How t(w)o act together

Natalie Sebanz

Falling into Sync

People have a tendency to synchronize their actions, e.g., while walking, running or clapping.

Explained in terms of coupled oscillators (Schmidt & Richardson, 2008)

Effects on liking and cooperation

Overview

1. Making oneself predictable

- 2. Planning each other's actions
- 3. Learning through joint action
- 4. Human-robot interaction

Making oneself predictable

Task: Respond as synchronously as possible

Reducing variability

Vesper et al., EBR, 2011

Reducing variability

Vesper et al., EBR, 2011

Reducing variability

Also works in space! See poster by Vesper et al. (52)

Making oneself predictable: Signaling

...a way of making actions "speak":

Modifying instrumental actions in the service of communication, e.g., deviating from movement path to disambiguate target object

Pezzulo & Dindo, EBR, 2011

Signaling

Joint task: grasp object synchronously using complementary grip

One person knows where to grasp the object, the other does not

Sacheli et al., 2013

Signaling

The knowledgeable person amplifies her movement (amplitude, grip aperture) to signal her action goal

Sacheli et al., 2013

Overview

- 1. Making oneself predictable
- 2. Planning each other's actions
- 3. Learning through joint action
- 4. Human-robot interaction

Is your task my task?

Baus et al., Cognition 201

Is your task my task?

Effect of lexical frequency on naming:

Naming **low frequency** words elicits a **larger positivity at posterior electrodes** than naming high frequency words

Effect of frequency on no-go trials?

Go trials (my turn)

Baus et al., Cognition 201

Is your task my task?

No-Go trials (you turn)

Is your task my task?

No-Go trials (nobody's turn)

Baus et al., Cognition 201

Other go

Fig. 5. Upper panel: Difference waves obtained by subtracting grand-average ERPs to high frequency words from ERPs to low-frequency words for other go (black line) and joint No-go trials (gray line) in the Joint Condition. Recording sites are posterior left POS_L (posterior left: T5, P3 and O1), Posterior central POS_C (posterior central: Pz, PO1 and PO2) and posterior right POS_R (posterior right: T6, P4 and O2). Lower panel: Topographical maps representing the frequency effect in the P300 time-window (low frequency words minus high frequency ones). Positive differences (red colors) correspond to low frequency words being more positive than high-frequency ones. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

What stays in memory?

Planning your action?

Planning partner's action?

Kourtis, Sebanz, & Knoblich, Social Neurosci, 2013

Planning partner's action?

The P3a amplitude is larger when participants prepare for joint action.

This likely reflects a more complex task representation, where the other's part is specified in addition to one's own.

Kourtis, Sebanz, & Knoblich, Social Neurosci, 2013

Predicting other's timing?

Giving actions are initiated much faster than receiving actions.

The late CNV is a neural marker of motor planning - peaks when people start to act.

If the receiver simulates the giver 's action, the CNV should peak at the onset of the giver 's action.

Predicting other's timing?

The **motor CNV** in the receiver **peaked** around the time of the **giver's action** onset even though the receiver's response onset occurred much later.

Correlation with Joint Performance

The amplitude of the motor CNV in the receiver was correlated with the improvement in coordination performance (r = 0.585, p = 0.022).

Planning your action like my own?

How similar is solo and joint planning?

Kourtis, Knoblich, & Sebanz, JoCN, 2014

Bimanual Action

How similar is solo and joint planning?

Kourtis, Knoblich, & Sebanz, JoCN, 2014

Bimanual Action Joint (Unimanual) Action

How similar is solo and joint planning?

Kourtis, Knoblich, & Sebanz, JoCN, 2014

Bimanual Action Joint (Unimanual) Action

Unimanual Action

Predictions

Focus on marker of motor activation: CNV

Higher CNV in bimanual than in unimanual condition

Is CNV in joint action condition like bimanual or like unimanual?

Action Representation: CNV

Kourtis, Knoblich, & Sebanz, JoCN, 20

Overview

- 1. Making oneself predictable
- 2. Planning each other's actions

3. Learning through joint action

4. Human-robot interaction

Learning from Individuals or Dyads?

Learning from Individuals or Dyads?

Acting together, we mimic joint actions more than actions of one person.

Acting alone, we mimic actions of one person more than joint actions.

Observed: SOLO ACTION

Observed: JOINT ACTION

Compatible Condition

hand is

moving.

Press the key when the right hand is moving.

Ρ

Ρ

Ρ

Incompatible Condition

Ρ

Р

Ρ

JOINT

SOLO

JOINT

Control for Hand Arrangement

JOINT

SOLO

SOLO

JOINT

Overview

- 1. Making oneself predictable
- 2. Planning each other's actions
- 3. Learning through joint action
- 4. Human-robot interaction

Robots as JA Partners?

Role of looks vs. motion

Anticipation (e.g., Hoffman & Breazeal, 2007)

Fluency (e.g., Hoffman, 2013)

Robots as JA Partners?

https://www.youtube.com/watch?v=0YpZnVCiMiU
https://www.youtube.com/watch?v=IJbfE2AtISk

Conclusions

People modify their own actions to make themselves predictable: reducing variance and signaling

They plan task partner's actions as if they were their own.

Conclusions

Joint action can be a motor for learning; dyads more faithfully imitate actions of other dyads than actions of single individuals

For robots to be valuable JA partners, getting the timing right is important.

THANKS!

http://somby.info

