Prof. Dr. P. Schroeder-Heister

Blatt 1

Aufgabe 1 (2 Punkte)

Geben Sie zu dieser Aussage sämtliche Teilaussagen und deren jeweiligen Rang an:

$$\neg(p \to (\neg(\neg r \lor p) \lor q)) \to (r \land q)$$

Aufgabe 2 (2 Punkte)

Geben Sie disjunktive und konjunktive Normalformen für diese Aussage an:

$$\neg(p \to (\neg(\neg r \lor p) \lor q)) \to (r \land q)$$

Aufgabe 3 (2 Punkte)

Geben Sie eine nur die logischen Zeichen \land, \lor, \rightarrow und \bot benutzende Aussage φ an, welche die folgende Wahrheitstafel besitzt:

p	q	$\mid r \mid$	φ
1	1	1	1
1	1	0	1
1	0	1	1
1	0	0	0
0	1	1	1
0	1	0	1
0	0	1	0
0	0	$\mid 0 \mid$	0

Aufgabe 4 (4 Punkte)

Leiten Sie in NK her:

a)
$$p \to q, r \to \neg q \vdash \neg (p \land r)$$

b)
$$p \to r, q \to s \vdash p \lor q \to r \lor s$$

Aufgabe 5 (2 Punkte)

Beweisen Sie:

 $\varphi \wedge \psi$ ist genau dann in einer maximal konsistenten Aussagenmenge enthalten, wenn φ und ψ darin enthalten sind.

Aufgabe 6 (1 Punkt)

Sei $\mathfrak{A} = \langle \mathbb{R}, \cdot^2, \times, + \rangle$, und sei eine Sprache der entsprechenden Signatur gegeben, deren Konstantenzeichen genauso lauten wie die korrespondierenden Funktionen und Prädikate der Struktur. Weiterhin sei $v(x_1) = 2$, $v(x_2) = -1$ und $v(x_3) = 1$. Werten Sie schrittweise aus:

$$[\![(x_1 \times x_2)^2 + x_3]\!]_v^{\mathfrak{A}}$$

Aufgabe 7 (2 Punkte)

Es sei φ eine Formel, welche die Variablen x_1, x_2 und x_3 frei enthalte. Zeigen Sie:

$$\models \exists x_1 \forall x_2 \varphi(x_1, x_2) \to \forall x_2 \exists x_1 \varphi(x_1, x_2)$$

Aufgabe 8 (2 Punkte)

Geben Sie eine zu der folgenden Formel äquivalente Formel in pränexer Normalform an:

$$\forall x \exists y P(x,y) \leftrightarrow \exists x P(x,x)$$

Aufgabe 9 (4 Punkte)

Leiten Sie in NK her:

- a) $\forall x \neg \varphi(x) \rightarrow \neg \forall x \varphi(x)$
- b) $\neg \forall x \varphi(x) \rightarrow \exists x \neg \varphi(x)$ [Bemerkung: In NK ist \exists ein Grundzeichen.]

Aufgabe 10 (2 Punkte)

Wann ist eine Aussagenmenge widerspruchsfrei? Was besagt der Modellexistenzsatz? Leiten Sie den Vollständigkeitssatz aus dem Modellexistenzsatz her.

Aufgabe 11 (1 Punkte)

Was besagt der Kompaktheitssatz? Beweisen Sie ihn aus dem Vollständigkeitssatz.

Aufgabe 12 (2 Punkte)

Gegeben sei eine Sprache mit einem einstelligen Funktionszeichen als einziger Konstante. Gilt folgendes (Begründung)?

- a) $\models \exists x (\exists y (x \stackrel{.}{=} fy) \rightarrow \exists y (ffz \stackrel{.}{=} fy))$
- b) $\models \exists x (\exists y (x \stackrel{.}{=} fy) \rightarrow \exists y (ffy \stackrel{.}{=} fy))$