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Abstract

Given a multi-exposure sequence of a scene, our aim

is to recover the absolute irradiance falling onto a linear

camera sensor. The established approach is to perform a

weighted average of the scaled input exposures. However,

there is no clear consensus on the appropriate weighting to

use. We propose a weighting function that produces statisti-

cally optimal estimates under the assumption of compound-

Gaussian noise. Our weighting is based on a calibrated

camera model that accounts for all noise sources. This

model also allows us to simultaneously estimate the irra-

diance and its uncertainty. We evaluate our method on sim-

ulated and real world photographs, and show that we con-

sistently improve the signal-to-noise ratio over previous ap-

proaches. Finally, we show the effectiveness of our model

for optimal exposure sequence selection and HDR image

denoising.

1. Introduction

Most real world scenes span a radiance range that ex-

ceeds the capabilities of standard film and digital cameras.

However, many applications, such as image-based light-

ing [4], and BRDF measurement [9], require access to the

whole dynamic range of a scene. Although high dynamic

range (HDR) cameras are available [15], cost and perfor-

mance issues still prevent their widespread use.

Using standard cameras, one can recover HDR images

from a set of photographs with different exposure times by

first linearizing the images using the inverse of the camera

response function, and then averaging them into a single

HDR image [12]. A weighted average is used to account

for the reliability of every pixel measurement. However,

weighting functions proposed in the literature (Sec. 2) do

not appropriately consider the individual noise sources of

the acquisition process (except [18], [8]). This problem be-

comes increasingly relevant when the HDR images are not

only meant for visualization but as accurate measurements

for the physical scene irradiance.

Taking into account all noise sources, i.e., temporal

(photon and dark current shot noise, readout noise) and spa-

tial (photo-response and dark current non-uniformity), we

establish an optimal compound-Gaussian model that faith-

fully estimates the variance in the measurement depend-

ing on exposure and exposure time. Based on this model,

we derive an optimal weighting function for linear sensors

(Sec. 4). As the noise recursively depends on the incident ir-

radiance, we propose an iterative optimization for the max-

imum likelihood estimate of the irradiance and its uncer-

tainty (Sec. 5).

The parameters of the Gaussian HDR model for a real

camera are obtained per pixel to account for spatial noise

(Sec. 6). The performance of our HDR reconstruction is

compared to the signal-to-noise ratio achieved by previous

approaches in Sec. 7.

Based on the novel noise model we can further analyze

optimal solutions to two additional applications: The op-

timal sequence of exposure times can be found by maxi-

mizing the SNR of the resulting HDR image [2], or by ex-

plicitly setting the desired sampling density of the radiance

range [5]. Following the former approach our estimate for

the SNR benefits from the advanced noise model (Sec. 8).

Finally, the per pixel uncertainty obtained as a byproduct

of our HDR reconstruction can be used to drive a spatial

smoothing process for HDR denoising (Sec. 9, Fig. 1).

2. Previous work

Several algorithms have been proposed to combine a set

of low dynamic range (LDR) images into a single HDR im-

age [3, 11, 12, 13, 15, 16, 18]. In general, these methods

estimate both an HDR image that roughly corresponds to

the real-world irradiance X (up to scale), and the inverse of

the camera response function f−1 that maps a digital output

v to its inducing exposure Xt, where t is the exposure time.

The irradiance can be estimated from the weighted average

µ̂X =

∑

i w(vi)x̂i
∑

i w(vi)
, where x̂i =

f−1(vi)

ti
. (1)
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(a) Ground truth image (b) Mitsunaga-Nayar weighting (c) Our weighting (d) After adaptive smoothing
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Figure 1. HDR image reconstruction and denoising. (a) Ground truth HDR image, recovered from 180 images (color-coded). (b) Recon-

struction using Mitsunaga-Nayar weighting, which is suboptimal at lower intensities since readout noise is unaccounted for. (c) Recon-

struction using our weighting, which accounts for readout and dark current noise. (d) Denoised reconstruction using the predicted pixel

uncertainty to control the smoothing bandwidth parameter. Blue colors correspond to the lowest irradiance in the scene; reds to the highest.

Type Formula

Mann & Picard [12] Quant. 1
d

dv
(log g(v))

Debevec & Malik [3] Hat min(v−vmin,vmax−v)

Mitsunaga & Nayar [13] SNR
g(v)
g′(v)

Reinhard et al. [15] SNR·Hat
g(v)
g′(v)
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Robertson et al. [16] Variance t2

d
dv

(log g(v))

Tsin et al. [18] St. dev. t

σ̂g(v)

Kirk & Andersen [8] Variance t2

g′(v)2σ2
v

Table 1. Weighting functions for HDR reconstruction. Here, v is

the camera digital output, t the exposure time, and g(v) ≡ f−1(v)
is the inverse of the camera response function.
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Figure 2. Weighting functions at different readout noise levels σR.

Weights are given to output values vi, which measure a constant

irradiance on increasing exposure times. Note that Mitsunaga-

Nayar converges to our optimal weighting as the readout noise

goes to zero. In linear sensors, saturation can be handled by es-

timating the threshold and excluding the affected values (Sec. 6).

Simulations performed on camera-B (Table 2).

Each method proposes a different weighting function w(v).
These are listed in Table 1, and compared in Fig. 2.

In their seminal paper, Mann and Picard [12] assign

weights to output values according to the derivative of the

inverse camera response, in order to avoid coarsely quan-

tized values. Derivatives are computed in a logarithmic

scale to make the quantization error perceptually uniform.

Debevec and Malik [3] propose a hat function that as-

signs higher weights to mid-gray values as they are farthest

from both under-exposed and saturated outputs.

Mitsunaga and Nayar [13] suggest a weighting function

based on the signal-to-noise ratio (SNR). However, since

the camera noise behavior is deemed unknown, they assume

the uncertainty is constant across the output range. Al-

though the noise structure is signal dependent (Sec. 3), their

weighting is still optimal under specific conditions (Sec. 7).

Reinhard et al. [15] extend the Mitsunaga-Nayar weight-

ing by applying a broad hat function that suppresses under-

exposed and saturated values.

Assuming compound-Gaussian noise, Robertson et

al. [16] propose a probabilistic approach to derive an op-

timal weighting function. The resulting weighting de-

creases linearly with the digital output variance, and in-

creases quadratically with the exposure time. Analogously

to Mitsunaga and Nayar, they replace the unknown variance

with the Mann-Picard weighting, thus accounting only for

quantization noise.

Tsin et al. [18] are the first to exploit the camera noise

model. They propose a weighting function based on the out-

put standard deviation, which they estimate directly from

the input images. However, we show that the standard de-

viation is still a suboptimal weighting under the assumption

of compound-Gaussian noise.

Similarly to Robertson et al., Kirk and Andersen [8] de-

rive a variance penalizer as the optimal weighting function.

For the case of linear sensors, they provide variance esti-

mates based on a simplified camera noise model. However,

their variance estimates are derived directly from the cam-

era output, which transfers the measurement uncertainty

into the weighting function. This condition is shared by all

previous methods.

In this paper, we extend Kirk-Andersen by adopting a

more rigorous camera noise model that accounts not only

for temporal but also spatial noise sources. We calibrate the

sensor parameters beforehand, which leaves us room to iter-

atively estimate the irradiance and its uncertainty, in a way

that noisy measurements do not perturb the weighting func-

tion. Lastly, we take advantage of the predicted uncertainty

to denoise the resulting irradiance map in an optimal way.



3. Camera noise

As we discuss in Sec. 4, the optimal weighting function

requires us to provide a model for the camera noise behav-

ior at different exposure settings. Several methods exist

for characterizing noise in digital cameras [6, 7, 14]. In

Sec. 6, we present a pipeline for noise characterization tai-

lored to HDRI reconstruction. We need to deal with two

noise classes: temporal sources and spatial sources. Noises

that manifest in pixel value differences between exposures

after all acquisition parameters are left untouched are re-

garded as temporal noise. Measurement discrepancies that

occur between pixels exposed to the same light intensity are

referred to as spatial noise. We briefly discuss them next.

3.1. Temporal noise

Photon Shot Noise (PSN). The number of photons ar-

riving to the camera sensor in a given time slack follows

a Poisson distribution, whose uncertainty is called photon

shot noise. For instance, long exposures and bright objects

suffer from larger shot noise. However, since the objective

is to estimate the irradiance X , the exposure Xt is divided
by the exposure time t. The resulting uncertainty is

√
Xt−1.

Therefore, long exposures are preferred as they provide bet-

ter SNRs.

Dark Current Shot Noise (DCSN). In a perfect sensor,

a single arriving photon frees a constant amount of electrons

(just one for the visible spectrum). Unfortunately, due to

thermal energy, some electrons are freed without any inter-

acting photon. These are called dark current. The amount

collected depends on the exposure time and the sensor’s

temperature. Similar to PSN, the generation of thermo-

electrons follows a Poisson distribution, whose uncertainty

is called dark current shot noise.

Readout noise. Several noise sources disturb the con-

version from charge to digital values. These include

reset noise, occurring during charge-to-voltage transfer;

white noise and flicker noise during voltage amplification;

and quantization noise during analog-to-digital conversion.

Please refer to [7] for an in-depth review. Since readout

noise is a combination of several independent noise sources,

it can be described by a Gaussian distribution.

3.2. Spatial noise

Photo-response non-uniformity (PRNU). Despite high

quality manufacturing processes, differences persist be-

tween the photosensitive area of different pixels. These dif-

ferences cause that two pixels under the same light intensity

produce consistently different readings. The resulting dis-

crepancy pattern is called photo-response non-uniformity,

and can be understood as a per pixel gain factor. The off-

set caused by PRNU increases with the signal, and thus it is

more evident in brighter image regions.

Dark current non-uniformity (DCNU). Due to tem-

perature differences, the amount of dark current varies be-

tween pixels. This variation is referred as fixed pattern noise

(FPN) or dark current non-uniformity (DCNU), and it can

be understood as a per pixel bias. We can correct DCNU

by subtracting from each photograph a dark frame, i.e. an

image acquired with the lens covered but otherwise equal

settings (including the integration time and sensor tempera-

ture).

4. Stochastic model

By exploiting the camera noise model, our goal is

to obtain the best possible irradiance estimate, i.e. that

of minimum variance, from a set of N measurements

{(vij , bij , ti)}i=1...N
, where vij is the image intensity on

pixel j ∈ Ω, bij is the dark frame intensity, and ti is the

exposure time. Only the exposure time is allowed to vary,

whereas all other camera settings (ISO value, aperture size,

focal length) are left fixed. In order to analytically solve for

a minimum variance irradiance estimate, we assume raw

pixel values, i.e. measurements before any in-camera pro-

cessing (e.g. dark frame subtraction, demosaicing, denois-

ing, white balancing, and compression).

We start by relating the irradiance on the imaging sensor

to the digital output value. Let Xj be the amount of photo-

induced electrons collected at the pixel capacitor per unit

time (scaled irradiance1). Let Dj be the amount induced by

dark current. Let aj be the pixel gain factor induced by the

PRNU. During the exposure, the pixel capacitor will collect

Eij ≡ ti (ajXj + Dj) electrons. The output digital value is
given by

Vij = f(Eij) = [g · Eij + NR] , (2)

where g is the overall camera gain factor, NR is the readout

noise with mean µR and variance σ2
R, and [·] is the round-

off operator corresponding to quantization. Assuming the

gain factors g, aj , and the exposure time ti to be known, the

variance of Vij is

σ2
Vij

= g2σ2
Eij

+ σ2
R, (3)

where σ2
Eij

= E[Eij ] is the shot noise (both PSN and

DCSN), and σ2
R is the readout noise including the quanti-

zation error. Similarly, the dark frame Bij and its variance

σ2
Bij

are given given by

Bij = [g · tiDj + NR] , and (4)

σ2
Bij

= g2σ2
Dij

+ σ2
R, (5)

where σ2
Dij

= E[tiDj ] corresponds to the DCSN only.

1Absolute irradiance values can be derived if the pixel area and the

quantum efficiency at the current wavelength are known.



For easing the notation, let us assume a fixed location

and, henceforth, omit the location index j. For a given

exposure i, we can now derive Xi and its uncertainty σXi

(Eq. 2, 4), obtaining

Xi ≈
Vi − Bi

ti · g · a
, with σ2

Xi
=

σ2
Vi

+ σ2
Bi

t2i g
2a2

. (6)

Note that quantization forces the approximation. Analo-

gously, we derive Di and obtain

Di ≈
Bi − µR

ti · g
, with σ2

Di
=

σ2
Bi

+ σ2
R

t2i g
2

. (7)

In the following, we assume that Xi has a Gaussian dis-

tribution with mean µX (equal for all exposures) and vari-

ance σ2
Xi

(different for every exposure). The suitability of

this assumption is discussed in Sec. 7.1.

Due to saturation, which occurs when the sensor capac-

itor cannot accumulate more charge, Eq. 6 is only valid for

values v < vsat, where vsat is the saturation limit (see

Sec. 6). Naturally, noise introduces uncertainty on the clas-

sification saturated values. Therefore, we introduce a prob-

ability mass P(nsat)(v) that an observed pixel is not sat-

urated. Let P(xi|µX , σ2
Xi

) be the conditional probability

density of an observation xi. We can describe this func-

tion by blending the unclipped probability density (under

no saturation) with a uniform probability, where the blend-

ing factor is given by the saturation probability:

P(xi|µX , σ2
Xi

) =
(

1 − P(nsat)(v)
)

P(unif)+ (8)

P(nsat)(v) · P(unclipped)(xi|µX , σ2
Xi

).

5. Optimal Reconstruction

Since our goal is to reconstruct the mean radiance µX

with the lowest variance from a set {xi}i=1...N of indepen-

dent measurements, we compute the conditional probability

of X as the joint probability

P(xi|µX , σ2
X1

, . . . , σ2
XN

) =
N
∏

i=1

P(xi|µX , σ2
Xi

). (9)

The maximum likelihood estimate for X is given by

µ̂X = arg max
µX

N
∏

i=1

P(xi|µX , σ2
Xi

). (10)

As this p.d.f. is typically convex, we can approxi-

mate µ̂X iteratively from N images by Newton esti-

mation, starting from an initial averaged estimate x̄ =
(
∑

i S(vi)xi)(
∑

i S(vi))
−1, where S(vi) indicates pixel

non-saturation.

We can further derive an analytic solution of Eq. 10 by

ignoring all pixels that are close or beyond the saturation

limit by setting P(nsat)(v) = 1 for v < vsat − ǫ, and zero

otherwise. In this setting, Eq. 10 simplifies to

µ̂X = arg max
µx

∏

i∈Sj

P(unclipped)(xi|µX , σ2
Xi

), (11)

where Sj ⊆ {1, . . . , N} is the set of non-saturated expo-

sures for pixel j. From this expression, we obtain the max-

imum likelihood estimate

µ̂X =

∑

i∈Sj

1
σ̂2

Xi

x̂i

∑

i∈Sj

1
σ̂2

Xi

, with σ̂2
µX

=
1

∑

i∈Sj

1
σ̂2

Xi

. (12)

Analogously, from Eq. 7 we can draw estimates for the

dark current parameters µD, σ2
µD

.

From Eq. 1,12, it follows that the optimal weighting

function for HDR reconstruction is wopt(vi) = (σ2
Xi

)−1.

After plugging in Eq. 3, 5, 6, we obtain

wopt(vi) =
1

σ2
Xi

=
t2i g

2a2j

g2ti(ajµX + 2µD) + 2σ2
R

. (13)

We can see that shot noise introduces a circular de-

pendency between the estimate of µX and the variances

{σ2
Xi

}i=1...N . The same applies for the dark current. For

this reason, we iteratively solve for both. Assuming ini-

tial constant variances, we solve for the µ̂X , µ̂D estimates

(Eq. 6, 7, 12). Using the latter, we estimate the variances

σ̂2
Xi

(Eq. 13), and iterate until convergence. The complete

reconstruction pipeline is presented in Fig. 3.

6. Parameter estimation

In order to optimally recover µX , we provide estimates

for the readout noise parameters µR, σ2
R, the saturation limit

vsat, the per-pixel gain factors aj , and the overall camera

gain g, based on the work by Janesik [7].

Readout noise. We estimate the readout noise from a

bias frame, i.e. an image acquired with zero integration

time. Assuming the readout noise is decoupled from the

sensor location, we can consider each pixel as an indepen-

dent random variable of the same distribution, and thus es-

timate the noise parameters µR, σ2
R from the frame spatial

mean and variance.

Saturation limit. We estimate the saturation limit vsat

as the spatial mean of a saturation frame, where the sen-

sor is exposed long enough so that every pixel reaches full

well capacity. One would expect that all pixels values be

at the maximum 2bpp − 1, where bpp is the number of bits

of the digital-to-analog converter. However, this is can be

prevented by readout noise. In order to ensure that no satu-

rated values be averaged, we set the limit to vsat − ǫ, where



ǫ corresponds to three times the saturation frame’s (spatial)

standard deviation.

Per pixel gain (PRNU). Per pixel gain factors aj are ex-

pected to follow a normal distribution with unit mean and a

small standard deviation (1%). The factors can be recovered

from a flat field, which is acquired by illuminating the sen-

sor with a spatially uniform, narrow band light source (e.g.

using a diffuser and bandpass wavelength filters). In order

to maximize the flat field signal-to-noise ratio, the exposure

time and illumination intensity should be set such that the

output values are close to saturation. In principle, gain fac-

tors can be derived by simply dividing each flat field pixel

value ff j by the spatial frame average ff . However, in or-

der to deal with with bias and temporal noise, we need to

first correct for dark current, and then frame average several

corrected flat fields, leading to the estimates

aj =
E[ff j ] − E[bj ]

1
|Ω|

∑

j

(

E[ff j ] − E[bj ]
) . (14)

Camera gain. The camera gain is the factor converting

charge stored at pixel capacitors, i.e. the exposure, to digital

values. Due to the sensor’s quantum efficiency, this factor

is wavelength dependent. In practice, we can ignore this de-

pendency. According to Janesick [7], from Eq. 2 we derive

g =
E[Vij ] − µR

E[Eij ]
. (15)

The expectation over the output value can be approximated

by the spatial average of a flat field image, i.e. E[Vij ] ≈
avgΩ[ff j ]. Since E[Eij ] = σ2

Eij
, we could also approx-

imate this term by the spatial variance varΩ[ff j ]. How-

ever, this variance carries readout and PRNU noise as well.

By taking the difference of two flat fields, we can virtually

eliminate PRNU induced variance, and derive the estimate

ĝ =
1

k
·

1
2 varΩ[ff

(1)
j − ff

(2)
j ] − σ2

R

avgΩ[ff j ] − µR

, where (16)

k =
µX(1 + σ2

a) + µD

µX + µD

, (17)

and σ2
a is the PRNU spatial variance. Since σ2

a is usually

very low (σa ≈ 1%), the factor k is usually omitted. To

handle readout noise, several gain estimates obtained from

distinct flat frame differences should be averaged.

7. Evaluation

In this section, we compare the performance of our

weighting function with previous approaches. We tested

our method using two digital cameras: a high end Canon

EOS 5D, 12-bit DAC (named camera-A), and a consumer

Canon PowerShot S5, 10-bit DAC (named camera-B), both

Calibration (Sec. 6)

1. From bias frame; estimate readout noise µR, σ2
R

2. From saturation frame; estimate saturation value vsat

3. From n flat fields; estimate gain per pixel aj (Eq. 14)

4. Using two+ flat fields, estimate camera gain g (Eq. 16)

HDRI reconstruction (Sec. 4)

1. Acquire LDR images vi and dark frames bi

2. Assume constant variances σ̂
2 (0)
Xi

3. Estimate µ̂
(i)
X assuming σ̂

2 (i−1)
Xi

(Eq. 12)

4. Estimate σ
2 (i)
Xi

assuming µ̂
(i−1)
X (Eq. 13)

5. Iterate 3 & 4 until convergence

6. Smooth final µ̂X according to σ̂2
µX

(Sec. 9)

Figure 3. Pipeline for optimal HDRI reconstruction.

Table 2. Estimated sensor parameters for our two test cameras

# Model ISO ĝ µ̂R σ̂2
R v̂sat

A Canon EOS 5D 400 0.23 128 6.5 3709

B Canon PowerShot S5 400 0.92 32 18 1023

set to ISO400 sensitivity, and with noise removal features

disabled. We estimated the camera parameters from one

bias, one saturation, and 36 flat field frames, as described in

Sec. 6. The resulting parameters are presented in Table 2. In

order to assess the reliability of our camera model, we run

the experiments both on real world images and on simulated

images. The simulation was performed using the ground

truth irradiance, acquisition sequence, and calibrated cam-

era parameters.

Ground truth acquisition. For each camera, we setup

a scene with an intensity range of roughly four orders of

magnitude, which we sampled using six exposure times.

In order to provide a reference HDR image, we acquired

36 frames and dark frames per exposure time. We aver-

aged them to obtain a six-fold noise reduction. We pro-

jected the sample variance to the irradiance domain to de-

rive σ
2(opt)

Xi
(Eq. 6). From the camera parameters, image av-

erages, and uncertainties, we derived the ground truth HDR

image (Fig. 1-a), and the reconstruction’s optimal signal-to-

noise ratio (Eq. 12).

Note that, in order to avoid the uncertainty introduced

by shutter speed variability, we normalized the images such

that the spatial average is constant for every sample of each

exposure time. Additionally, due to clamping, the sam-

ple variance becomes unreliable as the saturation limit ap-

proaches. Therefore, we excluded the affected output values

from the reconstruction.

Performance comparison. The quality of a weighting

function wi(vij) depends on how well it emphasizes low

variance samples, without discarding the information car-

ried in the high variance ones. Given a single sequence

{(vij , ti)}i, this can be measured by the variance of the

weighted mean σ
2(w)
µX = (

∑

i w2
i σ

2(opt)

Xi
)(

∑

i wi)
−2.



From σ
(w)

µ̂x
, the ground truth HDR image µX , and the bias

(µX − µ̂X), we compute the signal-to-noise ratio achieved

by each weighting. In Fig. 4, we present the resulting ratios

on our two test cameras. Note that the SNR for the upper

irradiance range is virtually equal for all methods as there

are fewer (or just one) images to average, and that disconti-

nuities in the SNR occur at locations where the longest cur-

rently contributing exposure becomes saturated. The SNR

curves were smoothed to allow for better visual distintion

of the performance differences.

In all test cases, our weighting function closely follows

the optimal reference, and it consistently achieves higher

SNR than previous approaches. The uniform weighting (de-

rived to be optimal in [1]) achieves the lowest SNR, since

reliable and unreliable measurements contribute equally.

The Kirk-Andersen weighting [8] properly accounts for

temporal noise sources (except DCSN), but lacks the spatial

ones, hence obtains the optimal SNR minus the bias error.

The Tsin et al. weighting [18] penalizes samples accord-

ing to their standard deviation, and thus, it overemphasizes

values close to the noise floor, and downplays those close

to saturation, which have the highest SNR. The Debevec-

Malik hat [3] also down-weights values close to saturation,

which explains the sudden SNR drop on each exposure seg-

ment.

As previous weightings are derived directly from the dig-

ital output, the measurement uncertainty is carried over into

the weighting function. This affects negatively all previous

approaches, but becomes evident on Debevec-Malik and

Mitsunaga-Nayar [13] on low irradiance ranges (Fig. 1-b).

The remaining methods are less susceptible as t2 factors re-

duce the influence of short exposures.

Please note the performance difference between

Mitsunaga-Nayar and Tsin et al., even though both assign

weights according to the output value SNR (Tsin implic-

itly). Given the unknown noise distribution, Mitsunaga and

Nayar assume it to be constant for all output values. As

previously discussed, this assumption is invalidated by shot

noise. Nevertheless, it can be shown (Appendix A) that this

approximation leads to the maximum likelihood weighting

when the readout noise approaches zero. This is evident

in Fig. 5-a, where the readout noise is suppressed. There,

Debevec-Malik also reaches the optimal on the first half of

the output range, where weights increase linearly.

Lastly, Robertson et al. [16] performs consistently across

the irradiance range since its t2 factor discards noisy val-

ues from short exposures. Recall that the output uncertainty

is approximated as derivative of response function in log-

scale. The resulting weighting can be shown to be ∼ t3.

Therefore, longer exposures receive too high importance,

and the optimal SNR is no longer achieved. A special case

occurs on sensors with high readout noise where all other

noise sources become negligible (Fig. 5-b).
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Figure 4. Signal-to-noise ratio achieved by different weighting

functions. (a) SNR on camera-A. (b) SNR on camera-B, whose

higher readout noise makes Mitsunaga-Nayar and Debevec-Malik

perform worse than on camera-A. The SNR curves were smoothed

for better visual distinction of the performance. Colors available

in the on-line version.
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Figure 5. Signal-to-noise ratio in relation to readout noise. (a) Un-

der zero readout noise, the Mitsunaga-Nayar reaches the optimal,

and Debevec-Malik does it as well on half of the output range.

(b) After a 10-fold increase on readout noise, Robertson and Kirk-

Andersen approach the optimal SNR since the high readout noise

shadows all other noise sources. Simulations performed with

camera-B parameters. Legend as in Fig. 4.

7.1. Gaussian noise assumption

We now test the validity of a compound-Gaussian noise

assumption. We chose camera-B since it has higher readout

noise. Fixing the scene and camera parameters, we draw a

sample of 36 images, and select three representative pixel

locations according to their expected value: right above the

noise floor, middle range, and right before saturation. In

Fig. 6, we show the corresponding normal Q-Q plots, which

indicate that the noise distribution matches that of a Gaus-



(a) v = 50 (b) v = 575 (c) v = 975

-2

-1

0

1

2

40 45 50 55
-2

-1

0

1

2

560 580 600 620
-2

-1

0

1

2

950 975 1000

Figure 6. Gaussian assumption validation. Normal Q-Q plots for

a sample of 36 pixel outputs at different intensity levels: (a) right

above noise floor, (b) middle of the output range, and (c) right

before saturation.

sian. This comes at no surprise since the sum of shot noise

(Poisson) and readout noise (normal) is a normal distribu-

tion for measurable exposure levels.

8. Optimal exposure time selection

If we assume that the irradiance distribution µX and

camera parameters p are known, we can apply our noise

model to compute an exposure sequence t that provides ir-

radiance estimates whose SNR is above a minimum limit at

every pixel. Instead of optimizing the minimum SNR di-

rectly, which is highly local, we approximate the sum of

penalized ratios

t
opt = arg min

t

∑

j∈Ω

Q(snrj(t : µXj
, p)), (18)

where snr = µ̂X σ̂−1
X is the reconstruction’s SNR, and

Q(·) = exp−1(·) is a heavy penalizer for higher ratios.

Note that arbitrary many exposures could be acquired to

achieve the desired minimum SNR. Therefore, we follow

a greedy algorithm that computes optimal sequences of in-

creasing size until the target SNR is reached.

In Fig. 7, we show the resulting exposure sequences for

the irradiance distribution of Fig. 1-a, using camera-B pa-

rameters. We set the target SNRs to 15, 25, and 30dB. The

computed sequences include 3, 8, and 15 exposures, respec-

tively. The first image in the sequence always corresponds

to the longest exposure before saturation as the SNR in-

creases with the signal. Subsequent exposures resample the

irradiance range with the lowest ratio. Our method slightly

favors shorter exposures since they improve wider intensity

ranges and produce fewer saturated pixels.

9. HDR image smoothing

Liu et al. [10] propose a method for LDR image denois-

ing, where the noise is estimated localy and then filtered out.

Since we simultaneously estimate the irradiance and its un-

certainty, we can extend this filtering concept to the HDR

domain. In Fig. 8, we present the denoised HDR image

using bilateral filtering [17], where the range bandwidth is

spatially variant according to the predicted uncertainty. We
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10
3

10
4

10
5

Irradiance

15

20

25

30

35

40

45

50

55

10
2

10
3

10
4

10
5

10
6

S
N

R
 (

d
B

)

Irradiance

N= 3
N= 8
N=15

t1=1/343

t15=1/343

t12=1/275

t10=1/221

t6=1/142

t14=1/59

t3=1/47

t7=1/19

t4=1/13

t13=1/6

t9=1/4

t2=1/3

t8=0.9

t5=1

t11=3

Figure 7. Optimal exposure sequences. (a) Irradiance distribution.

(b) Resulting exposure sequences including 3, 8, and 15 images,

for a target reconstruction SNR of 15, 25, and 30dB, respectively.

Reconstruction using camera-B parameters. Please zoom-in in the

on-line version for time labels.
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Figure 8. Optimal bandwidth for HDR image denoising.

(a) Ground truth HDR image, low irradiances shown in blue, high

in red. (b) Smoothing using the constant bandwidth with minimum

normalized MSE. (c) Smoothing according to our predicted im-

age uncertainty. (d) The normalized MSE shows that our adaptive

method achieves lower error than any given constant bandwidth.

computed the mean normalized squared error between the

denoised image and the ground truth image, and compared

it against different constant bandwidths. The resulting error

plot (Fig. 8-d) indicates that the reconstruction error of the

uncertainty-based denoising is lower than that of any con-

stant bandwidth.

10. Conclusions and future work

In this paper, we have presented a novel framework for

the creation of HDR images from a set of differently ex-

posed LDR raw images that takes into account the camera

noise characteristics. The HDR pipeline is built around a

statistical noise model that incorporates both temporal and

spatial noise sources. This approach allows for easy theoret-

ical insights into camera behavior with regard to the expo-

sure time, scene intensity, and the interfering noise sources.

As a result we have derived an optimal weighting function



for the estimation of HDR values from a series of LDR raw

images, based on a compound-Gaussian noise assumption.

Our model further allows us to compute optimal exposure

sequences, and to perform high quality HDRI denoising.

The next logical step is to characterize the noise behav-

ior of cameras where raw data is not available. There, one

needs to account for the effect of non-linear transformations

occurring during in-camera processing. This may prove dif-

ficult as the exact pipeline is rarely provided by manufactur-

ers, unlike with the imaging sensors.
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A. Mitsunaga-Nayar approximation

Mitsunaga and Nayar propose that values with higher

signal-to-noise ratio receive higher weight, as they carry

more information. Given the exposure E ≡ µXti induc-

ing a pixel value vi, their weighting function is given by

wmitsunaga(vi) ≡
E

σE

≈ E
∂E
∂vi

σvi

≈ E
∂E
∂vi

, (19)

where σvi
is assumed to be constant across different expo-

sure times, disregarding shot noise. For linear cameras, we

get wmitsunaga(vi) = µXti. Since the irradiance µX is con-

stant across exposures, we obtain wmitsunaga(vi) = ti.

Now, let us compare this result the optimal weighting in

Eq. 13. Only if µX ≫ µD and g2tiµX ≫ σ2
R holds true,

is wmitsunaga ≈ wopt. Finally, if σvi
is not neglected in

Eq. 19, then wmitsunaga =
√

ti, which is different from the

optimal.


