
4: gk+1 = arg min

‖f‖22≤1

{
1
2

∑n
i,j=1 wij |fi − fj | − λk

〈
f, vk

〉}
5: fk+1 = gk+1 −median

(
gk+1

)
6: vk+1

i =

{
sign(fk+1

i ), if fk+1
i 6= 0,

− |f
k+1
+ |−|fk+1

− |
|fk+1

0 |
, if fk+1

i = 0.
,

7: λk+1 = F1(fk+1)

8: until |λ
k+1−λk|
λk < ε

Lemma 4.1 The sequence fk produced by Algorithm 3 satisfies F1(fk) > F1(fk+1) for all k ≥ 0
or the sequence terminates.

Proof: Note that, analogously to the proof of Lemma 3.1, we can conclude that the inner objective
is nonpositive at the optimum, where the sequence terminates if the optimal value is zero as the
previous fk is among the minimizers of the inner problem. Now observe that the objective of the
inner optimization problem is invariant under addition of a constant. This follows from the fact that
we always have

〈
vk,1

〉
= 0, which can be easily verified. Hence, with R(f) = 1

2

∑n
i,j=1 wij |fi −

fj |, we get
R(fk+1)− λk

〈
fk+1, vk

〉
= R(gk+1)− λk

〈
gk+1, vk

〉
< 0 .

Dividing both sides by
∥∥fk+1

∥∥
1

yields

R(fk+1)
‖fk+1‖1

− λk
〈
fk+1, vk

〉
‖fk+1‖1

< 0 ,

and with
〈
fk+1, vk

〉
≤
∥∥fk+1

∥∥
1

∥∥vk∥∥∞ =
∥∥fk+1

∥∥
1
, the result follows. �

Theorem 4.1 The sequence fk produced by Algorithm 3 converges to an eigenvector f∗ of the 1-
Laplacian with eigenvalue λ∗ ∈

[
hRCC, F1(f0)

]
. Furthermore, F1(fk) > F1(fk+1) for all k ≥ 0

or the sequence terminates.

Proof: Note that every constant vector u0 satisfies Φfk(u0) = 0 as
〈
vk,1

〉
= 0. The minimizer

of Φfk is either negative or the sequence terminates in which case the previous non-constant gk is
a minimizer. In any case gk+1 cannot be constant and in turn fk+1 is nonconstant and has median
zero. Thus for all k,

F1(fk) =
1
2

∑n
i,j=1 wij |fki − fkj |
‖fk‖1

=
1
2

∑n
i,j=1 wij |fki − fkj |

‖fk −median(fk)1‖1
≥ hRCC,

where we use that the median of fk is zero. Thus F1(fk) is lower-bounded by hRCC. Note that
hRCC ≤ λ2. We can conclude now analogously to Theorem 3.1 that the sequence F1(fk) converges
to some limit

λ∗ = lim
k→∞

F1(fk) ≥ hRCC .

As in Theorem 3.1 the compactness of the set containing the sequence gk implies the existence of
a convergent subsequence gkj , and using the fact that subtracting the median is continuous we have
limj→∞ fkj = g∗ −median(g∗)1 =: f∗. The proof now proceeds analogously to Theorem 3.1. �

4.2 Quality guarantee for 1-spectral clustering

Even though we cannot guarantee that we obtain the optimal ratio Cheeger cut, we can guarantee
that 1-spectral clustering always leads to a ratio Cheeger cut at least as good as the one found by
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standard spectral clustering. Let (C∗f , C
∗
f ) be the partition of V obtained by optimal thresholding of

f , where C∗f = arg mint RCC(Ctf , C
t
f ), and for t ∈ R, Ctf = {i ∈ V | fi > t}. Furthermore, 1C

denotes the vector which is 1 on C and 0 else.

Lemma 4.2 Let C,C be a partitioning of the vertex set V , and assume that |C| ≤
∣∣C∣∣. Then for

any vector f ∈ Rn of the form f = α1C , where α ∈ R, it holds that F1(f) = RCC(C,C).

Proof: As F1 is scale invariant, we can without loss of generality assume that α = 1. Then we have

F1(f) =
1
2

∑n
i,j=1 wij |fi − fj |
‖f‖1

=
1
2

∑
i∈C,j /∈C wij + 1

2

∑
i/∈C,j∈C wij∑

i∈C 1

=
cut(C,C)
|C|

=
cut(C,C

min
{
|C| ,

∣∣C∣∣} = RCC(C,C) .

�

Lemma 4.3 Let f ∈ Rn with median(f) = 0, and C = arg min{|C∗f |, |C∗f |}. Then the vector
f∗ = 1C satisfies F1(f) ≥ F1(f∗).

Proof: Denote by f+ : V → R the function f+
i := max{0, fi}, and analogously, let f− :=

max{0,−fi}. Then we have

R(f) =
1
2

∑
i,j

wij |fi − fj | =
1
2

∑
i,j

wij
∣∣f+
i − f

−
i − f

+
j + f−j

∣∣ . (15)

Note that we always have
∣∣f+
i − f

−
i − f

+
j + f−j

∣∣ =
∣∣f+
i − f

+
j

∣∣+
∣∣f−i − f−j ∣∣, which can easily be

verified by performing a case distinction over the signs of fi and fj . Eq. (15) can now be written as

R(f) =
1
2

∑
i,j

wij
∣∣f+
i − f

+
j

∣∣+
1
2

∑
i,j

wij
∣∣f−i − f−j ∣∣ = R(f+) +R(f−) .

Using the fact that ‖f‖1 can be decomposed as ‖f+‖1 + ‖f−‖1, we obtain

R(f)
‖f‖1

=
R(f+) +R(f−)
‖f+‖1 + ‖f−‖1

≥ min
{
R(f+)
‖f+‖1

,
R(f−)
‖f−‖1

}
. (16)

The last inequality follows from the fact that we always have for a, b, c, d > 0,

a+ b

c+ d
≥ min

{
a

c
,
b

d

}
,

which can be easily shown by contradiction. Let wlog min
{
a
c ,

b
d

}
= a

c , and assume that a+b
c+d <

a
c .

This implies a
c >

b
d , which is a contradiction to a

c ≤
b
d . Note that median(f) = 0, hence we have

0 ∈ arg min
c

∑
i∈V
|fi − c| ,

which implies that 0 ∈ ∂
∑
i∈V |fi| and hence there exist coefficients |αi| ≤ 1 such that

0 =
∑
fi 6=0

sign(fi) +
∑
fi=0

αi ,

which is equivalent to
∣∣∣ |{i, fi > 0}| − |{i, fi < 0}|

∣∣∣ ≤ |{i, fi = 0}|. This inequality implies that

|{i, fi > 0}| ≤ |V |2 and |{i, fi < 0}| ≤ |V |2 . We now rewrite R(f+) as follows:

R(f+) =
1
2

∑
f+

i >f
+
j

wij
(
f+
i − f

+
j

)
=

∑
f+

i >f
+
j

wij

∫ f+
i

f+
j

1dt =
∫ ∞

0

∑
f+

i >t≥f
+
j

wij dt .
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Note that for t ≥ 0,

∑
f+

i >t≥f
+
j

wij = cut(Ctf , Ctf ) =
cut(Ctf , C

t
f )

min
{∣∣∣Ctf ∣∣∣ , ∣∣∣Ctf ∣∣∣} ·

∣∣Ctf ∣∣ ≥ RCC(C∗f , C∗f ) ·
∣∣Ctf ∣∣ ,

where in the second step we used that
∣∣∣Ctf ∣∣∣ ≤ |{i, fi > 0}| ≤ |V |2 . Hence we have

R(f+) ≥
∫ ∞

0

RCC(C∗f , C∗f ) ·
∣∣Ctf ∣∣ dt = RCC(C∗f , C∗f )

∫ ∞
0

∑
fi>t

1dt

= RCC(C∗f , C∗f )
∑
fi>0

∫ fi

0

1dt = RCC(C∗f , C∗f )
∥∥f+

∥∥
1
.

Hence it holds that F1(f+) ≥ RCC(C∗f , C
∗
f ), and analogously one shows that F1(f−) ≥

RCC(C∗−f , C
∗
−f ). Note that RCC(C∗f , C

∗
f ) = RCC(C∗−f , C

∗
−f ) = F1(f∗), by Lemma 4.2. Com-

bining this with Eq. (16) yields the result. �

Theorem 4.2 Let u denote the second eigenvector of the standard graph Laplacian, and f denote
the result of Algorithm 3 after initializing with the vector 1

|C|1C , where C = arg min{|C∗u|, |C∗u|}.
Then RCC(C∗u, C∗u) ≥ RCC(C∗f , C

∗
f ).

Proof: Using Lemma 4.1 and 4.2 , we have the following chain of inequalities:

RCC(C∗u, C∗u) 4.2= F1

(
1
|C|

1C

)
= F1(1C)

4.1
≥ F1(f).

With C1 := arg min{|C∗f |, |C∗f |}, we obtain by Lemma 4.3 and 4.2:

F1(f)
4.3
≥ F1 (1C1) 4.2= RCC(C∗f , C∗f ) .

�

4.3 Solution of the inner problem

The inner problem is convex, thus a solution can be computed by any standard method for solving
convex nonsmooth programs, e.g. subgradient methods [3]. However, in this particular case we can
exploit the structure of the problem and use the equivalent dual formulation of the inner problem.

Lemma 4.4 Let E ⊂ V × V denote the set of edges and A : RE → RV be defined as (Aα)i =∑
j | (i,j)∈E wijαij . The inner problem is equivalent to

min{α∈RE | ‖α‖∞≤1, αij=−αji}Ψ(α) :=
∥∥Aα− F (fk)vk

∥∥2

2
.

The Lipschitz constant of the gradient of Ψ is upper bounded by 2 maxr
∑n
s=1 w

2
rs.

Proof: First, we note that

1
2

n∑
i,j=1

wij |ui − uj | = max{β∈RE | ‖β‖∞≤1}
1
2

∑
(i,j)∈E

wij(ui − uj)βij .

Introducing the new variable αij = 1
2 (βij − βji), this can be rewritten as

max{α∈RE | ‖α‖∞≤1, αij=−αji}
∑

(i,j)∈E

wijαijui = max{α∈RE | ‖α‖∞≤1, αij=−αji} 〈u,Aα〉 ,
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where we have introduced the notation (Aα)i =
∑
j | (i,j)∈E wijαij . Both u and α are constrained

to lie in non-empty compact, convex sets, and thus we can reformulate the inner objective by the
standard min-max-theorem (see e.g. Corollary 37.3.2. in [17]) as follows:

min‖u‖2≤1 max{α∈RE | ‖α‖∞≤1, αij=−αji} 〈u,Aα〉 − F (fk)
〈
u, vk

〉
= max{α∈RE | ‖α‖∞≤1, αij=−αji} min‖u‖2≤1

〈
u,Aα− F (fk)vk

〉
= max{α∈RE | ‖α‖∞≤1, αij=−αji} −

∥∥Aα− F (fk)vk
∥∥

2
.

In the last step we have used that the solution of the minimization of the linear function over the
Euclidean unit ball is given by

u∗ = − Aα− F (fk)vk

‖Aα− F (fk)vk‖ 2

,

if
∥∥Aα− F (fk)vk

∥∥ 6= 0 and otherwise u∗ is an arbitrary element of the Euclidean unit ball. Trans-
forming the maximization problem into a minimization problem finishes the proof of the first state-
ment. Regarding the Lipschitz constant, a straightforward computation shows that

(∇Ψ(α))rs = 2wrs
( ∑
j | (r,j)∈E

wrjαrj − F (fk)vkr
)
.

Thus,

‖∇Ψ(α)−∇Ψ(β)‖2 = 4
∑

(r,s)∈E

w2
rs

( ∑
j | (r,j)∈E

wrj(αrj − βrj)
)2

≤ 4
∑

(r,s)∈E

w2
rs

( ∑
j | (r,j)∈E

w2
rj

∑
i | (r,i)∈E

(αri − βri)2
)

= 4
n∑
r=1

( ∑
s | (r,s)∈E

w2
rs

)2 ∑
i | (r,i)∈E

(αri − βri)2

≤ 4
(

maxr
n∑
s=1

w2
rs

)2 ∑
(r,i)∈E

(αri − βri)2.

�

Compared to the primal problem, the objective of the dual problem is smooth. Moreover, it can be
efficiently solved using FISTA ([2]), a two-step subgradient method with guaranteed convergence
rate O( 1

k2 ) where k is the number of steps. The only input of FISTA is an upper bound on the Lips-
chitz constant of the gradient of the objective. FISTA provides a good solution in a few steps which
guarantees descent in functional (13) and thus makes the modified IPM very fast. The resulting
Algorithm is shown in Alg. 4.

5 Application 2: Sparse PCA

Principal Component Analysis (PCA) is a standard technique for dimensionality reduction and data
analysis [13]. PCA finds the k-dimensional subspace of maximal variance in the data. For k = 1,
given a data matrix X ∈ Rn×p where each column has mean 0, in PCA one computes

f∗ = arg max
f∈Rp

〈
f,XTXf

〉
‖f‖22

, (17)

where the maximizer f∗ is the largest eigenvector of the covariance matrix Σ = XTX ∈ Rp×p.
The interpretation of the PCA component f∗ is difficult as usually all components are nonzero. In
sparse PCA one wants to get a small number of features which still capture most of the variance.
For instance, in the case of gene expression data one would like the principal components to consist
only of a few significant genes, making it easy to interpret by a human. Thus one needs to enforce
sparsity of the PCA component, which yields a trade-off between explained variance and sparsity.
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Algorithm 4 Solution of the dual inner problem with FISTA
1: Input: Lipschitz-constant L of ∇Ψ,
2: Initialization: t1 = 1, α1 ∈ RE ,
3: repeat
4:

βt+1
rs = αtrs −

1
L
∇Ψ(αt)rs

= αtrs −
2
L
wrs
( ∑
j | (r,j)∈E

wrjα
t
rj − F (fk)vkr

)
5: tk+1 = 1+

√
1+4t2k
2 ,

6: αt+1
rs = βt+1

rs + tk−1
tk+1

(
βt+1
rs − βtrs

)
.

7: until stop if gap between original and dual problem is smaller than ε

While standard PCA leads to an eigenproblem, adding a constraint on the cardinality, i.e. the num-
ber of nonzero coefficients, makes the problem NP-hard. The first approaches performed simple
thresholding of the principal components which was shown to be misleading [6]. Since then several
methods have been proposed, mainly based on penalizing the L1 norm of the principal components,
including SCoTLASS [14] and SPCA [24]. D’Aspremont et al.[10] focused on the L0-constrained
formulation and proposed a greedy algorithm to compute a full set of good candidate solutions up
to a specified target sparsity, and derived sufficient conditions for a vector to be globally optimal.
Moghaddam et al. [16] used branch and bound to compute optimal solutions for small problem
instances. Other approaches include D.C. [19] and EM-based methods [18]. Recently, Journee et al.
[15] proposed two single unit (computation of one component only) and two block (simultaneous
computation of multiple components) methods based on L0-penalization and L1-penalization.

Problem (17) is equivalent to

f∗ = arg min
f∈Rp

‖f‖22
〈f,Σf〉

= arg min
f∈Rp

‖f‖2
‖Xf‖2

.

In order to enforce sparsity we use instead of the L2-norm a convex combination of an L1 norm and
L2 norm in the enumerator, which yields the functional

F (f) =
(1− α) ‖f‖2 + α ‖f‖1

‖Xf‖2
, (18)

with sparsity controlling parameter α ∈ [0, 1]. Standard PCA is recovered for α = 0, whereas α = 1
yields the sparsest non-trivial solution: the component with the maximal variance. One easily sees
that the formulation (18) fits in our general framework, as both enumerator and denominator are
1-homogeneous functions. The inner problem of the IPM becomes

gk+1 = arg min
‖f‖2≤1

(1− α) ‖f‖2 + α ‖f‖1 − λ
k
〈
f, µk

〉
, where µk =

Σfk√
〈fk,Σfk〉

. (19)

This problem has a closed form solution. In the following we use the notation x+ = max{0, x}.

Lemma 5.1 The convex optimization problem (19) has the analytical solution

gk+1
i =

1
s

sign(µki )
(
λk
∣∣µki ∣∣− α)+, where s =

√∑n

i=1
(λk|µki | − α)2

+ .

Proof: We note that the objective is positively 1-homogenous and that the optimum is either zero by
plugging in the previous iterate or negative in which case the optimum is attained at the boundary.
Thus wlog we can assume that at the optimum ‖f‖2 = 1. Thus the problem reduces to

min‖f‖2≤1 α ‖f‖1 − λ
k
〈
f, µk

〉
.
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First, we derive an equivalent “dual” problem, noting

α ‖f‖1 − λ
k
〈
µk, f

〉
= max‖v‖∞≤1

〈
f, αv − λkµk

〉
.

Using the fact that the objective is convex in f and concave in v and the feasible set is compact, we
obtain by the min-max equality:

min‖f‖2≤1 max‖v‖∞≤1

〈
f, αv − λkµk

〉
= max‖v‖∞≤1 min‖f‖2≤1

〈
f, αv − λkµk

〉
= max‖v‖∞≤1−

∥∥αv − λkµk∥∥
2
.

The objective of the dual problem is separable in v and the constraints of v as well. Thus each
component can be optimized separately which gives

vi = sign(µki ) min
{

1,
λk|µki |
α

}
.

Using that f∗ = (−αv + λkµk)/
∥∥λkµk − αv∥∥

2
, we get the solution

fi =
sign(µki )(λk|µki | − α)+√∑n

i=1(λk|µki | − α)2
+

.

�

As s is just a scaling factor, we can omit it and obtain the simple and efficient scheme to compute
sparse principal components shown in Algorithm 5. While the derivation is quite different from
[15], the resulting algorithms are very similar. The subtle difference is that in our formulation the
thresholding parameter of the inner problem depends on the current eigenvalue estimate whereas it
is fixed in [15]. Empirically, this leads to the fact that we need slightly less iterations to converge.

Algorithm 5 Sparse PCA
1: Input: data matrix X , sparsity controlling parameter α, accuracy ε
2: Initialization: f0 = random with S(fk) = 1, λ0 = F (fk)
3: repeat
4: gk+1

i = sign(µki )
(
λk
∣∣µki ∣∣− α)+,

5: fk+1 = gk+1

‖Xgk+1‖2
6: λk+1 = (1− α)

∥∥fk+1
∥∥

2
+ α

∥∥fk+1
∥∥

1

7: µk+1 = Σfk+1

‖Xfk+1‖2

8: until |λ
k+1−λk|
λk < ε

6 Experiments

1-Spectral Clustering: We compare our IPM with the total variation (TV) based algorithm by
[20], p-spectral clustering with p = 1.1 [5] as well as standard spectral clustering with optimal
thresholding the second eigenvector of the graph Laplacian (p = 2). The graph and the two-moons
dataset is constructed as in [5]. The following table shows the average ratio Cheeger cut (RCC) and
error (classification as in [5]) for 100 draws of a two-moons dataset with 2000 points. In the case of
the IPM, we use the best result of 10 runs with random initializations and one run initialized with
the second eigenvector of the unnormalized graph Laplacian. For [20] we initialize once with the
second eigenvector of the normalized graph Laplacian as proposed in [20] and 10 times randomly.
IPM and the TV-based method yield similar results, slightly better than 1.1-spectral and clearly
outperforming standard spectral clustering. In terms of runtime, IPM and [20] are on the same level.

Inverse Power Method Szlam & Bresson [20] 1.1-spectral [5] Standard spectral
Avg. RCC 0.0195 (± 0.0015) 0.0195 (± 0.0015) 0.0196 (± 0.0016) 0.0247 (± 0.0016)
Avg. error 0.0462 (± 0.0161) 0.0491 (± 0.0181) 0.0578 (± 0.0285) 0.1685 (± 0.0200)
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Figure 1: Left and middle: Second eigenvector of the 1-Laplacian and 2-Laplacian, respectively.
Right: Relative Variance (relative to maximal possible variance) versus number of non-zero compo-
nents for the three datasets Lung2, GCM and Prostate1.

Next we perform unnormalized 1-spectral clustering on the full USPS and MNIST-datasets (9298
resp. 70000 points). As clustering criterion we use the multicut version of RCut, given as

RCut(C1, . . . , CK) =
K∑
i=1

cut(Ci, Ci)
|Ci|

.

We successively subdivide clusters until the desired number of clusters (K = 10) is reached. In each
substep the eigenvector obtained on the subgraph is thresholded such that the multi-cut criterion is
minimized. This recursive partitioning scheme is used for all methods. As in the previous experi-
ment, we perform one run initialized with the thresholded second eigenvector of the unnormalized
graph Laplacian in the case of the IPM and with the second eigenvector of the normalized graph
Laplacian in the case of [20]. In both cases we add 100 runs with random initializations. The next
table shows the obtained RCut and errors.

Inverse Power Method S.&B. [20] 1.1-spectral [5] Standard spectral
MNIST Rcut 0.1507 0.1545 0.1529 0.2252

Error 0.1244 0.1318 0.1293 0.1883
USPS Rcut 0.6661 0.6663 0.6676 0.8180

Error 0.1349 0.1309 0.1308 0.1686

Again the three nonlinear eigenvector methods clearly outperform standard spectral clustering. Note
that our method requires additional effort (100 runs) but we get better results. For both datasets our
method achieves the best RCut. However, if one wants to do only a single run, by Theorem 4.2
for bi-partitions one achieves a cut at least as good as the one of standard spectral clustering if one
initializes with the thresholded 2nd eigenvector of the 2-Laplacian.

Sparse PCA: We evaluate our IPM for sparse PCA on gene expression datasets obtained from
[1]. We compare with two recent algorithms: the L1 based single-unit power algorithm of [15]
as well as the EM-based algorithm in [18]. For all considered datasets, the three methods achieve
very similar performance in terms of the tradeoff between explained variance and sparsity of the
solution, see Fig.1 (Right). In fact the results are so similar that for each dataset, the plots of all
three methods coincide in one line. In [15] it also has been observed that the best state-of-the-art
algorithms produce the same trade-off curve if one uses the same initialization strategy.

Acknowledgments: This work has been supported by the Excellence Cluster on Multimodal Com-
puting and Interaction at Saarland University.
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