
Laplace Redux – Effortless Bayesian Deep Learning

Erik Daxberger∗,c,m Agustinus Kristiadi∗,t Alexander Immer∗,e,p Runa Eschenhagen∗,t
Matthias Bauerd Philipp Hennigt,m

cUniversity of Cambridge
mMPI for Intelligent Systems, Tübingen

tUniversity of Tübingen
eDepartment of Computer Science, ETH Zurich
pMax Planck ETH Center for Learning Systems

dDeepMind, London

Abstract

Bayesian formulations of deep learning have been shown to have compelling theo-
retical properties and offer practical functional benefits, such as improved predictive
uncertainty quantification and model selection. The Laplace approximation (LA)
is a classic, and arguably the simplest family of approximations for the intractable
posteriors of deep neural networks. Yet, despite its simplicity, the LA is not as
popular as alternatives like variational Bayes or deep ensembles. This may be due
to assumptions that the LA is expensive due to the involved Hessian computation,
that it is difficult to implement, or that it yields inferior results. In this work we show
that these are misconceptions: we (i) review the range of variants of the LA includ-
ing versions with minimal cost overhead; (ii) introduce laplace, an easy-to-use
software library for PyTorch offering user-friendly access to all major flavors of the
LA; and (iii) demonstrate through extensive experiments that the LA is competitive
with more popular alternatives in terms of performance, while excelling in terms
of computational cost. We hope that this work will serve as a catalyst to a wider
adoption of the LA in practical deep learning, including in domains where Bayesian
approaches are not typically considered at the moment.

laplace code: https://github.com/AlexImmer/Laplace

1 Introduction

Despite their successes, modern neural networks (NNs) still suffer from several shortcomings that
limit their applicability in some settings. These include (i) poor calibration and overconfidence,
especially when the data distribution shifts between training and testing [1], (ii) catastrophic forgetting
of previously learned tasks when continuously trained on new tasks [2], and (iii) the difficulty of
selecting suitable NN architectures and hyperparameters [3]. Bayesian modeling [4, 5] provides a
principled and unified approach to tackle these issues by (i) equipping models with robust uncertainty
estimates [6], (ii) enabling models to learn continually by capturing past information [7], and (iii)
allowing for automated model selection by optimally trading off data fit and model complexity [8].

Even though this provides compelling motivation for using Bayesian neural networks (BNNs) [9],
they have not gained much traction in practice. Common criticisms include that BNNs are difficult
to implement, finicky to tune, expensive to train, and hard to scale to modern models and datasets.

∗Equal contributors; author ordering sampled uniformly at random. Correspondence to:
ead54@cam.ac.uk, agustinus.kristiadi@uni-tuebingen.de, alexander.immer@inf.ethz.ch,
runa.eschenhagen@student.uni-tuebingen.de.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/AlexImmer/Laplace

(a) MAP Estimation (b) Laplace Approximation (c) Prediction

Figure 1: Probabilistic predictions with the Laplace approximation in three steps. (a) We find
a MAP estimate (yellow star) via standard training (background contours = log-posterior landscape
on the two-dimensional PCA subspace of the SGD trajectory [30]). (b) We locally approximate
the posterior landscape by fitting a Gaussian centered at the MAP estimate (yellow contours), with
covariance matrix equal to the negative inverse Hessian of the loss at the MAP—this is the Laplace
approximation (LA). (c) We use the LA to make predictions with predictive uncertainty estimates—
here, the black curve is the predictive mean, and the shading covers the 95% confidence interval.

For instance, popular variational Bayesian methods [10–12, etc.] require considerable changes to the
training procedure and model architecture. Also, their optimization process is slower and typically
more unstable unless carefully tuned [13]. Other methods, such as deep ensembles [14], Monte Carlo
dropout [6], and SWAG [15] promise to bring uncertainty quantification to standard NNs in simple
manners. But these methods either require a significant cost increase compared to a single network,
have limited empirical performance, or an unsatisfying Bayesian interpretation.

In this paper we argue that the Laplace approximation (LA) is a simple and cost-efficient, yet compet-
itive approximation method for inference in Bayesian deep learning. First proposed in this context by
MacKay [16], the LA dates back to the 18th century [17]. It locally approximates the posterior with
a Gaussian distribution centered at a local maximum, with covariance matrix corresponding to the
local curvature. Two key advantages of the LA are that the local maximum is readily available from
standard maximum a posteriori (MAP) training of NNs, and that curvature estimates can be easily and
efficiently obtained thanks to recent advances in second-order optimization, both in terms of more
efficient approximations to the Hessian [18–20] and easy-to-use software libraries [21]. Together,
they make the LA practical and readily applicable to many already-trained NNs—the LA essentially
enables practitioners to turn their high performing point-estimate NNs into BNNs easily and quickly,
without loss of predictive performance. Furthermore, the LA to the marginal likelihood may even
be used for Bayesian model selection or NN training [8, 22]. Figure 1 provides an intuition of the
LA—we first fit a point estimate of the model, and then estimate a Gaussian distribution around that.

Yet, despite recent progress in scaling and improving the LA for deep learning [23–29], it is far
less widespread than other methods. This is likely due to misconceptions, like that the LA is hard to
implement due to the Hessian computation, that it must necessarily perform worse than the competitors
due to its local nature, or quite simply that it is old and too simple. Here, we show that these are
indeed misconceptions. Moreover, we argue that the LA deserves a wider adoption in both practical
and research-oriented deep learning. To this end, our work makes the following contributions:

1. We first survey recent advances and present the key components of scalable and practical
Laplace approximations in deep learning (Section 2).

2. We then introduce laplace, an easy-to-use PyTorch-based library for “turning a NN into a
BNN” via the LA (Section 3). laplace implements a wide range of different LA variants.

3. Lastly, using laplace, we show in an extensive empirical study that the LA is competitive
to alternative approaches, especially considering how simple and cheap it is (Section 4).

2 The Laplace Approximation in Deep Learning

The LA can be used in two different ways to benefit deep learning: Firstly, we can use the LA to
approximate the model’s posterior distribution (see Eq. (5) below) to enable probabilistic predictions
(as also illustrated in Fig. 1). Secondly, we can use the LA to approximate the model evidence (see
Eq. (6)) to enable model selection (e.g. hyperparameter tuning).

2

The canonical form of (supervised) deep learning is that of empirical risk minimization. Given, e.g., an
i.i.d. classification dataset D := {(xn ∈ RM , yn ∈ RC)}Nn=1, the weights θ ∈ RD of an L-layer NN
fθ : RM → RC are trained to minimize the (regularized) empirical risk, which typically decomposes
into a sum over empirical loss terms `(xn, yn; θ) and a regularizer r(θ),

θMAP = arg minθ∈RD L(D; θ) = arg minθ∈RD
(
r(θ) +

∑N
n=1 `(xn, yn; θ)

)
. (1)

From the Bayesian viewpoint, these terms can be identified with i.i.d. log- likelihoods and a log-prior,
respectively and, thus, θMAP is indeed a maximum a-posteriori (MAP) estimate:

`(xn, yn; θ) = − log p(yn | fθ(xn)) and r(θ) = − log p(θ) (2)

For example, the widely used weight regularizer r(θ) = 1
2γ
−2‖θ‖2 (a.k.a. weight decay) corresponds

to a centered Gaussian prior p(θ) = N (θ; 0, γ2I), and the cross-entropy loss amounts to a categor-
ical likelihood. Hence, the exponential of the negative training loss exp(−L(D; θ)) amounts to an
unnormalized posterior. By normalizing it, we obtain

p(θ | D) = 1
Z p(D | θ) p(θ) = 1

Z exp(−L(D; θ)), Z :=
∫
p(D | θ) p(θ) dθ (3)

with an intractable normalizing constant Z. Laplace approximations [17] use a second-order expan-
sion of L around θMAP to construct a Gaussian approximation to p(θ | D). I.e. we consider:

L(D; θ) ≈ L(D; θMAP) + 1
2 (θ − θMAP)ᵀ

(
∇2
θL(D; θ)|θMAP

)
(θ − θMAP), (4)

where the first-order term vanishes at θMAP. Then we can identify the Laplace approximation as
Laplace posterior approximation

p(θ | D) ≈ N (θ; θMAP, Σ) with Σ := −
(
∇2
θL(D; θ)|θMAP

)−1
. (5)

The normalizing constant Z (which is typically referred to as the marginal likelihood or evidence) is
useful for model selection and can also be approximated as

Laplace approximation of the evidence
Z ≈ exp(−L(D; θMAP)) (2π)D/2 (detΣ)1/2. (6)

See Appendix A for more details. Thus, to obtain the approximate posterior, we first need to find the
argmax θMAP of the log-posterior function, i.e. do “standard” deep learning with regularized empirical
risk minimization. The only additional step is to compute the inverse of the Hessian matrix at θMAP
(see Figure 1(b)). The LA can therefore be constructed post-hoc to a pre-trained network, even one
downloaded off-the-shelf. As we discuss below, the Hessian computation can be offloaded to recently
advanced automatic differentiation libraries [21]. LAs are widely used to approximate the posterior
distribution in logistic regression [31], Gaussian process classification [32, 33], and also for Bayesian
neural networks (BNNs), both shallow [34] and deep [23]. The latter is the focus of this work.

Generally, any prior with twice differentiable log-density can be used. Due to the popularity of the
weight decay regularizer, we assume that the prior is a zero-mean Gaussian p(θ) = N (θ; 0, γ2I)
unless stated otherwise.2 The Hessian∇2

θL(D; θ)|θMAP then depends both on the (simple) log-prior /
regularizer and the (complicated) log-likelihood / empirical risk:

∇2
θL(D; θ)|θMAP = −γ−2I −

∑N
n=1∇2

θ log p(yn | fθ(xn))|θMAP . (7)

A naive implementation of the Hessian is infeasible because the second term in Eq. (7) scales
quadratically with the number of network parameters, which can be in the millions or even billions
[35, 36]. In recent years, several works have addressed scalability, as well as other factors that affect
approximation quality and predictive performance of the LA. In the following, we identify, review, and
discuss four key components that allow LAs to scale and perform well on modern deep architectures.
See Fig. 2 for an overview and Appendix B for a more detailed version of the review and discussion.

Four Components of Scalable Laplace Approximations for Deep Neural Networks

1 Inference on all Weights or Subsets of Weights

In most cases it is possible to treat all weights probabilistically when using appropriate approximations
of the Hessian, as we discuss below in 2 . Another simple way to scale the LA to large networks is

2One can also consider a per-layer or even per-parameter weight decay, which corresponds to a more general,
but still comparably simple Gaussian prior. In particular, the Hessian of this prior is still diagonal and constant.

3

Deterministic network fθ

Optional: Train θ as usual (MAP)

1 Weights to be treated probabilistically with Laplace

(a) All (b) Subnetwork (c) Last-Layer

Laplace(..., subset_of_weights={'all', 'last_layer'})

2 Approximation of the Hessian

(a) Full (b) LRank (c) KFAC (d) Diag.

Laplace(..., hessian_structure={'full', 'kron', 'diag'})

3 Hyperparameter tuning method

(a) Online Laplace

(b) Post-hoc Laplace

la.optimize_prior_precision()

4 (Approximate) predictive p(y|fθ(x∗),D)

Regression

Monte Carlo
Exact predictive

Classification

Monte Carlo
Probit approx.
Laplace bridge

la(x, link_approx={'mc', 'probit', 'bridge'})

Untrained fθ

Tr
ai

ne
d
f θ

Figure 2: Four key components to scale and apply the LA to a network fθ (with randomly-initialized
or pre-trained weights θ), with corresponding laplace code. 1 We first choose which part of the
model we want to perform inference over with the LA. 2 We then select how to to approximate
the Hessian. 3 We can then perform model selection using the evidence: (a) If we started with an
untrained model fθ, we can jointly train the model and use the evidence to tune hyperparameters online.
(b) If we started with a pre-trained model, we can use the evidence to tune the hyperparameters post-
hoc. Here, shades represent the loss landscape, while contours represent LA log-posteriors—faded
contours represent intermediate iterates during hyperparameter tuning to obtain the final log-posterior
(thick yellow contours). 4 Finally, to make predictions for a new input x∗, we have several options
for computing/approximating the predictive distribution p(y|fθ(x∗),D).

to treat only a subset of weights probabilistically with the LA and to leave the remaining weights at
their MAP-estimated values. One way is to partition an L-layer deep net into a fixed feature extractor,
comprising its first L− 1 layers, and its last linear layer [37, 28]. This last-layer LA is cost-effective
yet compelling both theoretically and in practice [28]. Alternatively, one can also consider a general
subset of θ to yield a subnetwork LA [27], which is intuitively motivated by recent findings that NNs
can be heavily pruned without sacrificing test accuracy3 [38].

2 Hessian Approximations and Their Factorizations

One advance in second-order optimization that the LA can benefit from are positive semi-definite
approximations to the (potentially indefinite) Hessian of the log-likelihoods of NNs in the second
term of Eq. (7) [39]. The Fisher information matrix [40], abbreviated as the Fisher and defined by

F :=
∑N
n=1 Eŷ∼p(y | fθ(xn)) [(∇θ log p(ŷ | fθ(xn))|θMAP)(∇θ log p(ŷ | fθ(xn))|θMAP)

ᵀ] , (8)

is one such choice.4 One can also use the generalized Gauss-Newton matrix (GGN) matrix [42]

G :=
∑N
n=1 J(xn)

(
∇2
f log p(yn | f)|f=fθMAP (xn)

)
J(xn)ᵀ, (9)

3Note that Daxberger et al. [27] do not prune weights, but only consider a subset of weights to do inference
over. So instead of zeroing out weights themselves, they zero out (co-)variances between/of weights.

4If, instead of taking expectation in (8), we use the training label yn, we call the matrix the empirical Fisher,
which is distinct from the Fisher [39, 41].

4

where J(xn) := ∇θfθ(xn)|θMAP is the NN’s Jacobian matrix. As the Fisher and GGN are equivalent
for common log-likelihoods [39], we will henceforth refer to them interchangeably. In deep LAs, they
have emerged as the default choice [23, 24, 28, 29, 27, 26, etc.].

As F and G are still quadratically large, we typically need further factorization assumptions. The
most lightweight is a diagonal factorization which ignores off-diagonal elements [43, 44]. More
expressive alternatives are block-diagonal factorizations such as Kronecker-factored approximate
curvature (KFAC) [18–20], which factorizes each within-layer Fisher5 as a Kronecker product of
two smaller matrices. KFAC has been successfully applied to the LA [23, 24] and can be improved
by low-rank approximations of the KFAC factors [29] by leveraging their eigendecompositions [45].
Finally, recent work has studied/enabled low-rank approximations of the Hessian/Fisher [46–48].

3 Hyperparameter Tuning

As with all approximate inference methods, the performance of the LA depends on the (hy-
per)parameters of the prior and likelihood. For instance, it is typically beneficial to tune the prior
variance γ2 used for inference [23, 28, 27, 26, 22]. Commonly, this is done through cross-validation,
e.g. by maximizing the validation log-likelihood [23, 49] or, additionally, using out-of-distribution
data [28, 50]. When using the LA, however, marginal likelihood maximization (a.k.a. empirical
Bayes or the evidence framework [34, 51]) constitutes a more principled alternative to tune these
hyperparameters, and requires no validation data. Immer et al. [22] showed that marginal likelihood
maximization with LA can work in deep learning and even be performed in an online manner jointly
with the MAP estimation. Note that such approach is not necessarily feasible for other approximate
inference methods because most do not provide an estimate of the marginal likelihood. Other recent
approaches for hyperparameter tuning for the LA include Bayesian optimization [52] or the addition
of dedicated, trainable hidden units for the sole purpose of uncertainty tuning [50].

4 Approximate Predictive Distribution

To predict using a posterior (approximation) p(θ | D), we need to compute p(y | f(x∗),D) =∫
p(y | fθ(x∗)) p(θ | D) dθ for any test point x∗ ∈ Rn, which is intractable in general. The sim-

plest but most general approximation to p(y |x∗,D) is Monte Carlo integration using S samples
(θs)

S
s=1 from p(θ | D): p(y | f(x∗),D) ≈ S−1

∑S
s=1 p(y | fθs(x∗)). However, for LAs with GGN

and Fisher Hessian approximations Monte Carlo integration can perform poorly [49, 26]. Immer et al.
[26] attribute this to the inconsistency between Hessian approximation and the predictive and suggest
to use a linearized predictive instead, which can also be useful for theoretic analyses [28]. For the
last-layer LA, the Hessian coincides with the GGN and the linearized predictive is exact.

The predictive of a linearized neural network with a LA approximation to the posterior p(θ | D) ≈
N (θ; θMAP, Σ) results in a Gaussian distribution on neural network outputs f∗ := f(x∗) and there-
fore enables simple approximations or even a closed-form solution. The distribution on the out-
puts is given by p(f∗ |x∗,D) ≈ N (f∗; fθMAP(x∗), J(x∗)

ᵀΣJ(x∗)) and is typically significantly
lower-dimensional (number of outputs C instead of parameters D) [25]. Given the distribution
on neural network outputs f∗, the predictive distribution can be obtained by integration against
the likelihood: p(y |x∗,D) =

∫
p(y | f∗)p(f∗ |x∗,D) dθ. In the case of regression with a Gaus-

sian likelihood with variance σ2, the solution can even be obtained analytically: p(y |x∗,D) ≈
N (y; fθMAP(x∗), J(x∗)

ᵀΣJ(x∗) + σ2I). For non-Gaussian likelihoods, e.g. in classification, a fur-
ther approximation is needed. Again, the simplest approximation to this is Monte Carlo integration.
In the binary case, we can employ the probit approximation [31, 16] which approximates the lo-
gistic function with the probit function. In the multi-class case, we can use its generalization, the
extended probit approximation [53]. Finally, first proposed for non-BNN applications [54, 55], the
Laplace bridge approximates the softmax-Gaussian integral via a Dirichlet distribution [56]. The key
advantage is that it yields a distribution of the integral solutions.

3 laplace: A Toolkit for Deep Laplace Approximations

Implementing the LA is non-trivial, as it requires efficient computation and storage of the Hessian.
While this is not fundamentally difficult, there exists no complete, easy-to-use, and standardized im-

5The elements F or G corresponding to the weight Wl ⊆ θ of the l-th layer of the network.

5

1 from laplace import Laplace
2
3 # Load pre-trained model
4 model = load_map_model()
5
6 # Define and fit LA variant with custom settings
7 la = Laplace(model, 'classification',
8 subset_of_weights='all',
9 hessian_structure='diag')

10 la.fit(train_loader)
11 la.optimize_prior_precision(method='CV',
12 val_loader=val_loader)
13
14 # Make prediction with custom predictive approx.
15 pred = la(x, pred_type='glm', link_approx='probit')

Listing 1: Fit diagonal LA over all weights of
a pre-trained classification model, do post-hoc
tuning of the prior precision hyperparameter us-
ing cross-validation, and make a prediction for
input x with the probit approximation.

1 from laplace import Laplace
2
3 # Load un- or pre-trained model
4 model = load_map_model()
5
6 # Fit default, recommended LA variant:
7 # Last-layer KFAC LA
8 la = Laplace(model, 'regression')
9 la.fit(train_loader)

10
11 # Differentiate marginal likelihood w.r.t.
12 # prior precision and observation noise
13 ml = la.marglik(prior_precision=prior_prec,
14 sigma_noise=obs_noise)
15 ml.backward()

Listing 2: Fit KFAC LA over the last layer of a
pre- or un-trained regression model and differen-
tiate its marginal likelihood w.r.t. some hyperpa-
rameters for post-hoc hyperparameter tuning or
online empirical Bayes (see Immer et al. [22]).

plementation of various LA flavors—instead, it is common for deep learning researchers to repeatedly
re-implement the LA and Hessian computation with varying efficiency [57–59, etc.]. An efficient
implementation typically requires hundreds of lines of code, making it hard to quickly prototype
with the LA. To address this, we introduce laplace: a simple, easy-to-use, extensible library for
scalable LAs of deep NNs in PyTorch [60]. laplace enables all possible combinations of the four
components discussed in Section 2—see Fig. 2 for details. Listings 1 and 2 show code examples.

The core of laplace consists of efficient implementations of the LA’s key quantities: (i) posterior
(i.e. Hessian computation and storage), (ii) marginal likelihood, and (iii) posterior predictive. For (i),
to take advantage of advances in automatic differentiation, we outsource the Hessian computation
to state-of-the-art, optimized second-order optimization libraries: BackPACK [21] and ASDL [61].
Moreover, we design laplace in a modular manner that makes it easy to add new backends and
approximations in the future. For (ii), we follow Immer et al. [22] in our implementation of the LA’s
marginal likelihood—it is thus both efficient and differentiable and allows the user to implement
both online and post-hoc marginal likelihood tuning, cf. Listing 2. Note that laplace also supports
standard cross-validation for hyperparameter tuning [23, 28], as shown in Listing 1. Finally, for (iii),
laplace supports all approximations to the posterior predictive distribution discussed in Section 2—it
thus provides the user with flexibility in making predictions, depending on the computational budget.

Default behavior To abstract away from a large number of options available (Section 2), we
provide the following default choices based on our extensive experiments (Section 4); they should be
applicable and perform decently in the majority of use cases: we assume a pre-trained network and
treat only the last-layer weights probabilistically (last-layer LA), use the KFAC factorization of the
GGN and tune the hyperparameters post-hoc using empirical Bayes. To make predictions, we use the
closed-form Gaussian predictive distribution for regression and the (extended) probit approximation
for classification. Of course, the user can pick custom choices (Listings 1 and 2).

Limitations Because laplace employs external libraries (BackPACK [21] and ASDL [61]) as
backends, it inherits the available choices of Hessian factorizations from these libraries. For instance,
the LA variant proposed by Lee et al. [29] can currently not be implemented via laplace, because nei-
ther backend supports eigenvalue-corrected KFAC [45] (yet). Similarly, the first version of laplace
does not yet support the subnetwork LA [27]—we plan to add it in the next iteration of the library.

4 Experiments

We benchmark various LAs implemented via laplace. Section 4.1 addresses the question of “which
are the best design choices for the LA”, in light of Figure 2. Section 4.2 shows that the LA is
competitive to strong Bayesian baselines in in-distribution, dataset-shift, and out-of-distribution
(OOD) settings. We then showcase some applications of the LA in downstream tasks. Section 4.3
demonstrates the applicability of the (last-layer) LA on various data modalities and NN architectures
(including transformers [62])—settings where other Bayesian methods are challenging to implement.

6

0.91 0.92 0.93
Acc. ID

0.90

0.91

0.92

0.93

AU
RO

C

CIFAR-10 + DA

0.83 0.86 0.89
Acc. ID

0.76

0.80

0.84

0.88
CIFAR-10

MAP
online
post-hoc

Figure 3: In- vs. out-of-distribution (ID and OOD,
resp.) performance on CIFAR-10 of different LA
configurations (dots), each being a combination
of settings for 1) subset-of-weights, 2) covariance
structure, 3) hyperparameter tuning, and 4) predic-
tive approximation (see Appendix C.1 for details).
“DA” stands for “data augmentation”. Post-hoc per-
forms better with DA and a strong pre-trained net-
work, while online performs better without DA
where optimal hyperparameters are unknown.

Table 1: OOD detection performance aver-
aged over all test sets (see Appendix C.2 for
details). Confidence is defined as the max.
of the predictive probability vector [63] (e.g.
Confidence([0.7, 0.2, 0.1]) = 0.7). LA and
especially LA* reduce the overconfidence of
MAP and achieve better results than the VB,
CSGHMC (HMC), and SWAG (SWG) baselines.

Confidence ↓ AUROC ↑

Methods MNIST CIFAR-10 MNIST CIFAR-10

MAP 75.0±0.4 76.1±1.2 96.5±0.1 92.1±0.5
DE 65.7±0.3 65.4±0.4 97.5±0.0 94.0±0.1
VB 73.2±0.8 58.8±0.7 95.8±0.2 88.7±0.3
HMC 69.2±1.7 69.4±0.6 96.1±0.2 90.6±0.2
SWG 75.8±0.3 68.1±2.3 96.5±0.1 91.3±0.8

LA 67.5±0.4 69.0±1.3 96.2±0.2 92.2±0.5
LA* 56.1±0.5 55.7±1.2 96.4±0.2 92.4±0.5

Section 4.4 shows how the LA can be used as an easy-to-use yet strong baseline in continual learning.
In all results, arrows behind metric names denote if lower (↓) or higher (↑) values are better.

4.1 Choosing the Right Laplace Approximation

In Section 2 we presented multiple options for each component of the design space of the LA, resulting
in a large number of possible combinations, all of which are supported by laplace. Here, we try
to reduce this complexity and make suggestions for sensible default choices that cover common
application scenarios. To this end, we performed a comprehensive comparison between most variants;
we measured in- and out-of-distribution performance on standard image classification benchmarks
(MNIST, FashionMNIST, CIFAR-10) but also considered the computational complexity of each
variant. We provide details of the comparison and a list of the considered variants in Appendix C.1
and summarize the main arguments and take-aways in the following.

Hyperparameter tuning and parameter inference. We can apply the LA purely post-hoc (only
tune hyperparameters of a pre-trained network) or online (tune hyperparameters and train the network
jointly, as e.g. suggested by Immer et al. [22]). We find that the online LA only works reliably
when it is applied to all weights of the network. In contrast, applying the LA post-hoc only on the
last layer instead of all weights typically yields better performance due to less underfitting, and is
significantly cheaper. For problems where a pre-trained network or optimal hyperparameters are
available, e.g. for well-studied data sets, we therefore suggest using the post-hoc variant on the last
layer. This LA has the benefit that it has minimal overhead over a standard neural network forward
pass (cf. Fig. 5) while performing on par or better than state-of-the-art approaches (cf. Fig. 4). When
hyperparameters are unknown or no validation data is available, we suggest training the neural
network online by optimizing the marginal likelihood, following Immer et al. [22] (cf Section 4.4).
Figure 3 illustrates this on CIFAR-10: for CIFAR-10 with data augmentation, strong pre-trained
networks and hyperparameters are available and the post-hoc methods directly profit from that while
the online methods merely reach the same performance. On the less studied CIFAR-10 without data
augmentation, the online method can improve the performance over the post-hoc methods.

Covariance approximation and structure. Generally, we find that a more expressive covariance
approximation improves performance, as would be expected. However, a full covariance is in most
cases intractable for full networks or networks with large last layers. The KFAC structured covariance
provides a good trade-off between expressiveness and speed. Diagonal approximations perform
significantly worse than KFAC and are therefore not suggested. Independent of the structure, we find
that the empirical Fisher (EF) approximations perform better on out-of-distribution detection tasks
while GGN approximations tend to perform better on in-distribution metrics.

Predictive distribution. Considering in- and out-of-distribution (OOD) performance as well as
cost, the probit provides the best approximation to the predictive for the last-layer LA. MC integration

7

NLL ↓ ECE ↓
10−2

10−1

100

MAP DE VB HMC

SWG LA LA*

% Acc. ↑
98%

99%

100%

0 50 100 150
0

2.5

5

7.5

0 50 100 150
0

0.2

0.4

0.6

NLL ↓ ECE ↓
10−2

10−1

100

Metrics

% Acc. ↑
90%

93%

96%

(a) In-Distribution

0 1 2 3 4 5
0

1

2

Shift Intensity

(b) Distribution-shift NLL ↓

0 1 2 3 4 5
0

0.1

0.2

0.3

Shift Intensity

(c) Distribution-shift ECE ↓

Figure 4: Assessing model calibration (a) on in-distribution data and (b&c) under distribution shift,
for the MNIST (top row) and CIFAR-10 (bottom row) datasets. For (b&c), we use the Rotated-MNIST
(top) and Corrupted-CIFAR-10 (bottom) benchmarks [64, 65]. In (a), we report accuracy and, to
measure calibration, negative log likelihood (NLL) and expected calibration error (ECE), all evaluated
on the standard test sets. In (b) and (c), we plot shift intensities against NLL and ECE, respectively. For
Rotated-MNIST (top), shift intensities denote degrees of rotation of the images, while for Corrupted-
CIFAR-10 (bottom), they denote the amount of image distortion (see [64, 65] for details). (a) On
in-distribution data, LA is the best-calibrated method in terms of ECE, while also retaining the
accuracy of MAP (unlike VB and CSGHMC). (b&c) On corrupted data, all Bayesian methods improve
upon MAP significantly. Even though post-hoc, all LAs achieve competitive results, even to DE. In
particular, LA* achieves the best results, at the expense of slightly worse in-distribution calibration—
this trade-off between in- and out-of-distribution performance has been observed previously [66].

can sometimes be superior for OOD detection but at increased computational cost. The Laplace bridge
has the same cost as the probit approximation but typically provides inferior results in our experiments.
When using the LA online to optimize hyperparameters, we find that the resulting MAP predictive
provides good performance in-distribution, but a probit or MC predictive improve OOD performance.

Overall recommendation. Following the experimental evidence, the default in laplace is a post-
hoc KFAC last-layer LA with a GGN approximation to the Hessian. This default is applicable to all
architectures that have a fully-connected last layer and can be easily applied to pre-trained networks.
For problems where trained networks are unavailable or hyperparameters are unknown, the online
KFAC LA with a GGN or empirical Fisher provides a good baseline with minimal effort.

4.2 Predictive Uncertainty Quantification

We consider two flavors of LAs: the default flavor of laplace (LA) and the most robust one in
terms of distribution shift found in Section 4.1 (LA*—last-layer, with a full empirical Fisher Hessian
approximation, and the probit approximation). We compare them with the MAP network (MAP) and
various popular and strong Bayesian baselines: Deep Ensemble [DE, 14], mean-field variational Bayes
[VB, 11, 12] with the flipout estimator [67], cyclical stochastic-gradient Hamiltonian Monte Carlo
[CSGHMC / HMC, 68], and SWAG [SWG, 15]. For each baseline, we use the hyperparameters
recommended in the original paper—see Appendix A for details. First, Fig. 4 shows that LA and LA*
are, respectively, competitive with and superior to the baselines in trading-off between in-distribution
calibration and dataset-shift robustness. Second, Table 1 shows that LA and LA* achieve better results
on out-of-distribution (OOD) detection than even VB, CSGHMC, and SWG.

The LA shines even more when we consider its (time and memory) cost relative to the other, more
complex baselines. In Fig. 5 we show the wall-clock times of each method relative to MAP’s for
training and prediction. As expected, DE, VB, and CSGHMC are slow to train and in making
predictions: they are between two to five times more expensive than MAP. Meanwhile, despite being
post-hoc, SWG is almost twice as expensive as MAP during training due to the need of sampling

8

0.25

0.50

0.75
N

L
L
↓

ID

MAP DE Temp. Scaling LA

OOD

2

3

ID OOD

0.1

0.2

0.3

ID OOD

0.60

0.65

0.70

ID OOD

0.60

0.65

0.70

ID OOD

0.1

0.2

E
C

E
/C

al
ib

.↓

0.0

0.2

0.4

0.1

0.2

0.3

0.05

0.10

20

40

(a) Camelyon17 (b) FMoW (c) CivilComments (d) Amazon (e) PovertyMap

Figure 6: Assessing real-world distribution shift robustness on five datasets from the WILDS bench-
mark [69], covering different data modalities, model architectures, and output types. Camelyon17:
Tissue slide image tumor classification across hospitals (DenseNet-121 [70]). FMoW: Satellite image
land use classification across regions/years (DenseNet-121). CivilCommments: Online comment
toxicity classification across demographics (DistilBERT [71]). Amazon: Product review sentiment
classification across users (DistilBERT). PovertyMap: Satellite image asset wealth regression across
countries (ResNet-18 [35]). We plot means ± standard errors of the NLL (top) and ECE (for classifi-
cation) or regression calibration error [72] (bottom). The in-distribution (left panels) and OOD (right
panels) dataset splits correspond to different domains (e.g. hospitals for Camelyon17). LA is much
better calibrated than MAP, and competitive with temp. scaling and DE, especially on the OOD splits.

and updating its batch normalization statistics. Moreover, with 30 samples, as recommended by its
authors [15], it is very expensive at prediction time—more than ten times more expensive than MAP.

MAP DE VB HMC SWG LA
0
2

5

10

R
el

at
iv

e
Ti

m
e
↓ Training

Prediction

Figure 5: Wall-clock time costs relative
to MAP. LA introduces negligible over-
head over MAP, while all other baselines
are significantly more expensive.

Meanwhile, LA (and LA*) is the cheapest of all methods
considered: it only incurs a negligible overhead on top of
the costs of MAP. This is similar for the memory consump-
tion (see Table 5 in Appendix C.5). This shows that the LA
is significantly more memory- and compute-efficient than
all the other methods, adding minimal overhead over MAP
inference and prediction. This makes the LA particularly
attractive for practitioners, especially in low-resource en-
vironments. Together with Fig. 4 and Table 1, this justifies
our default flavor in laplace, and importantly, shows that
Bayesian deep learning does not have to be expensive.

4.3 Realistic Distribution Shift

So far, our experiments focused on comparably simple benchmarks, allowing us to comprehensively
assess different LA variants and compare to more involved Bayesian methods such as VB, MCMC,
and SWAG. In more realistic settings, however, where we want to improve the uncertainty of complex
and costly-to-train models, such as transformers [62], these methods would likely be difficult to get
to work well and expensive to run. However, one might often have access to a pre-trained model,
allowing for the cheap use of post-hoc methods such as the LA. To demonstrate this, we show how
laplace can improve the distribution shift robustness of complex pre-trained models in large-scale
settings. To this end, we use WILDS [69], a recently proposed benchmark of realistic distribution
shifts encompassing a variety of real-world datasets across different data modalities and application
domains. While the WILDS models employ complex (e.g. convolutional or transformer) architectures
as feature extractors, they all feed into a linear output layer, allowing us to conveniently and cheaply
apply the last-layer LA. As baselines, we consider: 1) the pre-trained MAP models [69], 2) post-hoc
temperature scaling of the MAP models (for classification tasks) [1], and 3) deep ensembles [14].6

6We simply construct deep ensembles from the various pre-trained models provided by Koh et al. [69].

9

More details on the experimental setup are provided in Appendix C.3. Fig. 6 shows the results on five
different WILDS datasets (see caption for details). Overall, Laplace is significantly better calibrated
than MAP, and competitive with temperature scaling and ensembles, especially on the OOD splits.

4.4 Further Applications

2 4 6 8 10

0.7

0.8

0.9

1

Task

A
cc

ur
ac

y
↑

MAP VB (VOGN)
LA-Diag LA-KFAC

Figure 7: Continual learning results on
Permuted-MNIST. MAP fails catastroph-
ically as more tasks are added. The
Bayesian approaches substantially out-
perform MAP, with LA-KFAC perform-
ing the best, closely followed by VOGN.

Beyond predictive uncertainty quantification, the LA is
useful in wide range of applications such as Bayesian
optimization [37], bandits [73], active learning [34, 74],
and continual learning [24]. The laplace library con-
veniently facilitates these applications. As an example,
we demonstrate the performance of the LA on the stan-
dard continual learning benchmark with the Permuted-
MNIST dataset, consisting of ten tasks each containing
pixel-permuted MNIST images [75]. Figure 7 shows how
the all-layer diagonal and Kronecker-factored LAs can
overcome catastrophic forgetting. In this experiment, we
update the LAs after each task as suggested by Ritter et al.
[24] and improve upon their result by tuning the prior pre-
cision through marginal likelihood optimization during
training, following Immer et al. [22] (details in Appendix C.4). Using this scheme, the performance
after 10 tasks is at around 96% accuracy, outperforming other Bayesian approaches for continual
learning [7, 76, 77]. Concretely, we show that the KFAC LA, while much simpler when applied via
laplace, can achieve better performance to a recent VB baseline [VOGN, 13]. Our library thus
provides an easy and quick way of constructing a strong baseline for this application.

5 Related Work

The LA is fundamentally a local approximation that covers a single mode of the posterior; similarly,
other Gaussian approximations such as mean-field variational inference [11–13] or SWAG [15] also
only capture local information. SWAG uses the first and second empirical moment of SGD iterates
to form a diagonal plus low-rank Gaussian approximation, but requires storing many NN copies and
applying a (costly) heuristic related to batch normalization at test time. In contrast, the LA directly uses
curvature information of the loss around the MAP and can be applied post-hoc to pre-trained NNs.

In contrast to local Gaussian approximations, (stochastic-gradient) MCMC methods [78, 79, 68,
80, 81, etc.] and deep ensembles [14] can explore several modes. Nevertheless, prior works—also
validated in our experiments in Section 4—indicate that using a single mode might not be as limiting
in practice as one might think. Wilson and Izmailov [82] conjecture that this is due to the complex,
nonlinear connection between the parameter space and the function (output) space of NNs. Moreover,
while unbiased compared to its simpler alternatives, MCMC methods are notoriously expensive in
practice and, thus, often require further approximations such as distillation [83, 84]. Finally, note that
both the LA as well as SWAG can be extended to ensembles of modes in a post-hoc manner [85, 82].

6 Conclusion

In this paper, we argued that the Laplace approximation is a simple yet competitive and versatile
method for Bayesian deep learning that deserves wider adoption. To this end, we reviewed many recent
advances to and variants of the Laplace approximation, including versions with minimal cost overhead
that can be applied post-hoc to pre-trained off-the-shelf models. In a comprehensive evaluation we
demonstrated that the Laplace approximation is on par with other approaches that approximate
the intractable network posterior, but at typically much lower computational cost. A particularly
simple variant that only treats some weights probabilistically can even be used in the context of
pre-trained transformer models to improve predictive uncertainty. As an efficient implementation is
not straightforward, we introduced laplace, a modular and extensible software library for PyTorch
offering user-friendly access to all major flavors of the Laplace approximation. In this way, Laplace
approximations provide drop-in Bayesian functionality for most types of deep neural networks.

10

Acknowledgments and Disclosure of Funding

We thank Kazuki Osawa for providing early access to his automatic second-order differentiation
(ASDL) library for PyTorch and Alex Botev for feedback on the manuscript. We also thank the
anonymous reviewers for their helpful suggestions for our paper.

E.D. acknowledges funding from the EPSRC and Qualcomm. A.I. gratefully acknowledges funding by
the Max Planck ETH Center for Learning Systems (CLS). R.E., A.K. and P.H. gratefully acknowledge
financial support by the European Research Council through ERC StG Action 757275 / PANAMA;
the DFG Cluster of Excellence “Machine Learning - New Perspectives for Science”, EXC 2064/1,
project number 390727645; the German Federal Ministry of Education and Research (BMBF) through
the Tübingen AI Center (FKZ: 01IS18039A); and funds from the Ministry of Science, Research and
Arts of the State of Baden-Württemberg. A.K. is grateful to the International Max Planck Research
School for Intelligent Systems (IMPRS-IS) for support.

References
[1] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On Calibration of Modern Neural Networks.

In ICML, 2017.

[2] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming Catastrophic
Forgetting in Neural Networks. Proceedings of the National Academy of Sciences, 114(13), 2017.

[3] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Automated Cachine Learning: Methods, Systems,
Challenges. Springer Nature, 2019.

[4] David Barber. Bayesian Reasoning and Machine Learning. Cambridge University Press, 2012.

[5] Zoubin Ghahramani. Probabilistic Machine Learning and Artificial Intelligence. Nature, 521(7553), 2015.

[6] Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian Approximation: Representing Model Uncertainty
in Deep Learning. In ICML, 2016.

[7] Cuong V Nguyen, Yingzhen Li, Thang D Bui, and Richard E Turner. Variational Continual Learning. In
ICLR, 2018.

[8] David JC MacKay. Probable Networks and Plausible Predictions—a Review of Practical Bayesian Methods
for Supervised Neural Networks. Network: Computation in Neural Systems, 1995.

[9] Yarin Gal. Uncertainty in deep learning. University of Cambridge, 2016.

[10] Geoffrey E Hinton and Drew Van Camp. Keeping the Neural Networks Simple by Minimizing the
Description Length of the Weights. In COLT, 1993.

[11] Alex Graves. Practical Variational Inference for Neural Networks. In NIPS, 2011.

[12] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight Uncertainty in Neural
Networks. In ICML, 2015.

[13] Kazuki Osawa, Siddharth Swaroop, Mohammad Emtiyaz E Khan, Anirudh Jain, Runa Eschenhagen,
Richard E Turner, and Rio Yokota. Practical Deep Learning with Bayesian Principles. In NeurIPS,
2019.

[14] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and Scalable Predictive Uncer-
tainty Estimation using Deep Ensembles. In NIPS, 2017.

[15] Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and Andrew Gordon Wilson. A Simple
Baseline for Bayesian Uncertainty in Deep Learning. In NeurIPS, 2019.

[16] David JC MacKay. Bayesian Interpolation. Neural computation, 4(3), 1992.

[17] Pierre-Simon Laplace. Mémoires de Mathématique et de Physique, Tome Sixieme. 1774.

[18] Tom Heskes. On “Natural” Learning and Pruning in Multilayered Perceptrons. Neural Computation, 12
(4), 2000.

11

[19] James Martens and Roger Grosse. Optimizing Neural Networks with Kronecker-Factored Approximate
Curvature. In ICML, 2015.

[20] Aleksandar Botev, Hippolyt Ritter, and David Barber. Practical Gauss-Newton Optimisation for Deep
Learning. In ICML, 2017.

[21] Felix Dangel, Frederik Kunstner, and Philipp Hennig. Backpack: Packing More into Backprop. In ICLR,
2020.

[22] Alexander Immer, Matthias Bauer, Vincent Fortuin, Gunnar Rätsch, and Mohammad Emtiyaz Khan. Scal-
able Marginal Likelihood Estimation for Model Selection in Deep Learning. In ICML, 2021.

[23] Hippolyt Ritter, Aleksandar Botev, and David Barber. A Scalable Laplace Approximation for Neural
Networks. In ICLR, 2018.

[24] Hippolyt Ritter, Aleksandar Botev, and David Barber. Online Structured Laplace Approximations for
Overcoming Catastrophic Forgetting. In NIPS, 2018.

[25] Mohammad Emtiyaz E Khan, Alexander Immer, Ehsan Abedi, and Maciej Korzepa. Approximate Inference
Turns Deep Networks Into Gaussian Processes. In NeurIPS, 2019.

[26] Alexander Immer, Maciej Korzepa, and Matthias Bauer. Improving Predictions of Bayesian Neural Net-
works via Local Linearization. In AISTATS, 2021.

[27] Erik Daxberger, Eric Nalisnick, James Urquhart Allingham, Javier Antorán, and José Miguel Hernández-
Lobato. Bayesian Deep Learning via Subnetwork Inference. In ICML, 2021.

[28] Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Being Bayesian, Even Just a Bit, Fixes Overconfi-
dence in ReLU Networks. In ICML, 2020.

[29] Jongseok Lee, Matthias Humt, Jianxiang Feng, and Rudolph Triebel. Estimating Model Uncertainty of
Neural Networks in Sparse Information Form. In ICML, 2020.

[30] Pavel Izmailov, Wesley J Maddox, Polina Kirichenko, Timur Garipov, Dmitry Vetrov, and Andrew Gordon
Wilson. Subspace Inference for Bayesian Deep Learning. In UAI, 2019.

[31] David J Spiegelhalter and Steffen L Lauritzen. Sequential Updating of Conditional Probabilities on Directed
Graphical Structures. Networks, 1990.

[32] Christopher KI Williams and David Barber. Bayesian Classification with Gaussian processes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(12), 1998.

[33] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes in Machine Learning. The
MIT Press, 2005.

[34] David JC MacKay. The Evidence Framework Applied to Classification Networks. Neural computation,
1992.

[35] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image Recognition.
In CVPR, 2016.

[36] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism. arXiv
preprint arXiv:1909.08053, 2019.

[37] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram, Mostofa
Patwary, Mr Prabhat, and Ryan Adams. Scalable bayesian optimization using deep neural networks. In
ICML, 2015.

[38] Jonathan Frankle and Michael Carbin. The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural
Networks. In ICLR, 2019.

[39] James Martens. New insights and perspectives on the natural gradient method. Journal of Machine
Learning Research, 21(146):1–76, 2020.

[40] Shun-Ichi Amari. Natural Gradient Works Efficiently in Learning. Neural computation, 10(2), 1998.

[41] Frederik Kunstner, Lukas Balles, and Philipp Hennig. Limitations of the Empirical Fisher Approximation
for Natural Gradient Descent. In NeurIPS, 2019.

12

[42] Nicol N Schraudolph. Fast Curvature Matrix-Vector Products for Second-Order Gradient Descent. Neural
computation, 14(7), 2002.

[43] Yann LeCun, John S Denker, and Sara A Solla. Optimal Brain Damage. In NIPS, 1990.

[44] John S Denker and Yann LeCun. Transforming Neural-Net Output Levels to Probability Distributions. In
NIPS, 1990.

[45] Thomas George, César Laurent, Xavier Bouthillier, Nicolas Ballas, and Pascal Vincent. Fast Approximate
Natural Gradient Descent in a Kronecker Factored Eigenbasis. In NIPS, 2018.

[46] David Madras, James Atwood, and Alex D’Amour. Detecting extrapolation with local ensembles. In ICLR,
2020.

[47] Wesley J Maddox, Gregory Benton, and Andrew Gordon Wilson. Rethinking parameter counting in deep
models: Effective dimensionality revisited. arXiv preprint arXiv:2003.02139, 2020.

[48] Apoorva Sharma, Navid Azizan, and Marco Pavone. Sketching curvature for efficient out-of-distribution
detection for deep neural networks. arXiv preprint arXiv:2102.12567, 2021.

[49] Andrew YK Foong, Yingzhen Li, José Miguel Hernández-Lobato, and Richard E Turner. ’In-Between’
Uncertainty in Bayesian Neural Networks. arXiv preprint arXiv:1906.11537, 2019.

[50] Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Learnable Uncertainty under Laplace Approxima-
tions. In UAI, 2021.

[51] José M Bernardo and Adrian FM Smith. Bayesian Theory. John Wiley & Sons, 2009.

[52] Matthias Humt, Jongseok Lee, and Rudolph Triebel. Bayesian Optimization Meets Laplace Approximation
for Robotic Introspection. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Long-Term Autonomy Workshop, 2020.

[53] Mark N Gibbs. Bayesian Gaussian Processes for Regression and Classification. Ph. D. Thesis, Department
of Physics, University of Cambridge, 1997.

[54] David JC MacKay. Choice of Basis for Laplace Approximation. Machine learning, 33(1), 1998.

[55] Philipp Hennig, David Stern, Ralf Herbrich, and Thore Graepel. Kernel Topic Models. In AISTATS, 2012.

[56] Marius Hobbhahn, Agustinus Kristiadi, and Philipp Hennig. Fast Predictive Uncertainty for Classification
with Bayesian Deep Networks. arXiv preprint arXiv:2003.01227, 2020.

[57] Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and Andrew Gordon Wilson. Code
repo for "A Simple Baseline for Bayesian Deep Learning". https://github.com/wjmaddox/swa_
gaussian, 2019.

[58] Agustinus Kristiadi. Last-layer Laplace approximation code examples. https://github.com/wiseodd/
last_layer_laplace, 2020.

[59] Jongseok Lee and Matthias Humt. Official Code: Estimating Model Uncertainty of Neural Networks in
Sparse Information Form, ICML2020. https://github.com/DLR-RM/curvature, 2020.

[60] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In NeurIPS,
2019.

[61] Kazuki Osawa. ASDL: Automatic second-order differentiation (for fisher, gradient covariance, hessian,
jacobian, and kernel) library. https://github.com/kazukiosawa/asdfghjkl, 2021.

[62] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is All You Need. In NIPS, 2017.

[63] Dan Hendrycks and Kevin Gimpel. A Baseline for Detecting Misclassified and Out-of-Distribution
Examples in Neural Networks. In ICLR, 2017.

[64] Dan Hendrycks and Thomas Dietterich. Benchmarking Neural Network Robustness to Common Corrup-
tions and Perturbations. In ICLR, 2019.

13

https://github.com/wjmaddox/swa_gaussian
https://github.com/wjmaddox/swa_gaussian
https://github.com/wiseodd/last_layer_laplace
https://github.com/wiseodd/last_layer_laplace
https://github.com/DLR-RM/curvature
https://github.com/kazukiosawa/asdfghjkl

[65] Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin, Joshua Dillon,
Balaji Lakshminarayanan, and Jasper Snoek. Can You Trust Your Model’s Uncertainty? Evaluating
Predictive Uncertainty under Dataset Shift. In NeurIPS, 2019.

[66] Zhiyun Lu, Eugene Ie, and Fei Sha. Uncertainty Estimation with Infinitesimal Jackknife, Its Distribution
and Mean-Field Approximation. arXiv preprint arXiv:2006.07584, 2020.

[67] Yeming Wen, Paul Vicol, Jimmy Ba, Dustin Tran, and Roger Grosse. Flipout: Efficient Pseudo-Independent
Weight Perturbations on Mini-Batches. In ICLR, 2018.

[68] Ruqi Zhang, Chunyuan Li, Jianyi Zhang, Changyou Chen, and Andrew Gordon Wilson. Cyclical Stochastic
Gradient MCMC for Bayesian Deep Learning. In ICLR, 2020.

[69] Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsubramani,
Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. WILDS: A Benchmark of
In-The-Wild Distribution Shifts. In arXiv preprint arXiv:2012.07421, 2020.

[70] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely Connected Convo-
lutional Networks. In CVPR, 2017.

[71] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. DistilBERT, a Distilled Version of
Bert: Smaller, Faster, Cheaper and Lighter. In 5th Workshop on Energy Efficient Machine Learning and
Cognitive Computing - NeurIPS, 2019.

[72] Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon. Accurate Uncertainties for Deep Learning Using
Calibrated Regression. In ICML, 2018.

[73] Olivier Chapelle and Lihong Li. An Empirical Evaluation of Thompson Sampling. In NIPS, 2011.

[74] Mijung Park, Greg Horwitz, and Jonathan W Pillow. Active Learning of Neural Response Functions with
Gaussian Processes. In NIPS, 2011.

[75] Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An Empirical Investigation
of Catastrophic Forgetting in Gradient-Based Neural Networks. arXiv preprint arXiv:1312.6211, 2013.

[76] Michalis K Titsias, Jonathan Schwarz, Alexander G de G Matthews, Razvan Pascanu, and Yee Whye Teh.
Functional Regularisation for Continual Learning with Gaussian Processes. In ICLR, 2020.

[77] Pingbo Pan, Siddharth Swaroop, Alexander Immer, Runa Eschenhagen, Richard E Turner, and Moham-
mad Emtiyaz Khan. Continual Deep Learning by Functional Regularisation of Memorable Past. In NeurIPS,
2020.

[78] Max Welling and Yee W Teh. Bayesian Learning via Stochastic Gradient Langevin Dynamics. In ICML,
2011.

[79] Florian Wenzel, Kevin Roth, Bastiaan S Veeling, Jakub Świątkowski, Linh Tran, Stephan Mandt, Jasper
Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin. How Good is the Bayes Posterior in
Deep Neural Networks Really? ICML, 2020.

[80] Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, and Andrew Gordon Wilson. What Are Bayesian
Neural Network Posteriors Really Like? In ICML, 2021.

[81] Adrià Garriga-Alonso and Vincent Fortuin. Exact langevin dynamics with stochastic gradients. arXiv
preprint arXiv:2102.01691, 2021.

[82] Andrew G Wilson and Pavel Izmailov. Bayesian Deep Learning and a Probabilistic Perspective of General-
ization. In NeurIPS, 2020.

[83] Anoop Korattikara, Vivek Rathod, Kevin Murphy, and Max Welling. Bayesian Dark Knowledge. In NIPS,
2015.

[84] Kuan-Chieh Wang, Paul Vicol, James Lucas, Li Gu, Roger Grosse, and Richard Zemel. Adversarial
Distillation of Bayesian Neural Network Posteriors. In ICML, 2018.

[85] Runa Eschenhagen, Erik Daxberger, Philipp Hennig, and Agustinus Kristiadi. Mixtures of Laplace Ap-
proximations for Improved Post-Hoc Uncertainty in Deep Learning. NeurIPS Workshop on Bayesian Deep
Learning, 2021.

[86] David JC MacKay. A Practical Bayesian Framework For Backpropagation Networks. Neural computation,
1992.

14

[87] Sebastian Farquhar, Lewis Smith, and Yarin Gal. Liberty or Depth: Deep Bayesian Neural Nets Do Not
Need Complex Weight Posterior Approximations. In NeurIPS, 2020.

[88] Arjun K Gupta and Daya K Nagar. Matrix Variate Distributions. Chapman and Hall, 1999.

[89] Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. Psychometrika, 1
(3):211–218, 1936.

[90] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[91] Anqi Wu, Sebastian Nowozin, Edward Meeds, Richard E. Turner, Jose Miguel Hernandez-Lobato, and
Alexander L. Gaunt. Deterministic Variational Inference for Robust Bayesian Neural Networks. In ICLR,
2019.

[92] Amr Ahmed and Eric P Xing. Seeking The Truly Correlated Topic Posterior—On Tight Approximate
Inference of Logistic-Normal Admixture Model. In AISTATS, 2007.

[93] Michael Braun and Jon McAuliffe. Variational Inference for Large-Scale Models of Discrete Choice.
Journal of the American Statistical Association, 105(489), 2010.

[94] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[95] Sergey Zagoruyko and Nikos Komodakis. Wide Residual Networks. In BMVC, 2016.

[96] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic Gradient Descent with Warm Restarts. In ICLR,
2017.

[97] Ranganath Krishnan and Piero Esposito. Bayesian-Torch: Bayesian Neural Network Layers for Uncertainty
Estimation. https://github.com/IntelLabs/bayesian-torch, 2020.

[98] Florian Wenzel, Jasper Snoek, Dustin Tran, and Rodolphe Jenatton. Hyperparameter Ensembles for
Robustness and Uncertainty Quantification. In NeurIPS, 2020.

[99] Ferenc Huszár. Note on the quadratic penalties in elastic weight consolidation. Proceedings of the National
Academy of Sciences, page 201717042, 2018.

15

https://github.com/IntelLabs/bayesian-torch

Appendix A Derivation

A.1 The Derivation of the Laplace Approximation

Let p(θ | D) be an intractable posterior, written as

p(θ | D) :=
1∫

p(D | θ)p(θ) dθ
p(D | θ)p(θ) =:

1

Z
h(θ) (1)

Our goal is to approximate this distribution with a Gaussian arising from the Laplace approxi-
mation. The key observation is that we can rewrite the normalizing constant Z as the integral∫

exp(log h(θ)) dθ. Let θMAP := arg maxθ log p(θ | D) = arg maxθ log h(θ) be a (local) maxi-
mum of the posterior—the so-called maximum a posteriori (MAP) estimate. Taylor-expanding log h
around θMAP up to the second order yields

log h(θ) ≈ h(θMAP)− 1

2
(θ − θMAP)>Λ (θ − θMAP), (2)

where Λ := −∇2 log h(θ)|θMAP is the negative Hessian matrix of the log-joint in (1), evaluated at
θMAP. Similar to its original formulation, here we again obtain a (multivariate) Gaussian integral, the
analytic solution of which is readily available:

Z ≈ exp(log h(θMAP))

∫
exp

(
−1

2
(θ − θMAP)>Λ (θ − θMAP)

)
dθ

= h(θMAP)
(2π)

d
2

(detΛ)
1
2

.

(3)

Plugging the approximations (2) and (3) back into the expression of p(θ | D), we obtain

p(θ | D) =
1

Z
h(θ) ≈ (detΛ)

1
2

(2π)
d
2

exp

(
−1

2
(θ − θMAP)>Λ (θ − θMAP)

)
, (4)

which we can immediately identify as the Gaussian density N (θ | θMAP, Σ) with mean θMAP and
covariance matrix Σ := Λ−1.

Appendix B Details on the Four Components

1 Inference over Subsets of Weights

B.1.1 Subnetwork

Storing the full D × D covariance matrix Σ of the weight posterior in Eq. (4) is computationally
intractable for a modern neural networks. One approach to reduce this computational burden is to
perform inference over only a small subset of the model parameters θ [27]. This is motivated by recent
findings that neural nets can be heavily pruned without sacrificing test accuracy [38], and that in the
neighborhood of a local optimum, there are many directions that leave the predictions unchanged
[47].

This subnetwork inference approach uses the following approximation to the posterior in Eq. (4):

p(θ | D) ≈ p(θS | D)
∏
r

δ(θr − θ̂r) = qS(θ) , (5)

where δ(x− a) denotes the Dirac delta function centered at a. The approximation qS(θ) in Eq. (5)
simply decomposes the full neural network posterior p(θ | D) into a Laplace posterior p(θS | D) over
the subnetwork θS ∈ RS , and fixed, deterministic values θ̂r to the D − S remaining weights θr. In
practice, the remaining weights θr are simply set to their MAP estimates, i.e. θ̂r = θMAP

r , requiring no
additional computation. Importantly, note that the subnetwork size S is in practice a hyperparameter
that can be controlled by the user. Typically, S will be set such that the subnetwork is much smaller
than the full network, i.e. S � D. In particular, S can be set such that it is tractable to compute
and store the full S × S covariance matrix over the subnetwork. This allows us to capture rich

16

dependencies across the weights within the subnetwork. However, in principle one could also employ
one of the (less expressive) factorizations of the Hessian/Fisher described in Section B.1.2.

Daxberger et al. [27] propose to choose the subnetwork such that the subnetwork posterior qS(θ)
in Eq. (5) is as close as possible (w.r.t. some discrepancy measure) to the full posterior p(θ | D) in
Eq. (4). As the subnetwork posterior is degenerate due to the involved Dirac delta functions, common
discrepancy measures such as the KL divergence are not well defined. Therefore, Daxberger et al.
[27] propose to use the squared 2-Wasserstein distance, which in this case takes the following form:

W2(p(θ | D), qS(θ))2 = Tr
(
Σ +ΣS − 2

(
Σ

1/2
S Σ Σ

1/2
S

)1/2)
, (6)

where the (degenerate) subnetwork covariance matrix ΣS is equal to the full covariance matrix Σ but
with zeros at the positions corresponding to the weights θr (i.e. those not part of the subnetwork).

Unfortunately, finding the subset of weights θS ∈ RS of size S that minimizes Eq. (6) is combinato-
rially hard, as the contribution of each weight depends on every other weight. Daxberger et al. [27]
therefore assume that the weights are independent, resulting in the following simplified objective:

W2(p(θ | D), qS(θ))2 ≈
D∑
d=1

σ2
d(1−md) , (7)

where σ2
d = Σdd is the marginal variance of the dth weight, and md = 1 if θd ∈ θS (with slight

abuse of notation) or 0 otherwise is a binary mask indicating which weights are part of the subnetwork
(see Daxberger et al. [27] for details). The objective in Eq. (7) is trivially minimized by choosing a
subnetwork containing the S weights with the highest σ2

d values (i.e. with largest marginal variances).

In practice, even computing the marginal variances (i.e. the diagonal ofΣ) is intractable, as it requires
storing and inverting the Hessian/Fisher Λ. To approximate the marginal variances, one could use a
diagonal Laplace approximation [44, 2] that assumes diag(Σ) ≈ diag(Λ)−1. Alternatively, one could
use diagonal SWAG [15]. For more details on subnetwork inference, refer to Daxberger et al. [27].

B.1.2 Last-Layer

The last-layer Laplace [37, 28] is a special variant of the subnetwork Laplace where θS in (5) is
assumed to equal the last-layer weight matrix W (L) of the network. That is, we let fθ : RM → RC
is an L-layer NN, and assume that the first L− 1 layers of fθ is a feature map. Given MAP-trained
parameters θMAP, we define a Laplace-approximated posterior over W (L)

p(W (L) | D) ≈ N (W (L) |W (L)
MAP, Σ

(L)), (8)
and we leave the rest of the parameters with their MAP-estimated values. Since this matrix is small
relative to the entire network, the last-layer Laplace can be implemented efficiently.

2 Hessian Factorization

For brevity, given a datum (x, y), we denote s(x, y) to be the gradient of the log-likelihood at θMAP,
i.e.

s(x, y) := ∇θp(y | fθ(x))|θMAP .
Using this notation, we can write the Fisher compactly by

F :=
∑N
n=1 Ep(y | fθ(xn)) (s(xn, y)s(xn, y)ᵀ) , (9)

We shall refer to this matrix as the full Fisher. Recall that F is as large as the exact Hessian of the
network, so its computation is often infeasible. Thus, here, we review several factorization schemes
that makes the computation (and storage) of the Fisher efficient, starting from the simplest.

Diagonal Although MacKay recommended to not use the diagonal factorization of the Hessian
[86], a recent work has indicated this factorization is usable for sufficiently deep NNs [87]. In this
factorization, we simply assume that the negative-log-posterior’s Hessian Λ is simply a diagonal
matrix with diagonal elements equal the diagonal of the Fisher, i.e. Λ ≈ −diag(F)>I − λI . Since
we can write diag(F) =

∑N
n=1 Ep(y | fθMAP (xn))

(s(xn, y)� s(xn, y)),7 this factorization is efficient:
Not only does it require only a vector of length D to represent F but also it incurs only a O(D) cost
when inverting Λ—down from O(D3).

7The operator � denotes the Hadamard product.

17

KFAC The KFAC factorization can be seen as a midpoint between the two extremes: diagonal
factorization, which might be too restrictive, and the full Fisher, which is computationally infeasible.
The key idea is to model the correlation between weights in the same layer but assume that any
pair of weights from two different layers are independent—this is a more sophisticated assumption
compared to the diagonal factorization since there, it is assumed that all weights are independent of
each other. For any layer l = 1, . . . , L, denoting Nl as the number of hidden units at the l-th layer, let
W (l) ∈ RNl×Nl−1 be the weight matrix of the l-th layer of the network, a(l) the l-th hidden vector,
and g(l) ∈ RNl the log-likelihood gradient w.r.t. a(l). For each l = 1, . . . , L, we can then write the
outer product inside expectation in (8) as s(xi, y)s(xi, y)> = a(l−1)a(l)> ⊗ g(l)g(l)>. Furthermore,
assuming that a(l−1) is independent of g(l), we obtain the approximation of the l-th diagonal block of
F , which we denote by F (l):

F (l) ≈ E
(
a(l−1)a(l−1)>

)
⊗ E

(
g(l)g(l)>

)
=: A(l−1) ⊗G(l), (10)

where we represent both the sum and the expectation in (9) as E for brevity.

From the previous expression we can see that the space complexity for storing F (l) is reduced to
O(N2

l +N2
l−1), down fromO(N2

l N
2
l−1). Considering all L layers of the network, we obtain the layer-

wise Kronecker factors {A(l)}L−1l=0 and {G(l)}Ll=1 of the log-likelihood’s Hessian. This corresponds
to the block-diagonal approximation of the full Hessian.

One can then readily use these Kronecker factors in a Laplace approximation. For each layer l, we
obtain the l-th diagonal block of Λ—denoted Λ(l)—by

Λ(l) ≈
(
A(l−1) +

√
λI
)
⊗
(
G(l) +

√
λI
)

=: V (l) ⊗ U (l).

Note that we take the square root of the prior precision to avoid “double-counting” the effect of
the prior. Nonetheless, this can still be a crude approximation [19, 26]. This particular Laplace
approximation has been studied by Ritter et al. [23, 24] and can be seen as approximating
the posterior of each W (l) with the matrix-variate Gaussian distribution [88]: p(W (l) | D) ≈
MN (W (l) |W (l)

MAP, U
(l)−1, V (l)−1). Hence, sampling can be done easily in a layer-wise manner:

W (l) ∼ p
(
W (l) | D

)
⇐⇒ W (l) = W

(l)
MAP + U (l)− 1

2EV (l)− 1
2

where

E ∼MN (0, INl , INl−1
),

where we have denoted by Ib the identity b×bmatrix, for b ∈ N. Note that the above matrix inversions
and square-root are in general much cheaper than those involving the entire Λ. Sampling E is not
a problem either sinceMN (0, INl , INl−1

) is equivalent to the standard (NlNl−1)-variate Normal
distribution. As an alternative, Immer et al. [26] suggest to incorporate the prior exactly using an
eigendecomposition of the individual Kronecker factors, which can improve performance.

Low-rank block-diagonal We can improve KFAC’s efficiency by considering its low-rank fac-
torization [29]. The key idea is to eigendecompose the Kronecker factors in (10) and keep only
the eigenvectors corresponding to the first k largest eigenvalues. This can be done employing the
eigenvalue-corrected KFAC [45]. That is, for each layer l = 1, . . . , L:

F (l) ≈
(
U

(l−1)
A S

(l−1)
A U

(l−1)
A

>
)
⊗
(
U

(l)
G SlGU

(l)
G
>
)

=
(
U

(l−1)
A ⊗ U (l)

G

)(
S
(l−1)
A ⊗ S(l)

G

)(
U

(l−1)
A ⊗ U (l)

G

)>
.

Under this decomposition, one can the easily obtain the optimal rank-k approximation ofF (l), denoted
by F (l)

k , by selecting the top-k eigenvalues. However, the diagonal of this rank-k matrix can deviate
too far from the exact diagonal elements of F (l). Hence, one can make the diagonal of this low
rank matrix exact replacing diag(F lk) with diag(F (l)), and obtain the following rank-k-plus-diagonal
approximation of F (l):

F (l) ≈ F (l)
k + diag(F (l))− diag(F

(l)
k).

18

This factorization can be seen as a combination of the previous two approximations: For each diagonal
block of F , we use the exact diagonal elements of F and approximate the off-diagonal elements with
a rank-k matrix arising from KFAC. Both the space and computational complexities are lower than
those of KFAC since here we work exclusively with truncated and diagonal matrices.

Low-rank Instead of only approximating each block by a low-rank structure, the entire Hessian
or GGN can also be approximated by a low-rank structure [48, 47]. Eigendecomposition of F is
a convenient way to obtain a low-rank approximation. The eigendecomposition of F is given by
QLQ> where the columns of Q ∈ RD×D are eigenvectors of F and L = diag(l) is a D-dimensional
diagonal matrix of eigenvalues. Assuming the eigenvalues in l are arranged in a descending order,
the optimal k-rank approximation in Frobenius or spectral norm is given by truncation [89]: let
Q̂ ∈ RD×k be the matrix of the first k eigenvectors corresponding to the largest k eigenvalues l̂ ∈ Rk.
That is, we truncate all eigenvectors and eigenvalues after the k largest eigenvalues. The low-rank
approximation is then given by

F ≈ Q̂diag(l̂) Q̂>.

The rank k can be chosen based on the eigenvalues so as to retain as much information of the Hessian
(approximation) as possible. Further, sampling and computation of the log-determinant can be carried
out efficiently.

3 Hyperparameter Tuning

In this section we focus on tuning the prior variance/precision hyperparameter for simplicity. The same
principle can be used for other hyperparameters of the Laplace approximation such that observation
noise in the case of regression.

Post-Hoc Here, we assume that the steps of the Laplace approximation—MAP training and forming
the Gaussian approximation—as two independent steps. As such, we are free to choose different prior
variance γ2 in the latter part, irrespective to the weight decay hyperparameter used in the former. Here,
we review several ways to optimize γ2 post-hoc. Ritter et al. [23] proposes to tune γ2 by maximizing
the posterior-predictive over a validation set Dval := (xn, yn)Nval

n=1. That is we solve the following
one-parameter optimization problem:

γ2∗ = arg max
γ2

Nval∑
n=1

log p(yn |xn,D). (11)

However, Kristiadi et al. [28] found that the previous objective tends to make the Laplace approxi-
mation overconfident to outliers. Hence, they proposed to add an auxiliary term that depends on an
OOD dataset Dout := (x

(out)
n)Nout

n=1 to (11), as follows

γ2∗ = arg max
γ2

Nval∑
n=1

log p(yn |xn,D) + λ

Nout∑
n=1

H
[
p(yn |x(out)

n ,D)
]
, (12)

where H is the entropy functional and λ ∈ (0, 1] is a trade-off hyperparameter. Intuitively, we choose
γ2 that balances the calibration on the true dataset and the low-confidence on outliers. Moreover,
other losses could be constructed to tune the prior precision for optimal performance w.r.t. some
desired quantity. Finally, inspired by Immer et al. [22] (further details below in Online) one can also
maximize the Laplace-approximated marginal likelihood (3) to obtain γ2∗ , which eliminates the need
for the validation data.

Online Contrary to the post-hoc tuning above, here we perform a Laplace approximation and
tune the prior variance simultaneously as we perform a MAP training [22]. The key is to form
a Laplace-approximated posterior every B epochs of a gradient descent, and use this posterior to
approximate the marginal likelihood, cf. (3). By maximizing this marginal likelihood, we can find
the best hyperparameters. Thus, once the MAP training has finished, we automatically obtain a prior
variance that is already suitable for the Laplace approximation. Note that, this way, only a single MAP
training needs to be done. This is in contrast to the classic, offline evidence framework [34] where
the marginal likelihood maximization is performed only when the MAP estimation is done, and these
steps need to be iteratively done until convergence. As a final note, similar to the post-hoc marginal
likelihood above, this online Laplace does not require a validation set and has an additional benefit of
improving the network’s generalization performance [22]. We refer the reader to Algorithm 1 for an
overview.

19

Algorithm 1 Online Laplace (adapted from Immer et al. [22, Algorithm 1])

Input:
NN fθ; training set D; learning rate α0 and number of epochs T0 for MAP estimation; learning
rate α1 and number of epochs T1 for hyperparameter tuning; marginal likelihood maximization
frequency F .

1: Initialize θ0
2: for t = 1, . . . , T0 do
3: gt ← ∇θL(D; θ)|θt−1

4: θt ← θt−1 − α0 gt
5: if t mod F = 0 then
6: p(θ | D) ≈ N (θ | θt, (∇2L(D; θ)|θt)−1) . Perform a Laplace approximation
7: for t̃ = 1, . . . , T1 do . Hyperparameter optimization
8: ht̃ ← ∇γ2 log p(D | γ2)|γ2

t̃−1
. The marginal likelihood follows from (3)

9: γ2
t̃
← γ2

t̃−1 + α1 ht̃
10: end for
11: end if
12: end for
13: return θT0

;∇2L(D; θ)|θT0

4 Approximate Predictive Distribution

Here, we denote x∗ ∈ RN to be a test point, and f∗ be the network output at this point. We will review
different way to approximate the predictive distribution p(y |x∗,D) given a Gaussian approximate
posterior, starting from the most general.

B.4.3 General
Monte Carlo Integration The simplest but general and unbiased approximation is the Monte Carlo
(MC) integration, which can be performed by sampling an approximate posterior q(θ | D) repeatedly:

p(y |x∗,D) ≈ 1

S

S∑
s=1

p(y | fθs(x∗)), where θs ∼ q(θ | D).

While the error of this approximation decays like 1/
√
S and thus requires many samples to be

accurate, for practical BNNs, it is standard to use 10 or 20 samples of q(θ | D) [23, 28, 12, etc.]. Note
that this approximation can be used regardless the form of the likelihood p(y | fθ(x)), in particular it
can be used to directly obtain the predictive distribution in both the regression and classification alike.

B.4.4 Distribution of Network Outputs

Here, we are concerned in approximating the marginal distribution of f(x∗), where θ has been
integrated out.

Linearization In this approximation, we linearize the network to obtain

fθ(x∗) ≈ fθMAP(x∗) + J>∗ (θ − θMAP),

where J∗ := ∇θfθ(x∗)|θMAP ∈ Rd×c is the Jacobian matrix of the network output. This way, under
a Gaussian approximate posterior q(θ | D), the marginal distribution over the network output f∗ :=
f(x∗) is again a Gaussian, given by8

p(f∗ | fθ(x∗), x∗,D) =

∫
δ(f∗ − fθ(x∗)) q(θ | D) dθ

≈ N (f∗ | fθMAP(x∗), J
>
∗ ΣJ∗)

This approximation has been extensively used for small networks [34], but it has since gone out
of favor in deep learning due to its cost—the Jacobian J∗ needs to be computed per input point.

8See Bishop [90, Sec. 4.5.2].

20

Nevertheless, this approximation is still useful in theoretical works due to its analytical nature [28, 50,
85] . Moreover, in problems where it can be efficiently use in practice, it offers a better approximation
than MC-integral [26, 49].

B.4.5 Regression

Assume that we already have a Gaussian approximation to p(f∗ |x∗,D) ≈ N (f∗ |µ∗, Σ∗) via the
linearization above. In regression, we still need to incorporate the observation noise β encoded in the
(usually) Gaussian likelihoodN (y∗ | f∗, βI)9 to make prediction. This can be easily done in an exact
manner:

p(y∗ |x∗) =

∫
RC
N (y∗ | f∗, βI)N (f∗ |µ∗, Σ∗) df∗

= N (y∗ |µ∗, Σ∗ + βI),

since the integral above is just a convolution of two Gaussian r.v.s.

B.4.6 Classification and Generalized Regression

Since unlike the regression case, the classification likelihood p(y∗ | f∗) is non-Gaussian, we cannot
analytically obtain p(y∗ |x∗) given a Gaussian approximation p(f∗ |x∗,D) ≈ N (f∗ |µ∗, Σ∗). So, in
this case we are interested in approximating the intractable integral

p(y∗ |x∗) =

∫
p(y∗ | f∗)N (f∗ |µ∗, Σ∗) df∗,

where p(y∗ | f∗) is constructed via an inverse-link function. Here we will review the usual case of
classification, i.e. when p(y∗ | f∗) = σ(f∗) where σ is the logistic-sigmoid function, or p(y∗ | f∗) =
softmax(f∗) .

Delta Method The crux of the delta method [91–93] is a Taylor-expansion of the softmax function
around µ∗ up to the second order. Then, since p(f∗ |x∗,D) is assumed to be Gaussian, the integral
Ep(f∗ | x∗,D)(softmax(f∗)) can be computed easily, resulting in an analytic expression softmax(µ∗)+
1/2 tr(BΣ∗), where B is the Hessian matrix of the softmax at µ∗.

Probit Approximations The essence of the (binary) probit approximation [31, 34] is to approxi-
mate σ with the probit function Φ—the standard Normal c.d.f.—which makes the integral solvable
analytically. Using this approximation, one can then obtain the closed-form approximation

p(y∗ |x∗) ≈
∫
R

Φ(f∗)N (f∗ |µ∗, σ2
∗) df∗

= σ

(
µ∗√

1 + π
8 σ

2
∗

)
.

It has a generalization to multi-class classification, due to Gibbs [53], i.e. for approximating

p(y∗ |x∗) =

∫
RC

softmax(f∗)N (f∗ |µ∗, Σ∗) df∗. (13)

In this case, we approximate the resulting probability vector of length C with a vector which i-th
component is given by exp(τi)/

∑C
j=1 exp(τj), where τj = µ∗j/

√
1 + π/8Σ∗jj for each j =

1, . . . , C. This approximation ignores the correlation between logits since it only depends on the
diagonal of Σ∗. Nevertheless, it yields good results even in deep learning [66], and are invaluable
tools for theoretical work [85].

Laplace Bridge The main idea of the Laplace bridge is to perform a Laplace approximation to
the Dirichlet distribution by first writing it as a distribution over RC with the help of the softmax
function [54, 55]. This way, Laplace approximation can be reasonably applied to approximate the
Dirichlet, which can be thought as mapping the Dirichlet Dir(α∗) to a Gaussian N (µ∗, Σ∗). The

9We assume a multivariate output y∗ ∈ RC for full generality.

21

0.88 0.89 0.90 0.91 0.92 0.93
Acc. (ID)

0.88

0.90

0.92
AU

RO
C

MAP
hessian_structure
diag
kron
full
subset_of_weights
all
last_layer
inference_method
online
post-hoc

(a) Hessian structure (CIFAR-10 + DA)

0.60 0.65 0.70 0.75 0.80 0.85 0.90
Acc. (ID)

0.6

0.7

0.8

0.9

AU
RO

C

(b) Hessian structure (CIFAR-10)

0.88 0.89 0.90 0.91 0.92 0.93
Acc. (ID)

0.88

0.90

0.92

AU
RO

C

MAP
link_approx
mc
probit
bridge
map
subset_of_weights
all
last_layer
inference_method
online
post-hoc

(c) Predictive approximation (CIFAR-10 + DA)

0.60 0.65 0.70 0.75 0.80 0.85 0.90
Acc. (ID)

0.6

0.7

0.8

0.9

AU
RO

C

(d) Predictive approximation (CIFAR-10)

Figure 8: Comparison of variations of the LA on the CIFAR-10 OOD experiment with ((a) and (c))
and without ((b) and (d)) data augmentation (DA).

pseudo-inverse of this map, mapping (µ∗, Σ∗) to α∗ where for each i = 1, . . . , C, the i-th component
α is given by the simple closed-form expression

αi =
1

Σii

1− 2

C
+

exp(µi)

C2

C∑
j=1

exp(−µj)

 ,

is the Laplace bridge. Just like the probit approximation, the Laplace bridge ignores the correlation
between logits. But, unlike all the previous approximations, it yields a full distribution over the
solutions of the softmax-Gaussian integral (13). So, the Laplace bridge is a richer yet comparably
simple approximation to the integral and is useful for many applications in deep BNNs [56].

Appendix C Further Experiments Details and Results

C.1 Laplace Comparison

Here, we present more detailed results of our comparison of the different variations of the Laplace
approximation. We show in-distribution accuracy for CIFAR-10 using a model trained with and
without data augmentation, and AUROC values averaged over the out-of-distribution datasets SVHN,
LSUN, and CIFAR-100. In the first row of Figure 8, we highlight the different Hessian structures with
different colors; in the second row, we use color to highlight the different link approximations in the
predictive distribution. We considered most combinations of the different choices for the components
discussed in Section 2, but exclude some combinations which we have found to not work well at all,
e.g. online Laplace when performing a Laplace approximation over the weights of only the last layer.
In Table 2, we compare the predictive performance and runtime when using differently structured
Hessian approximations. We find that the Kronecker-factored Hessian approximations provides a
good trade-off between runtime and performance.

22

test log likelihood test accuracy OOD-AUROC prediction time (s)

D I A G -0.302±0.005 0.894±0.002 0.832±0.011 29.5±0.2
K F A C -0.282±0.004 0.899±0.002 0.836±0.004 30.6±0.1
F U L L -0.285±0.004 0.898±0.002 0.876±0.003 62.8±1.1

Table 2: Qualitative comparison of different Hessian approximations. The K F A C Hessian approxima-
tion performs similar to F U L L Gauss-Newton but is almost as fast as D I A G. We use online marginal
likelihood method [22] to train a small convolutional network on FMNIST and measure performance
at test time. We repeat for three seeds to estimate the standard error. The OOD-AUROC is averaged
over EMNIST, MNIST, and KMNIST. The prediction time is taken as the average over all in and
out-of-distribution data sets. We use the MC predictive with 100 samples.

C.2 Predictive Uncertainty Quantification

C.2.1 Training Details

We use LeNet [94] and WideResNet-16-4 [WRN, 95] architectures for the MNIST and CIFAR-10
experiments, respectively. We adopt the commonly-used training procedure and hyperparameter
values.

MAP We use Adam and Nesterov-SGD to train LeNet and WRN, respectively. The initial learning
rate is 0.1 and annealed via the cosine decay method [96] over 100 epochs. The weight decay is set
to 5× 10−4. Unless stated otherwise, all methods below use these training parameters.

DE We train five MAP network (see above) independently to form the ensemble.

VB We use the Bayesian-Torch library [97] to train the network. Tha variational posterior is chosen
to be the diagonal Gaussian [11, 12] and the flipout estimator [67] is employed. The prior precision is
set to 5× 10−4 to match the MAP-trained network, while the KL-term downscaling factor is set to
0.1, following [13].

CSGHMC We use the publicly available code provided by the original authors [68].10 We use their
default (i.e. recommended) hyperparameters.

SWAG For the SWAG baseline, we follow Maddox et al. [15] and run stochastic gradient descent
with a constant learning rate on the pre-trained models to collect one model snapshot per epoch, for a
total of 40 snapshots. At test time, we then make predictions by using 30 Monte Carlo samples from
the posterior distribution; we correct the batch normalization statistics of each sample as described in
Maddox et al. [15]. To tune the constant learning rate, we used the same approach as in Eschenhagen
et al. [85], combining a grid search with a threshold on the mean confidence. For MNIST, we defined
the grid to be the set { 1e-1, 5e-2, 1e-2, 5e-3, 1e-3 }, yielding an optimal value of 1e-2. For CIFAR-10,
searching over the same grid suggested that the optimal value lies between 5e-3 and 1e-3; another,
finer-grained grid search over the set { 5e-3, 4e-3, 3e-3, 2e-3, 1e-3 } then revealed the best value to
be 2e-3.

Other baselines Our choice of baselines is based on the most common and best performing methods
of recent Bayesian DL papers. Despite its popularity, Monte Carlo (MC) dropout [6] has been shown
to underperform compared to more recent methods (see e.g. Ovadia et al. [65]). A recent VI method
called Variational Online Gauss-Newton (VOGN) [13] also seems to underperform. For example,
Fig. 5 of Osawa et al. [13] shows that on OOD detection with CIFAR-10 vs. SVHN, MC-dropout and
VOGN only achieve AUROC↑ values of 81.9 and 80.0, respectively, while last-layer-LA obtains a
substantially better value of 91.9 (they use ResNet-18, which is comparable to our model).

C.2.2 Detailed Results

We show the Brier score and accuracy as a function of shift intensity in Fig. 9. Moreover, we provide
the detailed (i.e. non-averaged) OOD detection results in Tables 3 and 4.

10https://github.com/ruqizhang/csgmcmc

23

https://github.com/ruqizhang/csgmcmc

0 50 100 150
0.0

0.5

1.0

(a) MNIST-R Brier ↓
0 50 100 150

0.0

0.5

1.0

(b) MNIST-R Acc. ↑
0 1 2 3 4 5

0.0

0.2

0.4

0.6

(c) CIFAR10-C Brier ↓
0 1 2 3 4 5

0.00

0.25

0.50

0.75

MAP
DE
BBB
CSGHMC

SWAG
LA
LA*

(d) CIFAR10-C Acc. ↑

Figure 9: Dataset shift on the Rotated-MNIST (top) and Corrupted-CIFAR-10 datasets (bottom).

Table 3: MNIST OOD detection results.
Confidence ↓ AUROC ↑

Methods EMNIST FMNIST KMNIST EMNIST FMNIST KMNIST

MAP 83.6±0.3 64.2±0.5 77.3±0.3 93.5±0.3 98.9±0.0 97.0±0.1
DE 75.8±0.2 55.4±0.4 65.9±0.3 95.1±0.0 99.2±0.0 98.3±0.0
BBB 79.1±0.4 67.5±1.6 73.1±0.4 92.3±0.2 98.2±0.2 97.0±0.2
CSGHMC 76.2±1.6 63.6±1.9 67.9±1.5 93.4±0.2 97.7±0.2 97.1±0.1
SWAG 64.9±0.3 84.0±0.2 78.5±0.3 98.9±0.0 93.6±0.3 97.1±0.1
LA 74.8±0.4 58.8±0.5 69.0±0.4 93.4±0.3 98.5±0.1 96.6±0.1
LA* 62.0±0.5 49.6±0.6 56.7±0.5 94.3±0.2 98.3±0.1 96.6±0.2

C.2.3 Additional Details on Wall-clock Time Comparison

Concerning the wall-clock time comparison in Fig. 5, we would like to clarify that for LA, we
consider the default configuration of laplace. As the default LA variant uses the closed-form probit
approximation to the predictive distribution and therefore neither requires Monte Carlo (MC) sampling
nor multiple forward passes, the wall-clock time for making predictions is essentially the same as for
MAP. This is contrast to the baseline methods, which are significantly more expensive at prediction
time due to the need for MC sampling (VB, SWAG) or forward passes through multiple model
snapshots (DE, CSGHMC).

Importantly, note that is an advantage exclusive to our implementation of LA (i.e. with a GGN/Fisher
Hessian approximation or with the last-layer LA) that it can be used without sampling (i.e. using the
probit or Laplace bridge predictive approximations). This kind of approximation is incompatible with
the other baselines (i.e. DE, CSGHMC, SWAG, and VB) since these methods just yield samples/dis-
tributions over weights while our LA variants implicitly yield a Gaussian distribution over logits due
to the linearization of the NN induced by the use of the GGN/Fisher (see Immer et al. [26] for details)
or the use of only the last layer. While one could still apply linearization to other methods, this would
not be theoretically justified, in contrast to GGN-/last-layer-LA.

Finally, the reason we benchmark our deterministic, probit-based version is that we found it to
consistently perform on par or better than MC sampling. If we predict with the LA using MC samples
on the logits, the runtime is only around 20% slower than the deterministic probit approximation,
which is still significantly faster than all other methods.

In summary, we believe that the ability to obtain calibrated predictions with a single forward-pass
is a critical and distinctive advantage of the LA over almost all other Bayesian deep learning and
ensemble methods.

C.3 WILDS Experiments

For this set of experiments, we use WILDS [69], a recently proposed benchmark of realistic distribution
shifts encompassing a variety of real-world datasets across different data modalities and application
domains. In particular, we consider the following WILDS datasets:

• Camelyon17: Tumor classification (binary) of histopathological tissue images across differ-
ent hospitals (ID vs. OOD) using a DenseNet-121 model (10 seeds).

24

Table 4: CIFAR-10 OOD detection results.
Confidence ↓ AUROC ↑

Methods SVHN LSUN CIFAR-100 SVHN LSUN CIFAR-100

MAP 77.5±2.9 71.3±0.6 79.3±0.1 91.8±1.2 94.5±0.2 90.1±0.1
DE 62.8±0.7 62.6±0.4 70.8±0.0 95.4±0.2 95.3±0.1 91.4±0.1
BBB 60.2±0.7 53.8±1.1 63.8±0.2 88.5±0.4 91.9±0.4 84.9±0.1
CSGHMC 69.8±0.8 65.2±0.8 73.1±0.1 91.2±0.3 92.6±0.3 87.9±0.1
SWAG 69.3±4.0 62.2±2.3 73.0±0.4 91.6±1.3 94.0±0.7 88.2±0.5
LA 70.6±3.2 63.8±0.5 72.6±0.1 92.0±1.2 94.6±0.2 90.1±0.1
LA* 58.0±3.1 50.0±0.5 59.0±0.1 91.9±1.3 95.0±0.2 90.2±0.1

• FMoW: Building / land use classification (62 classes) of satellite images across different times
and regions (ID vs. OOD) using a DenseNet-121 model (3 seeds).

• CivilCommments: Toxicity classification (binary) of online text comments across different
demographic identities (ID vs. OOD) using a DistilBERT-base-uncased model (5 seeds).

• Amazon: Sentiment classification (5 classes) of product reviews across different reviewers
(ID vs. OOD) using a DistilBERT-base-uncased model (3 seeds).

• PovertyMap: Asset wealth index regression (real-valued) across different countries and
rural/urban areas (ID vs. OOD) using a ResNet-18 model (5 seeds).

Please refer to the original paper for more details on this benchmark and the above-mentioned datasets.
All reported results in Fig. 6 and Fig. 10 show the mean and standard error across as many seeds as
there are provided with the original paper (see the list of datasets above for the exact numbers).

For the last-layer Laplace method, we use either a KFAC or full covariance matrix (depending on the
size of the last layer; in particular, we use a KFAC covariance for FMoW and full covariances for all
other datasets) and the linearized Monte Carlo predictive distribution with 10,000 samples.

For the deep ensemble, we simply the aggregate the pre-trained models provided by the original
paper11 This yields ensembles of 5 neural network models, which is a commly-used ensemble size
[65]. Since these models were trained in different ways (e.g. using different domain generalization
methods, see [69] for details), their combinations can be viewed as hyperparameter ensembles [98].

Note that the temperature scaling baseline is only applicable for classification tasks, and therefore we
do not report it for the PovertyMap regression dataset.

We tune the temperature parameter for temperature scaling, the prior precision parameter for Laplace,
and the noise standard deviation parameter for regression (i.e. for the PovertyMap dataset) by mini-
mizing the negative log-likelihood on the in-distribution validation sets provided with WILDS.

Finally, Fig. 10 shows an extended version of the results reported in Fig. 6, which additionally
reports the following metrics: accuracy (for classification) or mean squared error (for regression),
confidence (only for classification), mean calibration error (only for classification), and Brier score
(only for classification). The overall conclusion here is the same as for Fig. 6, namely that Laplace is
significantly better calibrated than MAP, and competitive with temperature scaling and ensembles,
especially on the OOD splits. Note that the differences in accuracies of the ensemble stem from
the different training procedures of the ensemble members (which sometimes achieve higher and
sometimes lower accuracy), as mentioned above.

C.4 Further Details on the Continual Learning Experiment

We benchmark Laplace approximations in the Bayesian continual learning setting on the permuted
MNIST benchmark which consists of 10 consecutive tasks where each task is a permutation of the
pixels of the MNIST images. Following common practice [24, 7, 13], we use a 2-hidden layer MLP
with 100 hidden units each and 28× 28 = 784 input dimensions and 10 output dimensions for the
MNIST classes. We adopt the implementation of the continual learning task and the model by Pan et al.

11See https://worksheets.codalab.org/worksheets/0x52cea64d1d3f4fa89de326b4e31aa50a
for the complete list of models.

25

https://worksheets.codalab.org/worksheets/0x52cea64d1d3f4fa89de326b4e31aa50a

0.7

0.8

0.9
A

cc
u

ra
cy

/
M

S
E

ID

MAP Deep Ensemble Temp. Scaling Laplace

OOD

0.80

0.85

0.90

0.95

C
on

fi
d

en
ce

0.2

0.4

0.6

0.8

N
L

L

0.05

0.10

0.15

0.20

E
C

E
/

C
al

ib
.

0.20

0.25

0.30

0.35

M
C

E

0.1

0.2

0.3

0.4

0.5

B
ri

er
S

co
re

0.55

0.60

0.65

ID OOD

0.6

0.7

0.8

1.5

2.0

2.5

3.0

0.0

0.1

0.2

0.3

0.4

0.2

0.4

0.6

0.5

0.6

0.7

0.90

0.92

0.94

0.96

ID OOD

0.80

0.85

0.90

0.95

1.00

0.10

0.15

0.20

0.25

0.30

0.1

0.2

0.3

0.2

0.4

0.6

0.2

0.3

0.4

0.72

0.73

0.74

ID OOD

0.750

0.775

0.800

0.825

0.60

0.65

0.70

0.025

0.050

0.075

0.100

0.125

0.3

0.4

0.5

0.36

0.38

0.40

0.18

0.20

0.22

ID OOD

0.600

0.625

0.650

0.675

0.700

10

20

30

40

(a) Camelyon17 (b) FMoW (c) CivilComments (d) Amazon (e) PovertyMap

Figure 10: Assessing real-world distribution shift robustness on five datasets from the WILDS bench-
mark [69], covering different data modalities, model architectures, and output types; see text for
details. We report means ± standard errors of several metrics (from top to bottom): accuracy (for
classification) or mean squared error (for regression), confidence (only for classification), negative
log-likelihood, ECE (for classification) or regression calibration error [72], mean calibration error
(only for classification), and Brier score (only for classification). The in-distribution (left panels) and
OOD (right panels) dataset splits correspond to different domains (e.g. hospitals for Camelyon17).

26

[77].12 In the following, we will briefly outline the Bayesian approach to continual learning [7] and
explain how a diagonal and KFAC Laplace approximation can be employed in this setting. Further, we
describe how this can be combined with the evidence framework to update the prior online alleviating
the need for a validation set, which is unlikely to be available in real continual learning scenarios.

C.4.1 Bayesian Approach to Continual Learning

The Bayesian approach to continual learning can be simply described as iteratively updating the
posterior after each task. We are given T data sets D := {Dt}Tt=1 and have a neural network with
parameters θ. In line with the standard supervised learning setting outlined in Section 2, we have a
prior on parameters p(θ) = N (θ; 0, γ2I) and a likelihood p(D | θ) realized by a neural network. The
posterior on the parameters after all tasks is then

p(θ | D) ∝ p(DT | θ)× . . .× p(D2 | θ)× p(D1 | θ)× p(θ)︸ ︷︷ ︸
∝p(θ | D1)︸ ︷︷ ︸

∝p(θ | D1,D2)

. (14)

This factorization gives rise to a recursion to update the posterior after t− 1 data sets to the posterior
after t data sets:

p(θ | D1, . . . ,Dt) ∝ p(Dt | θ)p(θ | D1, . . . ,Dt−1). (15)
The normalizer for each update in Eq. (15) is given by the marginal likelihood p(Dt | D1, . . . ,Dt−1)
and we will use it for optimizing the variance γ2 of p(θ). Incorporating a new task is the same as
Bayesian inference in the supervised case but with an updated prior, i.e., the prior is the previous
posterior distribution on θ. The Laplace approximation provides one way to approximately infer
the posterior distributions after each task [99, 24, 77]. Alternatively, variational inference can be
used [7, 13].

C.4.2 The Laplace Approximation for Continual Learning

The Laplace approximation facilitates the recursive updates (Eq. (15)) that arise in continual learning.
In this context, it was first suggested with a diagonal Hessian approximation by Kirkpatrick et al. [2,
EWC] and Huszár [99] corrected their updates. Ritter et al. [24] greatly improved the performance
by using a KFAC Hessian approximation instead of a diagonal. The Laplace approximation to the
posterior after observing task t is a Gaussian N (θ

(t)
MAP,Σ

(t)) We obtain θMAP by optimizing the
unnormalized log posterior distribution on θ as annotated in Eq. (14) for every task, one after another.
The Hessian of the same unnormalized log posterior also specifies the posterior covariance Σ(t):

Σ(t) =
(
∇2
θ log p(Dt | θ)|θ(t)MAP︸ ︷︷ ︸
log likelihood Hessian

+
∑t−1
t′=1∇2

θ log p(Dt′ | θ)|θ(t′)MAP︸ ︷︷ ︸
previous log likelihood Hessians

+ γ−2I︸ ︷︷ ︸
log prior Hessian

)−1
. (16)

This summation over Hessians is typically intractable for neural networks with large parameter vectors
θ and hence diagonal or KFAC approximations are used [2, 99, 24]. For the diagonal version, the
addition of Hessians and log prior is exact. For the KFAC version, we follow the alternative suggestion
by Ritter et al. [24] and add up Kronecker factors which is an approximation to the sum of Kronecker
products. However, this approximation is what underlies KFAC even in the supervised learning case
where we add up factors per data point over the entire data set. Lastly, we adapt γ during training
on each task t by optimizing the marginal likelihood p(Dt | D1, . . .Dt−1), i.e., by differentiating it
with respect to γ. This can be done by computing the eigendecomposition of the summed Kronecker
factors [22] and allows us to 1) adjust the regularization suitably per task and 2) avoid setting a
hyperparameter thereby alleviating the need for validation data.

C.5 Comparison of Memory Complexity

Table 5 compares the theoretical memory complexity and actual memory footprint (of a Wide ResNet
16-4 on CIFAR-10) of the different methods.

12The code is avilable at https://github.com/team-approx-bayes/fromp.

27

https://github.com/team-approx-bayes/fromp

Table 5: The memory complexities of all methods in O notation. To get a better idea of what these
complexities translate to in practice, we also report the actual memory footprints (in megabytes) of
a Wide ResNet 16-4 (WRN) on CIFAR-10. Here, M denotes the number of model parameters, H
denotes the number of neurons in the last layer, K denotes the number of model outputs, R denotes
the number of SWAG snapshots, S denotes the number of CSGHMC samples, and N denotes the
number of deep ensemble (DE) members. Mean-field variational inference (VB) has a complexity
of 2M as it needs to store a variance vector of size M in addition to the mean vector of size M . For
the actual memory footprints, we assume R = 40 SWAG snapshots, S = 12 CSGHMC samples,
and N = 5 ensemble members, which are the hyperparameters recommended in the original papers
(and therefore also used in our experiments). It can be seen that the proposed default KFAC-last-layer
approximation poses a small memory overhead of O(H2 +K2) on top of the MAP estimate.

M E T H O D M E M . C O M P L E X I T Y W R N O N C I FA R - 1 0

M A P M 1 1 M B
L A M+H2 +K2 1 2 M B
V B 2M 2 2 M B
D E NM 5 5 M B
C S G H M C SM 1 3 2 M B
S WAG RM 4 4 0 M B

28

	Introduction
	The Laplace Approximation in Deep Learning
	laplace: A Toolkit for Deep Laplace Approximations
	Experiments
	Choosing the Right Laplace Approximation
	Predictive Uncertainty Quantification
	Realistic Distribution Shift
	Further Applications

	Related Work
	Conclusion
	Derivation
	The Derivation of the Laplace Approximation

	Details on the Four Components
	Subnetwork
	Last-Layer
	General
	Distribution of Network Outputs
	Regression
	Classification and Generalized Regression

	Further Experiments Details and Results
	Laplace Comparison
	Predictive Uncertainty Quantification
	Training Details
	Detailed Results
	Additional Details on Wall-clock Time Comparison

	WILDS Experiments
	Further Details on the Continual Learning Experiment
	Bayesian Approach to Continual Learning
	The Laplace Approximation for Continual Learning

	Comparison of Memory Complexity

