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Summary This paper shows that the monotonicity of the conditional hazard in traditional
ACD models is both econometrically important and empirically invalid. To counter this
problem we introduce a more flexible parametric model which is easy to fit and performs
well both in simulation studies and in practice. In an empirical application to NYSE price
duration processes, we show that non-monotonic conditional hazard functions are indicated
for all stocks. Recently proposed specification tests for financial duration models clearly reject
the standard ACD models, whereas the results for the new model are quite favorable.
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1. Introduction

The market microstructure papers by Easley et al. (1996), Diamond and Verrecchia (1987),
Glosten and Milgrom (1985), Hasbrouck (1988) and O’Hara (1995) emphasize that the waiting
times between events such as trades, quote updates, price changes, and order arrivals play a key
role in understanding the processing of private and public information in financial markets. Hence,
the accessibility of financial transactions data, i.e. real time recordings of trades, order arrivals
and quote updates, opened new perspectives for the empirical analysis of market microstructure
processes. By appropriately editing the data it is possible to define almost any event of interest,
and the corresponding duration sequence.

An econometric framework for the modeling of financial duration processes with inter-
temporally correlated event arrival times has been provided by Engle and Russell (1998) who
have introduced the Autoregressive Conditional Duration (ACD) model. The ACD model be-
longs to the family of self-exciting marked point processes originally proposed by Cox and Lewis
(1966), Hawkes, (1971a, 1971b, 1972) and Rubin (1972). A point process is a sequence of event
arrival times {t0, t1, . . . , tn, . . .} with t0 < t1 < · · · < tn · · ·, and an associated function N (t)
counting the number of events that have occurred by time t . A point process is described as
self-exciting when the the past evolution impacts the probability of future events. The marks
contain the information that is associated with these events. Perceiving a sequence of trades in an
intra-day financial market as a marked point process, the marks include events such as transaction
prices and the traded volumes.

c© Royal Economic Society 2000. Published by Blackwell Publishers Ltd, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street,
Malden, MA, 02148, USA.
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By introducing the ACD approach Engle and Russell (1998) revitalized the interest in ‘time
series models of time’ that had developed after the early papers by Wold (1948) and Cox (1955),
and the applications of Hawkes’s ideas to earthquake data by Ogata and Katsura (1986), Vere-
Jones and Ozaki (1982), and the introduction of ARMA-type models by Jacobs and Lewis (1977),
Lawrence and Lewis (1980) and Gaver and Lewis (1980). The ACD approach adopts elements
from conditional heteroskedasticity modeling, and the reader familiar with the papers by Engle
(1982) and Bollerslev (1986) will recognize many parallels. Basically, the economic motivation
behind the ACD and the ARCH model follows a similar logic: due to a clustering of news, financial
market events occur in clusters. This implies that the waiting times between these events exhibit
a significant serial correlation.

Recently, several extensions to Engle and Russell’s standard models have been proposed. En-
gle (2000) and Ghysels and Jasiak (1998a) combine conditional duration models with GARCH-
type effects (ACD-GARCH), whereas Ghysels et al. (1998) introduce a stochastic volatility
duration model to cope with higher order dynamics in financial duration processes. Ghysels and
Jasiak (1998b) investigate the persistence of inter-trade durations using a fractionally integrated
ACD model, whilst Zhang et al. (1999) advocate a non-linear version of the ACD model rooted
in a self-exciting threshold autoregressive framework. The logarithmic ACD model introduced
by Bauwens and Giot (1997) provides a robust framework for testing market microstructure
hypotheses as it avoids parameter restrictions implied by the original ACD specification. Ger-
hard and Hautsch (1999) address the problems associated with grouped financial duration data.
Bauwens and Giot (1998) and Russell and Engle (1998) propose extensions to deal with com-
peting risks, whereas Russell (1998) and Engle and Lunde (1998) consider bivariate models for
trade and quote processes. An comparison of financial duration models based on density forecast
evaluation methods is conducted by Bauwens et al. (2000).

An idiosyncrasy of Engle and Russell’s standard ACD models is that the implied hazard (or
intensity) functions conditional on past durations are restricted to being either constant, increasing
or decreasing with respect to duration. Independently from our work Bauwens and Veredas (1999),
Lunde (1999), Hamilton and Jorda (1999) and Zhang et al. (1999) have questioned whether
imposing these restrictions is appropriate, and have proposed specifications that offer greater
flexibility. In this paper we introduce an alternative ACD specification and address the question:
what consequences might a misspecification of the hazard function have? We are especially
concerned with investigating whether the expected duration forecasts are affected. This is of key
importance for the class of ACD-GARCH models, in which expected inter-trade durations enter
the conditional heteroskedasticity equation as pre-determined variables.

In a Monte Carlo study we show that the misspecification of the hazard function can severely
deteriorate the ACD model’s ability to predict expected durations. An empirical application
employs alternative ACD models for an analysis of price duration processes at the New York Stock
Exchange (NYSE). For three reasons quote durations can be considered as the most interesting
financial duration process: first, there is a link with the instantaneous volatility of the quoted
mid-price process, as pointed out by Engle and Russell (1998); second, as shown by Pringent et
al. (1999), the behavior of price durations has important implications for option pricing; third, the
price duration process can be used to empirically test microstructure theories as demonstrated by
Bauwens and Giot (1998) and Engle and Russell (1998). We find that for all stocks considered,
non-monotonic hazard functions are indicated. Applying recently proposed specification tests for
financial duration models, the standard ACD models are clearly rejected, whereas the results for
the new specification are quite encouraging.

The remainder of the paper is organized as follows: Section 2 provides the motivation to deal
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Figure 1. Density estimate using a Gamma kernel and autocorrelogram for diurnally adjusted IBM trade
durations at NYSE November 1, 1990–November 30, 1990. As suggested by Chen (1999) the bandwidth
was chosen as h = {(0.9s N )−0.2}2, where s denotes the standard deviation and N the length of the duration
sequence.

with non-monotonic hazard functions when modeling financial duration processes; Section 3
introduces the new specification after a brief review of the ACD approach; Section 4 presents
the results of the Monte Carlo study; Section 5 contains the empirical applications; Section 6
concludes.

2. Motivation

In the following we will motivate our interest in investigating the consequences of imposing
inappropriate restrictions on the shape of the hazard functions when modeling financial duration
processes. One will recognize similarities with the conditional heteroskedasticity literature where
leptokurtic unconditional return distributions triggered the development of more flexible models.

The ACD model was originally introduced for the analysis of waiting times between successive
trades in intra-day markets, the so called (inter-) trade duration process. Raw trade durations are
computed by Xi = ti − ti−1, where ti is the time of day at which the i th trade occurred. The first
data set to be analysed by means of the ACD model were trade durations for the IBM stock at the
NYSE using the 1990/1991 TORQ data set (Hasbrouck1992).

A kernel density estimate and the autocorrelogram for these data are included in Figure 1.
The sample selection was performed as in Engle and Russell (1998). Figure 1 depicts diurnally
adjusted durations that result from dividing Xi by a time-of-day (tod) dependent function. We
have adopted the standard approach by Engle and Russell (1995) and approximated the tod-
function by a cubic spline regression of Xi on ti using half hours as nodes. Duration data have
a support which is bounded from below. This implies that standard density estimation methods
may perform poorly due to the boundary bias that haunts fixed kernels. As a solution to this
problem we have adopted the Gamma kernel approach proposed by Chen (1999) that is designed
for such data.

Figure 1 depicts two features that were considered idiosyncratic for trade durations and which
guided the specification of the Exponential- and the Weibull-ACD model by Engle and Russell
(1998): first, the autocorrelations are significant even at higher lags; second, the density estimate
takes on a right-skewed shape that resembles an exponential or Weibull distribution. This clus-
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Figure 2. Density estimates using a Gamma kernel for NYSE price and volume durations (diurnally
adjusted). Sample period September–November 1996, regular trading hours. See Figure 1 for bandwidth
selection.

tering of small trade durations is a consequence of the data generating process and can especially
be expected in electronic screen trading systems where orders are either automatically matched,
or traders can initiate transactions at any time by picking off quotes displayed in the electronic
order book.

Turning our attention to other financial market events it can be shown that the resulting
duration distribution is of a quite different shape. Two examples are so-called price and volume
durations. A price duration is defined as the time interval needed to observe a cumulative change
in the mid-price not less than a threshold. The economic significance of price duration processes
was outlined in the introduction. Thinning the quote process such that the selected durations are
characterized by a total traded volume equal to at least v shares defines a sequence of volume
durations. As pointed out by Gouriéroux et al. (1996), volume durations have an immediate
appeal for characterizing the liquidity of a stock as they indicate the time needed to trade a given
amount of shares. Whilst there is also evidence for serial correlation in volume and price durations
(see Giot (1999)), the shape of the unconditional distribution is very different from that of the
trade duration data. To illustrate this, Figure 2 depicts kernel density estimates for volume and
price durations of five NYSE traded stocks using the Trade and Quote (TAQ) database. The event
that defines a volume duration is a cumulative trading volume of at least 25 000 shares. Price
durations are defined by thinning the quote process with respect to a minimum change in the
mid-price of the quotes of at least $0.125. Gamma kernel estimation and diurnal adjustment was
performed as for the trade durations data.

The comparison with the trade duration density reveals striking differences. Whilst the den-
sities are still right-skewed, they take on a clearly unimodal shape. The use of the Gamma kernel
rules out the conclusion that this is a result of the boundary bias implied by fixed kernel density
estimation.

In the standard ACD models proposed by Engle and Russell (1998), the hazard function
conditional on past information is assumed to be either increasing, decreasing or constant with
respect to duration. Let us denote by T the duration of stay in the state of interest and recall the
definition of the hazard function as the instantaneous rate of leaving per unit time period at time t ,

h(t) = lim
�t→0

P(t ≤ T < t +�t | T ≥ t)

�t
= f (t)

1− F(t)
, (1)
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where f (t) and F(t) denote the duration density and distribution function, respectively. To be
more precise, and in the notation of point processes employed by Engle and Russell (1998), we
deal with the conditional intensity function

λ{t | N (t), t1, . . . , tN (t)} = lim
�t→0

P{N (t +�t) > N (t) | N (t), t1, . . . , tN (t)}
�t

. (2)

In the following the expressions hazard and intensity function are used interchangeably.
Given the shape of the duration distributions in Figure 2, we raise the question whether a

conditional hazard function that is first increasing and then decreasing with respect to duration
might not be a more appropriate choice. Of course, the shape of the unconditional density does not
necessarily imply that the restrictions concerning the conditional hazard functions in the standard
ACD specifications become a practically relevant problem, but we take this as an obvious clue that
it might be useful to investigate whether and when these restrictions can jeopardize the successful
application of these models.

3. Econometric models

3.1. Basic models

Information events occur in clusters. This implies that the waiting times between events during the
intra-day trading and quoting process exhibit a significant autocorrelation. Some of these events,
for example the opening and closing of major exchanges or lunch breaks, occur with certainty.
Hence, a part of the duration persistence is due to an intra-day seasonality or, more precisely,
diurnality. Engle and Russell (1998) propose to decompose financial duration processes into a
deterministic effect of time (also referred to as diurnal factor or time-of-day-function), �(ti ), and
a stochastic component xi . Defining Xi as the duration between two events that occur at ti and
ti−1 we have:

Xi = xi ·�(ti−1). (3)

Engle and Russell (1995) propose approximating �(ti ) by a regression of Xi on a spline function
using polynomials of time as explanatory variables and each full hour as a node.1 Dividing each
duration in the sample by the appropriate spline function value, a sequence of diurnally adjusted
durations is obtained, xi = Xi

�(ti−1)
.

In the ACD model the conditional expected duration, ψi = E(xi | F i ), where Fi denotes
the conditioning information set generated by the durations preceding xi , is dependent on past
(expected) durations and a vector of pre-determined indicators, zi , suggested by microstructure
theory and the data generating process:

ψi = ω +
q∑

j=1

α j xi− j +
p∑

j=1

β jψi− j + ζ zi . (4)

The ACD model is further characterized by the assumption that the standardized durations

εi = xi

f (ψi )
; f (·) : R+ → R+ (5)

1In this paper, we will apply the two-step method proposed by Engle and Russell (1995) in which the spline function
is estimated separately from the other model parameters. Simultaneous ML estimation would also be possible. Engle
and Russell (1998) report that both procedures give similar results if sufficient data are available.
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are independent and identically distributed, and that their density satisfies:

g

{
xi

f (ψi )

∣∣∣∣Fi ; θg

}
= g

{
xi

f (ψi )
; θg

}
. (6)

This implies that the time dependence of the duration process is summarized by the conditional
expected duration sequence.

In order to prevent ψi becoming negative, Bauwens and Giot (1997) introduced the Logarith-
mic ACD model in which the autoregression bears on the logarithm of the conditional expected
duration. Two specifications are considered:

ψi = exp

{
ω +

q∑
j=1

α j ln(xi− j )+
p∑

j=1

β j ln(ψi− j )+ ζ zi

}
(7)

ψi = exp

{
ω +

q∑
j=1

α jεi− j +
p∑

j=1

β j ln(ψi− j )+ ζ zi

}
. (8)

Owing to its close correspondence with the EGARCH model introduced by Nelson (1991), Lunde
(1999) refers to equation (8) as the Nelson form of the ACD model.

Assuming f (ψi ) = ψi and choosing the density in equation (6) to be the Exponential(λ)

under the restriction that λ is equal to one,

g

(
xi

ψi

∣∣∣∣Fi ; θg

)
= exp

(
− xi

ψi

)
(9)

we obtain the Exponential-ACD (EACD). The conditional density of xi is easily derived:

g(xi | Fi ; θg) = 1

ψi
exp

(
− xi

ψi

)
. (10)

This is an exponential density with distribution parameter λ equal to ψ−1
i . Hence, the corre-

sponding conditional hazard function is

h(xi | Fi ; θg) = ψ−1
i . (11)

Since the assumption of a constant conditional hazard function seems highly restrictive, Engle
and Russell (1998) propose a more flexible alternative where

f (ψi ) = φi = ψi ·
{
�

(
1+ 1

γ

)}−1

(12)

and g(· ; ·) is chosen to be the Weibull (λ, γ ) under the restriction that λ = 1,

g

(
xi

φi

∣∣∣∣Fi ; θg

)
= γφi

xi

(
xi

φi

)γ

exp

{
−

(
xi

φi

)γ }
. (13)

It is then straightforward to derive the conditional density of xi ,

g(xi | Fi ; θg) = γ

xi

(
xi

φi

)γ

exp

{
−

(
xi

φi

)γ }
, (14)
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22 Joachim Grammig and Kai-Oliver Maurer

which is a Weibull density with distribution parameter λ equal to φi . This defines the Weibull-
ACD (WACD) model that reduces to the Exponential-ACD if γ is equal to one. The conditional
hazard function implied by the Weibull-ACD is

h(xi | Fi ; θg) = φi
−γ xγ−1

i γ, (15)

which decreases (0 < γ < 1) or increases (γ > 1) with respect to duration.

3.2. The Burr-ACD model

Due to its restrictive assumptions regarding the conditional hazard functions, the Exponential-
ACD will easily be rejected in empirical applications. However, we have hypothesized that the
Weibull-ACD specification still constrains the shape of the conditional hazard functions in a way
that might be inappropriate when modeling financial duration processes. In the following we
will propose a more flexible specification based on the Burr distribution that dates back to Burr
(1942). Lancaster (1990) shows that the Burr distribution can be derived as a Gamma mixture of
Weibull distributions. Exponential, Weibull and Log-Logistic are limiting cases. Unlike Weibull
and Exponential, the Burr distribution is less frequently used in duration analyses. An exception
is the paper by Ophem and Jonker (1996) who have considered a Burr-based model for an analysis
of the duration of education spells. Since we do not assume that the reader is familiar with this
distribution, the Appendix contains density, survivor and hazard functions, moments and mode,
as well as useful proofs to show the limiting cases of the Burr distribution.

To derive the alternative ACD specification, we define

f (ψi ) = ξi = ψi ·
(σ 2)

(
1+ 1

κ

)
· �( 1

σ 2 + 1
)

�
(
1+ 1

κ

) · �( 1
σ 2 − 1

κ

) , (16)

where 0 < σ 2 < κ , and choose the density in (6) to be the Burr (µ, κ, σ 2) density under the
restriction that µ = 1,

g

(
xi

ξi

∣∣∣∣Fi ; θg

)
= κ · ξ1−κ

i · xκ−1
i

(1+ σ 2 · ξ−κ
i · xκ

i )

(
1

σ2

)
+1

. (17)

The conditional density of xi is then

g(xi | Fi ; θg) = κ · ξ−κ
i · xκ−1

i

(1+ σ 2 · ξ−κ
i · xκ

i )

(
1

σ2

)
+1

. (18)

This is a Burr density with the µ-parameter equal to ξ−κ
i . It is natural to refer to this model as

the Burr-ACD (BACD). The implied conditional hazard function is

h(xi | Fi ; θg) = ξ−κ
i · κ · xκ−1

i

1+ σ 2 · ξ−κ
i · xκ

i

, (19)

which is non-monotonic with respect to duration for κ ≥ 1 and σ 2 > 0. For σ 2 → 0 the
Burr-ACD reduces to the Weibull-ACD. The Exponential-ACD is contained as a special case if
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in addition κ = 1. Furthermore, the properties of the Burr distribution (see the Appendix) imply
that for σ 2 = 1, the Burr-ACD reduces to an ACD specification that can be referred to as the
Log-Logistic-ACD.

Figure 3 illustrates feasible shapes of the Burr-ACD conditional hazard functions evaluated
at ψi = 1. The graphs where σ 2 = 0.0001 represent, approximately, the Weibull-ACD. The
Burr-ACD log-likelihood function conditional on pre-sample values x−1, x−2, . . . , is

L =
N∑

i=1

{
ln κ − κ · ln ξi + (κ − 1) · ln xi −

(
1

σ 2 + 1

)
· ln(1+ σ 2 · ξ−κ

i · xκ
i )

}
. (20)

The gradients of the Burr-ACD log-likelihood can be found in the Appendix. Optimization has
to be carried out subject to the inequality constraints

0 < σ 2 < κ. (21)

If specification (4) instead of (7) or (8) is chosen then further restrictions on ω, α1, . . . , αq and
β1, . . . , βq are required to ensure non-negativity of the conditional duration sequence. These re-
strictions correspond to those required for the GARCH model outlined by Nelson and Cao (1992).

4. Specification tests

Despite the recent boom of empirical analyses of financial duration processes, the literature has
so far devoted little attention to testing the specification of the econometric model. It is common
to perform simple diagnostic tests to check whether the standardized durations are independent
and identically distributed (i.i.d.). Whilst most papers use the Ljung-Box statistic to test for serial
correlation, only a few test whether the distribution of the durations is correctly specified. In the
following we review two recently proposed specification test ideas.

4.1. Testing financial duration models via density forecasts

Bauwens et al. (2000) propose employing the methods for evaluating density forecasts advanced
by Shephard (1994), Diebold et al. (1997) and Kim et al. (1998) to test the specification of
financial duration models. The motivation behind these procedures is rather intuitive and easily
understood. Let us denote by {pi (xi | Fi )}mi=1 a sequence of one-step-ahead density forecasts and
by { fi (xi | Fi )}mi=1 the sequence of densities defining the data generating process governing the
duration series xi . The one-step-ahead conditional density forecasts issued by the ACD models
discussed in the previous section are given by (10), (14) and (18).

Diebold et al. show that the correct density is weakly superior to all other forecasts, i.e. will
be preferred, in terms of expected loss, by all forecast users regardless of their loss functions.
This suggests that forecasts should be evaluated by assessing whether the forecasting densities
are correct, i.e. whether

{pi (xi | Fi )}mi=1 = { fi (xi | Fi )}mi=1. (22)

The distributional properties of the probability integral transform

zi =
∫ xi

−∞
pi (u) du (23)

c© Royal Economic Society 2000
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Figure 3. Burr-ACD model: feasible conditional hazard functions evaluated at ψi = 1.

derived by Rosenblatt (1952) provide the solution to the problem that fi (xi | Fi ) is never observed.
Under the null hypothesis, the distribution of the sequence of probability transforms {zi }mi=1 of
{xi }mi=1 with respect to {pi (xi | Fi )}mi=1 is i.i.d. U (0, 1). This implies that the empirical sequence
of probability integral transforms produced by the conditional duration forecasts can be used for
specification testing. Diebold et al. (1997) recommend graphical tools that complement statistical
tests for i.i.d. uniformity. For example, by plotting a histogram based on the empirical z-sequence,
departures from uniformity can easily be detected. A straightforward χ2 goodness-of-fit test can
be computed by exploiting the statistical properties of the histogram under the null hypothesis of
uniformity. Inspecting the autocorrelogram for z-sequence helps to identify potential deficiencies
of a model to account for the dynamics of the duration process. Kim et al. (1998) used the
z-sequences to look at the fit of stochastic volatility models to financial return data.
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4.2. Non-parametric testing of conditional duration models

One drawback of the density evaluation method discussed in the previous subsection is that
the effect of parameter estimation is not taken into account. Fernandes and Grammig (2000),
henceforth referred to as F&G, introduce testing procedures that gauge the closeness between
parametric and non-parametric estimates of the density functions of the standardized durations,
(9), (13) and (17). To be more specific, F&G test the null

H0 : ∃ θg ∈ � such that g(·, θg) = g(·) (24)

where g(·) is the true density of the standardized durations and g(·, θg) the density implied by the
parametric model. The alternative hypothesis is that there is no such θg ∈ �. The true density
g(·) is of course unknown. Accordingly, F&G estimate the density function using non-parametric
kernel methods, which produce consistent estimates irrespective of the parametric specification.
The parametric density estimator is in turn consistent only under the null. The obvious test is
therefore to gauge the closeness between these two density estimates. For that purpose, F&G
consider the distance

�g =
∫ ∞

0
11(x ∈ S){g(x, θ)− g(x)}2g(x) dx (25)

to build a testing procedure, which is referred to as the D-test. The compact subset S is introduced
to avoid regions in which density estimation is unstable. The sample analog of (25) reads

�ĝ = 1

N

N∑
i=1

11(xi ∈ S){g(xi , θ̂ )− ĝ(xi )}2, (26)

where θ̂ and ĝ(·) denote consistent estimates of the true parameter θg and density g(·), respectively.
The null hypothesis is rejected if the D-test statistic �ĝ is large enough. Under the null and a set
of regularity assumptions the statistic

τ̂ D
n =

T h1/2
T � f̂ − h−1/2

T δ̂D

σ̂D

d−→ N (0, 1). (27)

hT denotes the bandwidth used for the density estimation and δ̂D and σ̂ 2
D are consistent estimates of

δD = eK E{11(x ∈ S) fx } and σ 2
D = vK E{11(x ∈ S) f 3

x }, respectively, where eK ≡
∫

u K 2(u) du

and vK ≡
∫
v

{ ∫
u K (u)K (u + v) du

}2 dv. F&G’s tests are nuisance parameter free in that there
is no asymptotic cost in replacing the standardized durations with their consistent estimates. All
results are derived under mixing conditions, hence there is no need to perform a previous test for
serial independence of the standardized durations.

The standardized durations have a support which is bounded from below. Hence, τ̂ D
n may

perform poorly due to the boundary bias that haunts non-parametric estimation using fixed kernels.
One solution is to work with log-durations whose support is unbounded. The computation of the
D-test statistic (27) based on a Gaussian kernel, log-standardized durations and the parametric
densities (9), (13), (17) is straightforward using the result that for Y = log X we have fY (y) =
fX {exp(y)} exp(y).
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Table 1. Data generating processes. R denotes the number of replications and N the sample size.

ω α β γ κ σ 2 R N

DGP I 0.20 0.10 0.70 — — — 1000 15 000

DGP II 0.01 0.02 0.97 — — — 1000 15 000

DGP III 0.20 0.10 0.70 0.60 — — 1000 15 000

DGP IV 0.01 0.02 0.97 0.60 — — 1000 15 000

DGP V 0.20 0.10 0.70 — 2.00 1.50 1000 15 000

DGP VI 0.01 0.02 0.97 — 2.00 1.50 1000 15 000

5. Monte Carlo study

In this section we address two questions. First, we assess how severe the consequences of
erroneously imposing monotonic conditional hazard functions in ACD models are. We are espe-
cially interested in investigating whether the ML estimators for the parameters ω, α1, . . . , αq ,
β1, . . . , βp, which are required to predict conditional expected durations, are affected by a
misspecification of the conditional hazard function. This is a crucial issue especially for the
class of ACD-GARCH models where the ACD model is employed to predict expected durations
which enter the volatility equation in the form of explanatory variables. Second, we inves-
tigate whether the inequality constraints (21) cause problems for ML estimation of the Burr-
ACD.

We focus on six different data generating processes (DGP) based on the autoregression (4).
DGP I and II are Exponential-ACD(1,1) processes. The parameters ω, α and β are chosen so that
they crudely mimic those found in empirical applications, and so that the unconditional expected
duration equals one. Note that for an ACD(1,1) we have E(xi ) = ω

1−α−β
. DGP III and IV

are Weibull-ACD processes where γ = 0.6. DGP V and VI are duration processes that imply
non-monotonic hazard functions with durations created by Burr-ACD processes, where κ = 2
and σ 2 = 1.5. The simulation study is based on R = 1000 replications and a sample size of
N = 15 000 for each DGP. Table 1 summarizes the design.

After each replication, ML estimations are carried out using the GAUSS programs for the
computation of the log-likelihood functions and gradients for Exponential-, Weibull-, and Burr-
ACD written by the authors. We apply the sequential quadratic programming algorithm (SQP)
for the optimization of functions with general inequality and equality constraints proposed by
Han (1977). The SQP algorithm is a good choice since all ACD specifications based on the
autoregression (4) impose non-negativity constraints on expected durations. The Burr-ACD
additionally imposes the inequality constraints (21). Detailed results are reported in Table 5 that
is deferred to the Appendix. In addition to the quantiles, mean and standard deviation of the
estimators, the root mean squared error (RMSE) and the mean of the absolute error (MAE) are
computed as measures for the accuracy of the estimates. Figure 4 additionally depicts kernel
density plots.

Table 5 shows that the Burr-ACD easily reduces to either Exponential- or Weibull-ACD, as is
required for DGPs I–IV. The Burr-ACD ML estimators are as precise as the ML estimators that
correspond to the true DGP. For the majority of replications σ̂ 2

r converges to the lower bound
(1 × 10−5), and is not far above for the rest. The distribution of κ̂r is narrowly centered around
one for DGP I and II, and is very similar to the distribution of γ̂r for DGP III and IV. Hence, the
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Figure 4. Kernel plots of ACD ML estimators DGP V (left) and VI (right). Gaussian kernel with bandwidth
h = (0.9s · N )−0.2, where s is the standard deviation and N the number of observations in the sample.

inequality restrictions (21) do not affect the performance of the ML estimation.
The results for DGP V and VI reveal that a misspecification of the hazard function does indeed

entail severe consequences. RMSE and MAE that are produced by the Exponential- and Weibull-
ACD QML estimators are large. The kernel plots in Figure 4 show the low relative efficiency of
the Exponential- and Weibull-ACD ML estimators for β. Even worse, the Weibull-ACD tends
to underestimate the true parameters ω and α. The Exponential-ACD ML estimators are even
more inefficient, but the bias is less pronounced. Despite the fact that the distributions of the
Exponential-ACD ML estimators appear somewhat right-skewed, the means of the estimators ω̂r

and α̂r are closer to the true values.
The conclusion that the misspecification of the conditional hazard functions can result in

serious problems for predicting expected durations is emphasized when computing the uncon-
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Table 2. Descriptive statistics of price durations. Overdispersion stands for the ratio between standard
deviation and mean. Q(10) denotes the Ljung-Box statistic of order 10.

Stock Sample size Mean Overdispersion Q(10)

Boeing (BA) 2620 1.001 1.338 322.3

Coca-Cola (KO) 1609 1.002 1.171 69.7

Disney (DIS) 2160 1.004 1.209 137.3

Exxon (XON) 2717 1.000 1.196 68.2

IBM 6728 1.015 1.427 1932.6

ditional expected duration estimate that is implied by the mean of the estimates ω̂r , α̂r and β̂r .
Recall that the true parameters were chosen such that the unconditional expected duration equals
one. For DGP V (DGP VI) the Weibull-ACD implies that Ê(xi ) is equal to 0.77 (0.62). The
Exponential-ACD performs better with Ê(xi ) = 0.97 (DGP V) and Ê(xi ) = 1.05 (DGP VI), but
the price is the poor efficiency of the ML estimator.

6. Empirical application

6.1. Data

In this section we use real world data to assess the significance of allowing for non-monotonic
hazard functions when modeling financial duration processes. We restrict our attention to the
modeling of price durations of NYSE traded stocks. Data were provided by Luc Bauwens and
Pierre Giot, who have constructed a powerful database from the NYSE Trade and Quote (TAQ)
raw data. We use data ranging from September to November 1996 and analyse price durations of
five actively traded stocks: Boeing, Coca-Cola, Disney, Exxon, and IBM. Trading at the NYSE
is organized as a combined market maker/order book system. A designated specialist composes
the market for each stock by managing the trading and quoting processes and providing liquidity.
Apart from an opening auction, trading is continuous from 9:30 to 16:00. We define a price
duration as the time interval needed to observe a cumulative change in the mid-price of at least
$0.125. For all stocks, durations between events recorded outside the regular opening hours of
the NYSE as well as inter-day durations are removed. As documented by Giot (1999), price
durations feature a strong diurnality related to pre-determined market characteristics such as
trade opening and closing times and lunch times. Diurnally adjusted durations are computed as
outlined in Section 3.1. Cubic splines using half hour nodes are employed to smooth the time-
of-day function �(ti ). Separate splines are estimated for each day of the week. Table 2 reports
descriptive statistics of the resulting price duration sequences. The two common features across
stocks are a highly significant serial correlation and some degree of overdispersion.

6.2. Estimation and test results

For each stock we used the first two-thirds of the observations for estimation and in-sample testing.
The remainder was reserved for out-of-sample testing. We restricted our attention to a parsimo-
nious ACD(1,1) specification using the autoregression (4) and did not include pre-determined
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Table 3. Parameter estimates and robust standard errors.
ω α β κ σ 2 L

EACD 0.031 0.114 0.861 −1784.7
(0.023) (0.041) (0.059)

BA WACD 0.034 0.121 0.851 0.895 −1764.4
(0.025) (0.042) (0.061) (0.016)

BACD 0.057 0.169 0.789 1.093 0.339 −1740.1
(0.033) (0.046) (0.067) (0.036) (0.061)

EACD 0.159 0.109 0.727 −1016.5
(0.042) (0.026) (0.051)

KO WACD 0.159 0.109 0.727 0.959 −1014.8
(0.042) (0.026) (0.051) (0.019)

BACD 0.161 0.124 0.715 1.124 0.286 −1007.1
(0.042) (0.030) (0.051) (0.050) (0.079)

EACD 0.074 0.046 0.889 −1613.0
(0.030) (0.015) (0.033)

DIS WACD 0.074 0.046 0.888 0.969 −1611.8
(0.031) (0.015) (0.034) (0.018)

BACD 0.099 0.048 0.867 1.219 0.396 −1588.0
(0.044) (0.018) (0.049) (0.045) (0.067)

EACD 0.065 0.046 0.890 −1803.2
(0.037) (0.016) (0.048)

XON WACD 0.066 0.045 0.889 0.962 −1800.8
(0.038) (0.016) (0.049) (0.016)

BACD 0.102 0.039 0.863 1.250 0.464 −1766.2
(0.055) (0.015) (0.061) (0.044) (0.068)

EACD 0.010 0.090 0.905 −5044.3
(0.005) (0.019) (0.021)

IBM WACD 0.010 0.090 0.904 0.985 −5043.4
(0.005) (0.019) (0.021) (0.011)

BACD 0.017 0.112 0.880 1.263 0.420 −4952.0
(0.009) (0.029) (0.033) (0.025) (0.038)

explanatory variables. We have also estimated Logarithmic-ACD versions of the Exponential-,
Weibull- and Burr-ACD based on (7) and (8), but the results do not differ qualitatively. Maximum
Likelihood estimates and robust standard errors are reported in Table 3.

For most stocks, the Exponential- and Weibull-ACD estimates of α and β are quite similar,
whereas the Burr-ACD estimates differ considerably. All γ̂ are less than and close to one which im-
plies monotonically decreasing Weibull-ACD hazard functions. Furthermore, the log-likelihood
values of Exponential- and Weibull-ACD are quite close, whereas the Burr-ACD produces con-
siderably higher log-likelihood values. Using a standard likelihood ratio statistic, Exponential-
and Weibull-ACD are clearly to be rejected in favor of the Burr-ACD model. All κ̂ are signifi-
cantly greater than one, and the σ̂ 2 are clearly above the zero lower bound. This implies that the
Burr-ACD conditional hazard functions are non-monotonic for all stocks. Figure 5 illustrates this
result and depicts the non-monotonic standardized duration densities and the conditional hazard
functions evaluated at ψi = 1 implied by Burr-ACD ML estimates.

Table 4 contains the numerical output of the diagnostic procedures outlined in Section 4.
The D-test statistics are computed based on a Gaussian kernel and log-durations. With the sole
exception of Coca-Cola, Exponential- and Weibull-ACD are clearly rejected. In contrast, the
Burr-ACD p-values are quite large. IBM is an exception, since all models are rejected, but the
Burr-ACD produces the best results.

The results of the χ2 goodness-of-fit test designed for evaluating the models’ density forecasts
are in line with the D-test results. Exponential- and Weibull-ACD are clearly rejected for all stocks,
including Coca-Cola. Again, the Burr-ACD produces large p-values for Boeing, Coca-Cola, and
Disney. The p-values for Exxon and IBM are smaller, but the superior performance compared to
Exponential- and Weibull-ACD is obvious.
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Figure 5. Standardized duration density and conditional hazard functions (ψ = 1) implied by Burr-ACD
ML estimates.

Table 4. Specification test results.

D-Test χ2−GOF AC(z)

Stock In Out In Out In Out

EACD 0.00 0.00 0.00 0.00 8 4

BA WACD 0.00 0.00 0.00 0.00 9 4

BACD 13.77 0.94 20.10 0.01 7 4

EACD 2.91 82.07 0.00 1.77 3 0

KO WACD 31.62 87.68 0.02 11.40 2 0

BACD 66.57 96.89 19.72 6.15 2 1

EACD 0.00 0.00 0.00 0.00 5 21

DIS WACD 0.00 0.00 0.00 0.00 1 21

BACD 15.98 0.00 5.10 0.00 4 25

EACD 0.00 0.67 0.00 0.01 5 2

XON WACD 0.00 2.80 0.00 0.00 5 2

BACD 13.71 26.06 2.56 5.52 3 2

EACD 0.00 0.00 0.00 0.00 8 4

IBM WACD 0.00 0.00 0.00 0.00 7 4

BACD 0.28 0.00 0.03 0.00 6 6

An advantage of our specification tests is that they allow for visual diagnostic checks that
are helpful for interpreting the numerical results. We focus on the EXXON and IBM results,
representing the best and worst case. The graphs for the other stocks look similar. The upper
panels in Figures 5 and 6 depict the non-parametric density estimates for the log-standardized
durations together with their parametric counterparts as implied by Weibull- and Burr-ACD.
The two panels in the middle of the figures display the histogram and the two lower panels
the autocorrelograms of the sequence of probability integral transforms. The charts for the
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Figure 6. Visual diagnostic checks: Exxon in-sample results.

Exponential-ACD are worse than those for the Weibull-ACD. Hence, we restrict our attention to
a comparison of the latter and the Burr-ACD.

The density plots in the upper panels provide graphical intuition for the D-test results. The non-
parametric densities appear to fluctuate tightly around the Burr-ACD parametric densities, whereas
the parametric densities implied by the Weibull-ACD remain for large intervals consistently below
their non-parametric counterparts. In accordance with this result the z-histograms show clearly the
superiority of the Burr-ACD, since the bars remain well within the limits of the 90% confidence
intervals. Note that this also holds true for the IBM stock where, although the formal tests
rejected the Burr-ACD at 1% significance level, the improved performance compared with the
Weibull-ACD is unquestionable with respect to both D-test and density forecast. Deviations from
uniformity are striking for the Weibull-ACD that evidently finds it difficult to account for the
durations at the lower bound of the distribution.
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All ACD specifications capture the duration dynamics in more or less the same way (with
slight advantages for the Burr-ACD). The last two columns in Table 4 contains the number of
autocorrelations (out of 50) for z that are significant at the 5% level. The lower panels of Figures 5
and 6 identify the lags at which significant autocorrelations occur. With the sole exception of
IBM, the results can be considered satisfactory for all stocks.

Table 4 also reports the out-of-sample evaluation and test results. This represents a much
tougher exercise since the parameters were estimated on the first two-thirds of the sample, but the
test statistics were computed on the basis of the last one-third of the sample. Nevertheless, the
superior performance of the Burr-ACD is indisputable.
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7. Summary and conclusion

In this paper we have argued for the necessity of allowing for non-monotonic hazard functions
in the class of Autoregressive Conditional Duration models. Starting from a descriptive analysis
of empirical volume and price duration processes, we have hypothesized that the assumption of
monotonic hazard functions that is maintained in the standard ACD specifications might be too
restrictive. We have introduced a more flexible alternative that relaxes these assumptions, and
contains the basic ACD specifications proposed by Engle and Russell (1998) and others that have
not yet been considered in the literature as special cases.

In a simulation study we analysed the consequences of a misspecification of the conditional
hazard functions. We found that the QML estimators of the standard ACD models tend to be
biased and inefficient when the true DGP requires non-monotonic hazard functions. The crucial
point is that bias and inefficiency also affect the estimators of the parameters that are needed to
predict expected durations. This has severe consequences for the class of ACD-GARCH models
recently introduced by Engle (2000) and Ghysels and Jasiak (1998b) in which ACD models are
employed to predict conditional expected durations that enter the conditional heteroskedasticity
equation in the form of explanatory variables.

In an empirical application we have shown that allowing for non-monotonic hazard functions
is an important issue for modeling price duration processes of NYSE traded stocks. Employing
both a recently proposed specification test and the density forecast evaluation techniques, we found
that the standard ACD specifications are clearly rejected, whereas the model introduced in this
paper delivered unmistakably superior results. We conclude that the hazard function flexibility
that is offered by the new specification turns out to be a crucial success factor.
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Appendix

A.1. Properties of the Burr distribution

Lancaster (1990) derives the Burr distribution as a Gamma mixture of Weibull distributions. Density, hazard
and survivor functions of random variable T are given by

f (t) = µκtκ−1

(1+ σ 2µtκ )
1

σ2+1
(A.1)
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S(t) = (1+ σ 2µtκ )
− 1

σ2 (A.2)

h(t) = µκtκ−1

1+ σ 2µtκ
. (A.3)

For κ ≥ 1 the mode of the distribution is equal to

{
κ−1

µ(σ 2+κ)

} 1
κ

. The j th moment of T is

E(T j ) = µ−
j
κ

�
(

1+ j
κ

)
�

(
1
σ 2 − j

κ

)

σ
2
(

1+ j
κ

)
�

(
1
σ 2 + 1

) . (A.4)

Deriving of the Burr-ACD we have stated that the Burr distribution approximates the Weibull distribution
for σ 2 → 0 approaching zero. This can be seen by rewriting the Burr density (A.1) as

f (t) =
κt−1

(
µ

1
κ t

)κ

{
1+ σ 2

(
µ

1
κ t

)κ
} 1

σ2+1

. (A.5)

Making use of the result that

lim
h→0

(
1+ h

x

) 1
h+1

= lim
h→0

[
exp

{(
1

h
+ 1

)
ln

(
1+ h

x

)}]

= exp

{
lim

h→0

ln(x + h)− ln(x)

h

}

= exp

(
1

x

)
(A.6)

and taking the limit of (A.5) for σ 2 → 0 we have

lim
σ 2→0

f (t) = κ

t
(µ−κ t)κ · exp{−(µ−κ t)κ }. (A.7)

Recall that density, hazard and survivor functions of the Weibull distribution are given by

f (t) = λγ (λt)γ−1 (A.8)

S(t) = exp{−(λt)γ } (A.9)

h(t) = λγ (λt)γ−1. (A.10)

Thus, for σ 2 → 0 the Burr reduces to the Weibull distribution with parameters λ = µ−κ and κ = γ . If in
addition κ is equal to one, then (A.7) reduces to the Exponential density.

Comparing (A.2) to the survivor function of the Log-Logistic given by

S(t) = 1

1+ (λt)κ
(A.11)

it is readily seen that the Burr contains the Log-Logistic distribution as a special case for σ 2 = 1 and λ

in (A.11) equal to µ−κ .
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A.2. First-order conditions for the maximum of the Burr-ACD log-likelihood function

∂L
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− 1
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A.3. Monte Carlo results

Table 5. Detailed simulation results. RMSE =
√

R−1 ∑R
r=1(π̂r − π)2, MAE = R−1 ∑R

r=1 |π̂r − π |,
where π̂r denotes the coefficient estimate obtained in replication r and π the true parameter. l.b. denotes
the parameter lower bound (1× 10−5).

Exponential-ACD Weibull-ACD Burr-ACD
ω α β ω α β γ ω α β κ σ 2

DGPI
0.10 Qtl. 0.1728 0.0889 0.6643 0.1729 0.0890 0.6644 0.9922 0.1724 0.0889 0.6648 0.9937 l.b.
0.50 Qtl. 0.1999 0.0994 0.6998 0.2000 0.0994 0.6999 1.0002 0.1993 0.0993 0.7004 1.0024 l.b.
0.90 Qtl. 0.2307 0.1095 0.7341 0.2307 0.1096 0.7340 1.0086 0.2304 0.1094 0.7342 1.0132 0.0144
Mean 0.2007 0.0996 0.6997 0.2007 0.0996 0.6997 1.0003 0.2004 0.0996 0.6999 1.0031 0.0044
Std. Dev. 0.0221 0.0078 0.0267 0.0221 0.0078 0.0267 0.0063 0.0222 0.0078 0.0270 0.0076 0.0070
RMSE 0.0221 0.0078 0.0267 0.0221 0.0078 0.0267 0.0063 0.0222 0.0078 0.0270 0.0083 0.0083
MAE 0.0174 0.0061 0.0212 0.0174 0.0061 0.0212 0.0050 0.0175 0.0061 0.0213 0.0064 0.0044

DGP II
0.10 Qtl. 0.0079 0.0170 0.9641 0.0079 0.0170 0.9641 0.9922 0.0079 0.0170 0.9643 0.9937 l.b.
0.50 Qtl. 0.0104 0.0199 0.9696 0.0104 0.0199 0.9696 1.0002 0.0103 0.0199 0.9696 1.0025 l.b.
0.90 Qtl. 0.0138 0.0230 0.9743 0.0138 0.0230 0.9743 1.0086 0.0138 0.0229 0.9743 1.0133 0.0145
Mean 0.0107 0.0199 0.9694 0.0107 0.0199 0.9694 1.0003 0.0107 0.0199 0.9694 1.0031 0.0044
Std. Dev. 0.0025 0.0023 0.0041 0.0025 0.0023 0.0041 0.0063 0.0025 0.0023 0.0041 0.0077 0.0070
RMSE 0.0026 0.0023 0.0041 0.0026 0.0023 0.0041 0.0063 0.0026 0.0023 0.0041 0.0083 0.0082
MAE 0.0019 0.0018 0.0032 0.0019 0.0018 0.0032 0.0050 0.0019 0.0018 0.0032 0.0064 0.0044

DGP III
0.10 Qtl. 0.1707 0.0869 0.6580 0.1716 0.0872 0.6613 0.5953 0.1716 0.0874 0.6554 0.5962 l.b.
0.50 Qtl. 0.1995 0.0994 0.6995 0.1995 0.0994 0.6997 0.6001 0.2003 0.0996 0.6993 0.6015 l.b.
0.90 Qtl. 0.2341 0.1121 0.7385 0.2310 0.1118 0.7372 0.6051 0.2368 0.1127 0.7370 0.6079 0.0143
Mean 0.2008 0.0997 0.6993 0.2010 0.0997 0.6991 0.6002 0.2025 0.1000 0.6970 0.6018 0.0044
Std. Dev. 0.0252 0.0100 0.0312 0.0241 0.0095 0.0299 0.0038 0.0256 0.0097 0.0326 0.0046 0.0070
RMSE 0.0252 0.0100 0.0312 0.0241 0.0095 0.0299 0.0038 0.0257 0.0097 0.0328 0.0049 0.0082
MAE 0.0199 0.0079 0.0247 0.0191 0.0075 0.0237 0.0030 0.0203 0.0077 0.0256 0.0038 0.0044

DGP IV
0.10 Qtl. 0.0078 0.0169 0.9639 0.0081 0.0171 0.9637 0.5954 0.0081 0.0171 0.9638 0.5962 l.b.
0.50 Qtl. 0.0104 0.0199 0.9696 0.0106 0.0200 0.9693 0.6001 0.0105 0.0200 0.9693 0.6013 l.b.
0.90 Qtl. 0.0139 0.0233 0.9742 0.0138 0.0231 0.9740 0.6052 0.0138 0.0231 0.9740 0.6078 0.0140
Mean 0.0108 0.0200 0.9692 0.0108 0.0201 0.9690 0.6002 0.0108 0.0201 0.9690 0.6018 0.0042
Std. Dev. 0.0026 0.0024 0.0043 0.0024 0.0023 0.0041 0.0038 0.0024 0.0024 0.0041 0.0046 0.0068
RMSE 0.0027 0.0024 0.0044 0.0026 0.0024 0.0042 0.0038 0.0026 0.0024 0.0042 0.0049 0.0079
MAE 0.0020 0.0020 0.0034 0.0019 0.0019 0.0032 0.0030 0.0019 0.0019 0.0032 0.0038 0.0042

DGP V
Mean 0.2024 0.1099 0.6820 0.1679 0.0840 0.6973 0.7490 0.2006 0.1000 0.6988 1.9976 1.4956
Std. Dev. 0.0896 0.0893 0.1201 0.0294 0.0186 0.0481 0.0235 0.0145 0.0074 0.0166 0.0266 0.0380
RMSE 0.0896 0.0898 0.1214 0.0436 0.0245 0.0481 1.2512 0.0145 0.0074 0.0166 0.0267 0.0382
MAE 0.0605 0.0440 0.0823 0.0363 0.0207 0.0371 1.2510 0.0115 0.0060 0.0134 0.0212 0.0305

DGP VI
Mean 0.0138 0.0261 0.9607 0.0089 0.0169 0.9688 0.7490 0.0104 0.0205 0.9687 1.9897 1.4850
Std. Dev. 0.0242 0.0526 0.0544 0.0019 0.0034 0.0052 0.0235 0.0009 0.0015 0.0018 0.0264 0.0370
RMSE 0.0245 0.0529 0.0552 0.0022 0.0046 0.0053 1.2512 0.0010 0.0016 0.0022 0.0283 0.0400
MAE 0.0066 0.0121 0.0148 0.0018 0.0039 0.0041 1.2510 0.0008 0.0013 0.0017 0.0229 0.0323
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