
A Probabilistically Motivated Learning Rate Adaptation
for Stochastic Optimization

Filip de Roos1,2 Carl Jidling3 Adrian Wills4 Thomas B. Schön3 Philipp Hennig1,2

1Department of Computer Science, University of Tübingen, Germany
2Max Planck Institute for Intelligent Systems, Tübingen, Germany

3Department of Information Technology, Uppsala University, Sweden
4School of Engineering, University of Newcastle, Australia

Abstract

Machine learning practitioners invest significant
manual and computational resources in finding
suitable learning rates for optimization algorithms.
We provide a probabilistic motivation, in terms
of Gaussian inference, for popular stochastic first-
order methods. As an important special case, it re-
covers the Polyak step with a general metric. The
inference allows us to relate the learning rate to a
dimensionless quantity that can be automatically
adapted during training by a control algorithm. The
resulting meta-algorithm is shown to adapt learn-
ing rates in a robust manner across a large range of
initial values when applied to deep learning bench-
mark problems.

1 INTRODUCTION

Empirical risk minimization, including in particular deep
learning, requires optimization of an objective f that is the
sum of individual losses ` over elements xd of the dataset
D with |D| = D as

f(θ) =
1

D

D∑
d=1

`(θ,xd) +R(θ), (1)

where θ ∈ RN denotes the parameter to be optimized and
R is an additional regularization term. It is standard practice
to sub-sample the dataset into batches B ⊂ D with |B| =
B when evaluating the loss f and its gradient, yielding a
stochastic, noisy observation

`B(θ) =
1

B

B∑
b=1

`(θ,xb) +R(θ). (2)

If the elements of the batch are drawn i.i.d. and 1� B �
D, then by the Central Limit Theorem, `B is approximately

Gaussian distributed around the true function value

p(`B) = N (`B ; f(θ), R), (3)

with variance R that scales as O(1/B). While stochasticity
drastically reduces computational cost and may have benefi-
cial side-effects like improved generalization [Hardt et al.,
2016, Wu et al., 2020], it also complicates parameter tun-
ing. In contrast to classic numerical optimization routines,
variants of stochastic gradient-descent (SGD) expose free
parameters to the user. Chief among them is the scalar learn-
ing rate η that determines the step size taken in the direction
vi as

θi+1 = θi − η · vi, (4)

with vi chosen iteratively by the optimization routine (in
the case of vanilla SGD, vi = ∇`B(θi)). The learning rate
constitutes a crude approximation to local curvature and
crucially affects the convergence of the training, and by
extension the performance of the model. Its optimal value
depends on the network architecture, the dataset, and the
optimization method. Although various semi-automated and
fully automated routines have been proposed to tune learn-
ing rates [Baydin et al., 2018, Mahsereci and Hennig, 2017,
Vaswani et al., 2019], practitioners still largely rely on a
manual process of repeated training runs, causing signifi-
cant use of computational resources [Asi and Duchi, 2019].

1.1 CONTRIBUTIONS

In this work, we describe a probabilistic inference scheme
that can be used as an add-on to existing first-order optimiza-
tion methods (Section 2). The procedure explicitly models
observation noise caused by data subsampling which in
the noise-free limit recovers a generalization of the Polyak
(1987) step for parameter updates. In Section 2.2 we show
how various well-known optimization methods can be in-
cluded in the inference and pave the way for the identifica-
tion of new ones. There are several parameters associated
with the inference procedure. We analyze them in detail and
based on the findings arrive at a learning rate adaptation

1

ar
X

iv
:2

10
2.

10
88

0v
1

 [
cs

.L
G

]
 2

2
Fe

b
20

21

mailto:Filip de Roos <filip.de.roos@tuebingen,mpg.de>?Subject=A Probabilistically Motivated Learning Rate Adaptation

scheme (Section 3). It relies on a local quadratic model of
the loss function, implicitly defined by the underlying op-
timization algorithm. The learning rate is adapted during
training thereby reducing the need for outer-loop tuning. We
empirically show that the proposed update rule is robust
w.r.t. the learning rate, leading to stable convergence for a
range of popular optimization algorithms across common
deep learning benchmarks.

2 METHOD

To set the scene, consider a refactored second-order Tay-
lor expansion of the function f(θ) : RN → R in a vec-
tor d around the current location θi, using the (ground-
truth, full-batch) gradient ∇fi , ∇f(θ) |θ=θi

and Hessian
Bi ∈ RN×N with [Bi]mn , ∂2f(θ)

∂θm∂θn
|θ=θi

. Assuming the
Hessian is invertible, we write this local approximation as

f̄i(θi + d) =
1

2
(d+B−1

i ∇fi)ᵀBi(d+B−1
i ∇fi)︸ ︷︷ ︸

φB(d)

+ f(θi)−
1

2
∇fᵀi B

−1
i ∇fi︸ ︷︷ ︸

f∗

.

(5)

When the Hessian is positive definite, the minimum value
of this quadratic approximation f∗ is attained at the well-
known Newton update d?i = −B−1

i ∇fi which occurs at
the point θ?i = θi −B−1

i ∇fi. Because computing this up-
date is computationally costly, large parts of classic convex
optimization (in particular, conjugate gradients and quasi-
Newton methods [e.g. Nocedal and Wright, 2006, §5 & 6,
respectively]) are concerned with efficient estimation of d?i
from a sequence of observed gradients. Big-data machine
learning adds a new challenge to this setting, for which these
classic methods are ill-equipped: significant sub-sampling
noise on the gradient and (if it is computed) the Hessian.

2.1 PROBABILISTIC MODEL

We phrase the task of locating (inferring) the minimizer
θ?i ∈ RN of the local quadratic model given in Eq. (5) at
iteration i based on noisy observations of the cost `B(θi)
from Eq. (2) as a probabilistic inference problem: We model
θ?i as a random variable, denoted θ̂

?

i , and compute the pos-
terior distribution of θ̂

?

i conditioned on `B(θi) via Bayes
rule

p(θ̂
?

i | `B(θi)) =
p(`B(θi) | θ̂

?

i) p(θ̂
?

i)

p(`B(θi))
. (6)

The prior p(θ̂
?

i) is taken to be Gaussian and centered around
the current parameter value θi:

p(θ̂
?

i) = N (θ̂
?

i ; θi, W i), (7)

where W i ∈ RN×N is an arbitrary symmetric positive
definite covariance matrix, which is discussed further in
Section 2.2. To develop the likelihood p(`B(θi) | θ̂

?

i), we
start by rewriting Eq. (5) in terms of θ?i as

f̄i(θi)|d=0 = f̄i(θi − d?i + d?i)

= f̄i(θi + θi − θ?i + d?i).
(8)

Inserting this statement in Eq. (5) and recalling that θ?i −
θi = d?i = −B−1

i ∇fi, we obtain

f̄i(θi) =
1

2
(θi − θ?i)ᵀBi(θi − θ?i) + f∗,

and ∇f̄i = Bi(θi − θ?i).
(9)

Since the quadratic approximation matches the true func-
tion and its gradient at θi, we note that f(θi) = f̄i(θi) =
1
2∇f̄

ᵀ
i (θi − θ?i) + f∗.

This finding motivates us to express the noisy observation
`B(θi) in the probabilistic model as the following linear
projection

`B(θi) =
1

2
gᵀi (θi − θ̂

?

i) + f∗ + εi,

εi ∼ N (0, Ri),
(10)

or equivalently by the likelihood

p(`B(θi) | θ̂
?

i) = N
(
`B(θi);

1

2
gᵀi (θi − θ̂

?

i) + f∗, Ri

)
.

(11)
Here we use gi to denote a the gradient of the loss over the
mini-batch and Ri is the observation noise due to subsam-
pling. Under the Gaussian prior (7) and linear likelihood
(11) there is a closed-form expression1 for the posterior,
stated in Eq. (6). The posterior mean will serve as our next
estimate, θi+1, and is given by

θi+1 = θi −W igi
2(`B(θi)− f∗)
gᵀiW igi +Ri

. (12)

This parameter update is of the same form as the generic
update in Eq. (4) if vi = W igi. In the next section we will
clarify how this update corresponds to popular first-order
algorithms and later look into the different parameters that
are required for the inference.

2.2 CHOICE OF COVARIANCE

The update in Eq. (12) leaves the prior covariance matrix
W i as a free parameter. To be a valid covariance, it must
be symmetric and positive definite. For the batch gradient

1For p(x) = N (x;µ,Σ) with x,µ ∈ RN ,Σ ∈ RN×N and
p(y | x) = N (y;Ax + b,R) with A ∈ R1×N and b ∈ R, R ∈
R+, it holds that p(x | y) = N

(
x;µ + ΣAᵀ(y−Aµ−b)

AΣAᵀ+R
,Σ −

ΣAAᵀΣ
AΣAᵀ+R

)
.

2

Optimizer η ·W i

SGD ηI

Adagrad η (Gi−1 + diag(gig
ᵀ
i))
−1/2

RMSprop η (αGi−1 + (1− α) diag(gig
ᵀ
i))
−1/2

Momentum η
(
I + β̃mi−1m

ᵀ
i−1

)
Adam η

(
(1− β1)V i + β̃1V imi−1m

ᵀ
i−1V i

)
Table 1: Covariance matrices used for popular optimization
algorithms. Each consists of a diagonal matrix and the last
two have an additional rank one update with a modified
scaling which we elaborate on in Section 2.3.Gi for Ada-
grad and RMSprop are recursively defined as the quantity
inside the parenthesis starting fromG0 = 0. The diagonal
matrix V i for Adam is theG−1/2

i of RMSprop scaled with
additional bias correction.

gi (i.e. ∇`B), a step in direction vi = W igi is a descent
direction (on the batch), because −gᵀi vi < 0. To clarify
the connection to optimization algorithms with a provided
learning rate we will refer to W i as η ·W i, with η ∈ R+.
For different choices of W i, Eq. (12) can be seen as a
generalization of several existing optimization algorithms.

SGD The most straightforward connection is to
SGD [Robbins and Monro, 1951]: If we consider
η ·W i = η · I , Eq. (12) becomes

θi+1 = θi − η · gi
2(`B(θi)− f∗)
η‖gi‖2 +Ri

. (13)

For Ri = 0 this update recovers the Polyak step [Polyak,
1987, Loizou et al., 2020] if f∗ is known. A correctly iden-
tified f∗ in the probabilistic argument above motivates
a learning-rate adaptation for SGD. As the optimizer ap-
proaches the optimum, `B & f∗, the rate goes towards zero.
If instead the fraction above is constant across iterations,
we recover the standard update for SGD with fixed learning
rate.

General Optimizer There has been a surge of stochastic
first-order optimization algorithms to tackle the require-
ments of machine learning and deep learning in particular,
many of which employ an element-wise scaling to the batch
gradient gi. These element-wise updates correspond to a
diagonal matrix W i in Eq. (12) which is the definition of
an axis-aligned Gaussian distribution for the prior. Tab. 1
summarizes a few popular diagonal first-order optimizers in
the probabilistic view together with a novel interpretation
of acceleration in the form of momentum.

The inference is not limited to a diagonal W i, it is just a
computationally efficient approach to speed up first-order
methods. Several higher order optimization methods can
be included as well. In particular, if W−1

i is chosen as a

curvature matrix, e.g., the Hessian, Gauss-Newton, or the
Fisher information matrix, then the inference amounts to
an adaptive version of Newton, Gauss-Newton or Natural
Gradient Descent, respectively.

In addition to the posterior mean one could also consider the
posterior covariance on θ̂

?

i . It could be propagated through
optimization using a predictive Chapman-Kolmogorov equa-
tion. This could be realized as a Kalman filter prediction
step, but would introduce additional empirical parameters
and cost. We omit the covariance update to avoid confusion
and instead focus on the useful connection to first-order
optimization algorithms.

2.3 ACCELERATED GRADIENT UPDATES

Several popular optimization algorithms employ an expo-
nential averaging of gradients in the form of momentum
[Polyak, 1987, Sutskever et al., 2013, Kingma and Ba, 2014]
to speed up the training. Such methods can be included in
the probabilistic inference in two ways. The first is to in-
terpret the momentum term as another estimate of the true
gradient instead of the batch gradient, essentially replacing
gi withmi in the derivations of Section. 2. The second way
that we opted for is to retain the batch gradient but adjust
the covariance with a rank one update.

The Pytorch implementation of SGD with momentum uses
the following update:

mi = β ·mi−1 + gi,

θi = θi−1 − η ·mi,

where β is a hyperparameter controlling the influence of pre-
vious gradients. This update is identified in the probabilistic
model with

η ·W igi = η ·
(
I +

β

〈mi−1, gi〉
·mi−1m

ᵀ
i−1

)
gi.

In a similar manner it is possible to express the update of
Adam with the diagonal matrix

V i = γi · (β2 ·Gi−1 + (1− β2) · diag(gig
ᵀ
i))
−1/2

,

γi =
√

(1− βi2)/(1− βi1),

and the exponential average mi = β1mi−1 + (1− β1)gi
as

η ·W igi = η ·
(

(1− β1)V i + β̃1V imi−1m
ᵀ
i−1V i

)
gi,

β̃1 =
β1

〈V imi−1, gi〉
.

Neither the Momentum nor Adam update is positive definite,
per definition, in this form due to the scalar parameter in
front of the rank-1 update. For SGD with momentum this

3

scalar value will be negative if 〈mi−1, gi〉 < 0 and violates
the positive definiteness if β 〈mi−1, gi〉 < −〈gi, gi〉. This
occurs whenmi−1 is pointing significantly uphill and the
situation is more likely to arise for high values of β. The
conditions are analogous for Adam.

3 ALGORITHM

gi

η ·W igi

θ?i

θi

θi+1

Figure 1: Illustration of the probabilistic inference scheme.
The gray contour levels describe the local quadratic model
f̄i(θ). The dark green line comprises all possible values
of θ̂

?

i (orthogonal to gi) that satisfy Eq. (10) (in the noise-
free case); this includes the true value θ?i . The lighter green
levels are multiples of the standard deviation

√
Ri represent-

ing the uncertainty in Eq. (10). The red and blue ellipses
illustrate two axis-aligned Gaussian distributions (Eq. (7))
centered at θi, corresponding to different scaling of the co-
varianceW i. The circles indicate the posterior mean (θi+1

in Eq. (12)) for each distribution. The blue distribution has a
larger variance relative toRi leading to a larger step towards
the solution compared to the red.

The update in Eq. (12) is the most general form of the pro-
vided inference scheme from which one can approximate
or specialize the update depending on available information
and problem. While the structure of η ·W i should be seen
as a design choice addressing an algorithm within a larger
family, the remaining parameters are typically problem-
dependent and play an important role in the convergence of
the underlying algorithm. This section addresses this issue
and constructs a simple learning rate adaptation scheme.
An advantage of the probabilistic derivation is that it of-
fers an interpretation of these parameters, which can be
used to construct empirical estimators. Pseudo-code for our
method that is implemented as a wrapper applicable to valid
optimization algorithms is provided in Alg. 1.

3.1 PARAMETERS

Depending on the problem, the update scheme requires es-
timation of up to three parameters: The scale of the prior
variance η, the lower bound f∗ and the observation vari-
ance Ri. With the probabilistic motivation developed in
Section 2, it is possible to link these parameters to func-
tion values and hence estimate them at runtime. These three
parameters have an interesting interplay—the same update
of θi+1 (Eq. 12) can arise from different constellations of
these three numbers. In traditional optimization, uncertainty
of the observation is typically not considered, which is why
Ri does not appear in the standard Polyak step.

Uncertainty Ri The most straightforward parameter to
estimate is the observation variance Ri in Eq. (12). In the
case of minibatching it is possible to estimate the uncer-
tainty of the full loss, as outlined via the CLT argument
in Section 1. For general functions the situation is more
complicated and since the inclusion of Ri corresponds to
a reduction in step length, the same effect can be achieved
by omitting Ri and instead decrease the difference in the
numerator.

Scale η The second influential parameter is η, a scalar mul-
tiplication of the prior covariance corresponding to the learn-
ing rate of the optimizer. For the general case of Eq. (12)
withRi > 0, the ratio betweenRi and η ·gᵀiW igi becomes
important for the overall step length and hence the conver-
gence of the algorithm. This behavior is visualized in Fig. 1
where the variance of the red distribution is low compared
to Ri, leading to small updates. A result of this is that the
initial learning rate can be arbitrarily ill-calibrated with re-
gards to the noise variance. It also suggests that updating
the scale η during the optimization, once more parameters
can be estimated, could lead to improved performance. If
instead Ri = 0 and f∗ in Eq. (12) is known, then the update
will not depend on the scale η.

Lower bound f∗ The final parameter f∗ is also the most
important in terms of performance and stability. For a known
f∗ and Ri = 0, the Polyak step achieves a linear conver-
gence rate towards f∗, independent of the Lipschitz constant
which normally bounds the convergence of first-order opti-
mization algorithms [Polyak, 1987, Vaswani et al., 2020]. If
f∗ is not known and set too large, then the optimizer will
converge to parameters for which f(θ) = f∗ and not the
actual minimum. If instead f∗ is not known and estimated
below the minimum, then the Polyak step will try to reach
function values below the minimum. This is problematic in
flat regions, resulting in steps that are too large which can
undo a lot of progress (see Appendix A). To combat this
behavior, a maximum step length is often introduced as a
problem dependent hyperparameter [Berrada et al., 2019,
Loizou et al., 2020]. The same authors showed that for Ma-

4

chine learning problems with overparameterized models that
fulfill interpolation (models which can achieve a training
loss close to 0 for all training samples simultaneously) it is
possible to use f∗ = 0 as a lower bound for the empirical
risk minimization for fast convergence.

Algorithm 1 Step size adaptation for a provided function
evaluator F (θ), gradient estimator G(θ), and search direc-
tion selector W (g) defined by the underlying optimizer.

1: procedure LR-ADAPT(θ1, η, F (θ), G(θ), W (g), f∗,
Ri = 0)

2: for i = 1 . . . do
3: fi ← F (θi) . Evaluate function
4: gi ← G(θi) . Obtain gradient
5: vi ← η ·W (gi) . vi = η ·W igi
6: φi ← gᵀi vi
7:
8: if f∗ is available then
9: ∆f ← fi − f∗

10: else
11: ∆f ← fi − φi/2
12:
13: θi+1 ← θi − vi · 2 · ∆f

φi+Ri

14:
15: f+ = F (θi+1) . Re-evaluate same batch
16:
17: if (fi − f+)/(φ/2) > 4/3 then
18: η ← 1.2 · η . η too small α↑
19: else if (fi − f+)/(φ/2) < 3/4 then
20: η ← 1/2 · η . η too large α↓

3.2 IMPLEMENTATION

The previous section showed that the relatively simple up-
date of Eq. (12) requires careful consideration, see Ap-
pendix A for an example. Here we will outline the steps
taken in Alg. 1 to address this. Once a valid optimizer has
been selected all the quantities up to and including line 7 are
accounted for. A step of our algorithm then requests two pa-
rameters: a lower bound f∗ and an uncertainty estimate Ri
(defaults to 0). In the absence of externally provided lower
bound f∗ (default behavior), we still want the algorithm
to adapt the learning rate during optimization in a useful
manner. The approach that we use for this situation is to
consider an implied quadratic, which given a function value
f(θi), gradient gi and a spd matrix ηi ·W i constructs a
local surrogate

φW i
(d) = φmin+

1

2
(d+ ηiW igi)

ᵀ
(ηiW i)

−1 (d+ ηiW igi) .
(14)

The parameters are chosen such that φW i(0) = f(θ) and
∇dφ|d=0 = gi. The minimum of this surrogate occurs at

the step d = −ηiW igi corresponding to a decrease of
φ(0)− φ(−ηiW igi) = ηi · gᵀiW igi/2. This lower bound
in Eq. (12) amounts to a standard step of the underlying
optimization algorithm if Ri = 0, but with an additional
advantage. By re-evaluating the function at the new parame-
ter, one can adapt the scale of the covariance/learning rate
so φi − φi+1 = ηi · gᵀiW igi/2 ≈ f(θi) − f(θi+1). The
decision of which lower bound to use occurs in lines 8 to 12
of Alg. 1 and is followed by the update in Eq. (12).

In line 15 we re-evaluate the function (same batch) and then
compare the ratio of observed and expected decrease. A ratio
of 1 corresponds to a perfect match of curvature between
the real function and the estimated quadratic in direction vi.
If the ratio deviates from 1, we adapt the learning rate by
multiplicatively increasing or decreasing η with α↑ = 1.2
and α↓ = 1/2, inspired by the updates of Rprop [Riedmiller
and Braun, 1992]. Similar ideas are also employed in trust-
region methods [Nocedal and Wright, 2006, Ch. 4] to adapt
the size of the trust region. One could simply choose a
new η that makes the ratio 1 but this made the algorithm
sensitive to outliers. Instead we apply the updates iteratively
to guard against outliers which frequently occur due to the
stochasticity of the problems considered. The asymmetry
of the update is to penalize steps that are too large since
these can be critical to the optimization. We allow a bit of
deviation from the optimal value of the ratio to account for
stochasticity of the gradients. As the learning rate is adapted
for each mini-batch it approaches a value that is suitable for
the full-batch function.

3.3 COMPUTATION

The overall cost of our algorithm is essentially one
forward-pass of the batch loss more expensive than that of
the underlying optimizer. This is due to the requirement
of re-evaluating the batch loss before the next iteration.
Apart from the re-evaluation there are two non-scalar
operations involved in each step: finding the step direction
vi = η ·W igi, and computing the inner product vᵀi gi
(i.e. η · gᵀiW igi) in Eq. (12). The former operation is
handled by the underlying optimization algorithm which
does not incur any additional computational cost since
the optimizer must compute it regardless. The latter
operation scales linearly with the number of parameters
once vi is obtained, which is of similar complexity to the
first-order optimizers in Tab. 1. Optimizers in Pytorch
usually compute the update vi per-parameter and apply the
update immediately to save memory. In order to keep the
implementation as general as possible for the identified
algorithms, we explicitly store the vector vi for the inner
product. This storage can be avoided but would require
implementing a new version of each optimizer.

5

0.0 0.3 0.6 0.9

β1

10−5

10−4

10−3

10−2

10−1

η

36 37 38 38 37 38 38 38 38 20

11 14 15 15 15 15 15 15 15 5

-1 1 1 1 1 3 2 2 2 -11

-2 1 1 1 1 2 2 1 1 -15

3 4 4 4 4 4 4 3 3 -12

50 49 49 90 47 49 40 29 29 -4

79 78 73 78 89 80 89 88 58 -4

74 79 87 88 87 90 88 90 65 44

26 30 35 52 74 82 79 74 48 47

Adam

0

20

40

60

80

Figure 2: Difference in achieved training accuracy between
proposed adaptation and fixed learning rate version of Adam
for different initial learning rates (η) and momentum (β1).
Green color means adaptation improved and red signifies
worse accuracy after 50 epochs of training on an own imple-
mentation of the test problem cifar10_3c3d. For each pair
of parameters the experiment was repeated 3 times of which
the best value is reported. Generally the adaptation leads to
improvements except for large β1, c.f. Section 2.3.

4 EXPERIMENTS

This section presents experimental results of relevant deep
learning classification problems. We start by describing the
different experiments and discuss the findings in the end.
To ensure diversity in the problem set, reliable baseline
comparisons and reproducible results, we made use of test
problems provided by the DeepOBS benchmarking toolbox
[Schneider et al., 2019].2 We implemented our method in
Pytorch [Paszke et al., 2019] ver. 1.4 as a wrapper to the
implemented optimizers listed in Tab. 1. Across all experi-
ments we used the default values of the parameters in Alg. 1.
The adaptation scheme (with no f∗ provided) is compared
to a fixed learning rate, Hypergradient descent [Baydin et al.,
2018] and L4 [Rolinek and Martius, 2018] where applicable.
In the absence of f∗ we found no significant difference in
results by including an estimate of the noise variance Ri or
not, so it was left at 0. To show the effect of using a poor
learning rate and the efficacy of our adaptation, we ran each
experiment and optimizer with initial learning rates in the
range 10−5 to 1. For L4 we varied αL4 which scales the
numerator of Eq.(12) in the recommended range from the
default value of 0.15 to 0.25. To better show the robustness
of the proposed algorithm we report the results in terms
of training accuracy since it is constrained to [0, 1]. All
of the results can be seen in Fig. 3 and additional metrics
and optimizers can be found in the supplementary material.

2https://deepobs.github.io

Apart from the momentum term of Adam and SGD with
momentum for our adaptation (further discussed below),
all other hyperparameters were kept at the Pytorch default
values.

4.1 (F)MNIST

DeepOBS provides several test problems that are applicable
to both the Fashion MNIST and standard MNIST dataset
due to the identical data format. The first three rows of Fig. 3
show convergence results for models using logistic regres-
sion, a 4 layered multilayered perceptron and an artificial
neural network with 2 convolutional layers followed by 2
dense layers for the classification.

4.2 CIFAR-10

The network used for the CIFAR-10 dataset [Krizhevsky,
2009] consists of 3 convolutional layers followed by 3 dense
layers and l2 regularization of 2 · 10−3. Each optimizer ran
for 100 epochs as opposed to 50 for the other experiments
due to the slower convergence. The same architecture was
used to investigate how momentum affects our adaptation
in deep learning. A typical result can be seen in Fig. 2
illustrating a sweep across learning rates (η) and momentum
(β1) for Adam. The figure shows that the performance tend
to deteriorate for large values of β1. A similar sweep took
place for SGD with momentum to settle on a momentum
β of 0.5 for both optimizers across all experiments. During
the sweep we measured the average time it took to finish the
training of one epoch and found that our algorithm required
on average 41% longer than the standard update.

4.3 SVHN

The SVHN dataset [Netzer et al., 2011] contains more than
600 000 images of house numbers seen from the street. One
deepOBS architecture2 used for this experiment is a wide
resnet [Zagoruyko and Komodakis, 2016], which is an ex-
tension of the deep resnet [He et al., 2016]. A key difference
between the two architectures is that the wide resnet uses
fewer and wider residual blocks, yielding improvements in
training time, performance and number of parameters. The
network consists of 16 convolutional layers with a widen-
ing factor of 4, and we used a batch-size of 128 and l2
regularization of 5 · 10−4.

4.4 DISCUSSION

The results presented in Fig. 3 show that the proposed learn-
ing rate adaptation is robust across a wide range of classifica-
tion problems and optimizers. It reliably adjusts the learning
rate which most times results in a final accuracy close to
the best achieved accuracy on the task. The exception being

6

https://deepobs.github.io

SGD

0.50

0.75

1.00
Momentum Adam

m
n

is
t

lo
gr

eg

0.0

0.5

1.0

fm
n

is
t

m
lp

0.0

0.5

1.0

fm
n

is
t

2c
2d

0.0

0.5

1.0

ci
fa

r1
0

3c
3d

0.0

0.5

1.0

sv
h

n
w

rn
16

4

T
ra

in
in

g
ac

cu
ra

cy

Figure 3: Training accuracy (higher is better) per epoch for different optimizers, learning rate adaptations and benchmark
problems from DeepOBS. Each row shows the training accuracy for one test problem identified by a dataset and model
description and each columngroup shows a family of optimizers. The leftmost graph in each group (thin gray border)
has a fixed learning rate. Next to it (thick black border) is the proposed adaptation. A dashed border indicates results for
Hypergradient descent and the dash-dotted show results for L4. Each graph contains experiments with initial learning rates
in the range 10−5 () through 10−3 () to 100 (). In the case of L4 the learning is replaced with αL4 with values
between 0.15 () and 0.25 (). In every problem each optimizer ran for 50 epochs except for cifar10_3c3d which ran for
100 epochs. All hyperparameters were left at the default values except for the momentum term of the proposed adaptation
which was set to 0.5 instead of default 0.9 for Momentum and Adam. The graphs under SGD show a typical example of how
sensitive the performance of a model is to a fixed learning rate during training and how the adaptation avoids this problem.

SGD which in some cases falls behind due to the higher
variance of η · gᵀiW igi compared to other algorithms.

Albeit the notable robustness, certain initializations of the
learning rate are still too large for the optimization to con-
verge, which is visible from the straggling dark/black lines
in certain problems (an example is Adam for the fmnist
tasks). In these cases the learning rates are several orders of
magnitude larger than the optimal fixed learning rate and
neither adaptation converges.

Hypergradient descent often shows improvements over the
corresponding fixed learning rate version but sometimes
gets stuck for too small learning rates (see fmnist experi-
ments) and it does not show the same agnosticism towards
the initial learning rate. The update to the learning rate for
Hypergradient descent is calculated from the inner prod-
uct of two subsequent gradients and scaled with a small
hyper learning rate. Since the size and architecture of the
considered networks drastically vary between problems, the

default value of the hyper learning rate is bound to be off for
some architectures, requiring additional tuning. Our method
instead updates the learning rate based on a dimensionless
quantity making it less sensitive to variations in the network.

L4 estimates f∗ and uses a form of Polyak step in each
iteration making each parameter update independent of the
learning rate. The algorithm instead introduces additional
hyperparameters which the authors empirically set for good
performance. When L4 finished a training run without di-
verging it was usually among the fastest to reach a high accu-
racy, but the results in Fig. 3 show that the default parameter
values would still require additional tuning depending on
dataset and model making them less robust across problems.

Our implemented adaptation updates the learning rate for
every batch throughout the training, leading to an overall
computational cost on average < 50% higher than that of
the underlying optimizer. The additional cost stems from
re-evaluating the loss on the same batch. A simple remedy to

7

reduce the overhead is to not evaluate every batch or epoch,
but every 2ith epoch for i = 0, 1, This allows significant
adaptation in the beginning to get the scale right and less fre-
quently during later stages of training, see Appendix B.1 for
motivation. Overall, the additional cost of the re-evaluation
is justified if it means that no additional runs are required to
find a suitable learning rate.

One recurring observation from the experiments with the
adaptation is that the smaller initial learning rates converge
without exception, suggesting one could initialize the under-
lying optimizer with a learning rate of 10−4 − 10−3 and let
the adaptation accelerate.

5 RELATED WORK

Stochastic gradient descent and its variants remain the
workhorse for the stochastic optimization in deep learn-
ing, and big-data machine learning more generally. Several
methods that improve the convergence over standard SGD
by reducing the variance of the estimate [Sutskever et al.,
2013], adapting the step-direction [Duchi et al., 2011, Zeiler,
2012, Schaul et al., 2013, Dauphin et al., 2015] or combina-
tions thereof [Kingma and Ba, 2014] have been proposed as
substitutes [see Ruder, 2016, for an overview]. The learning
rate is the single most important hyperparameter in these
first-order optimization methods that are used in machine
learning, with the model performance hinging on successful
selection [Goodfellow et al., 2016]. Some recent ideas to
reduce this influence are to include the learning rate as an
additional parameter that can be optimized with backpropa-
gation [Baydin et al., 2018, cf. results in Fig. 3] or to train
another model to predict the next step [Andrychowicz et al.,
2016].

In traditional optimization the learning rate problem is usu-
ally avoided by use of a line search routine, with new iterates
chosen to satisfy conditions that ensure suitable convergence
[Armijo, 1966, Nocedal and Wright, 2006]. Stochastic ver-
sions of these line searches were proposed by Mahsereci and
Hennig [2017] and Vaswani et al. [2019]. An advantage, in
terms of simplicity, of our framework over these methods is
that it only requires a single additional function evaluation,
keeping the iteration cost comparably low.

The Polyak (1987) step, which is a special case of our prob-
abilistic treatment, has previously been used in machine
learning for models that satisfy interpolation [Loizou et al.,
2020]. Loizou et al. [2020] used the Polyak step together
with SGD and proved a convergence rate for the algorithm.
Around the same time Berrada et al. [2019] proposed the
ALI-G algorithm which also amounts to a stochastic Polyak
step for SGD and a version that incorporates a form of
momentum update.

The L4 optimizer of Rolinek and Martius [2018] estimates
f∗ and uses the Polyak step to train deep models. Compared

to our algorithm it relies on different estimators for the
gradient to specifically speed up Momentum and Adam. It
also avoids the function re-evaluation but instead introduces
additional hyperparameters to estimate the lower bound
f∗, making it more sensitive to varying problem setups,
cf. results in Fig. 3. Such an estimate is also possible to
include in our algorithm but was not considered further but
instead we focused on the scaling of the covariance.

Another similar line of work is that of Vaswani et al. [2020]
who extend the line search of Vaswani et al. [2019] and the
Polyak step of Loizou et al. [2020] for problems that satisfy
interpolation. The main contribution was to use a general
metric to recover additional optimization algorithms (the
diagonal versions in Tab. 1) and analyze the convergence
properties. Compared to our work it does not consider the
connection to probabilistic inference nor the additional opti-
mizers. It is similar to this work in the sense that Gaussian
inference also uses a general metric induced by the inverse
covariance matrix. Moreover, we do not specifically con-
sider the interpolation setting but instead aim at adapting
the learning rate for general problems. The usage of a line
search introduces the need for≥ 1 additional function evalu-
ations per batch whereas ours rely on a single re-evaluation.

The derivations of Sec. 2 are reminiscent of probabilistic
linear algebra routines with additional noise [Hennig et al.,
2015, de Roos and Hennig, 2019, Cockayne et al., 2019].
Our algorithm could operate in a similar manner if the same
batch and Hessian is used for repeated parameter updates
and the posterior covariance is propagated. Instead we fo-
cused on the connection to first-order optimization algo-
rithms for large-scale machine learning tasks.

6 CONCLUSION

We have proposed an algorithm motivated by Gaussian in-
ference, to construct a family of update rules that perform
a learning rate adaptation for popular first order stochastic
optimization routines. The algorithm is applicable to opti-
mization routines where the step direction can be phrased
as the product of a symmetric, positive definite matrix with
the gradient. It uses a local quadratic approximation of the
loss function defined by the underlying optimization algo-
rithm to adaptively scale the step size. In our experiments,
the algorithm is able to efficiently adapt the learning rate
across several initial learning rates, optimizers and deep
learning problems. The robust algorithm achieves compet-
itive performance compared to hand-tuned learning rates,
Hypergradient descent and the L4 optimizer with less tun-
ing required. The proposed adaptation scheme thus offers a
way to automatically update the learning rate of deep learn-
ing optimizers within the inner loop – removing the need
for outer-loop parameter tuning of the learning rate which
comes at high cost in terms of human labor and hardware
resources.

8

References

Marcin Andrychowicz, Misha Denil, Sergio Gomez,
Matthew W Hoffman, David Pfau, Tom Schaul, Brendan
Shillingford, and Nando De Freitas. Learning to learn
by gradient descent by gradient descent. In Advances
in neural information processing systems (NIPS), pages
3981–3989, 2016.

Larry Armijo. Minimization of functions having lipschitz
continuous first partial derivatives. Pacific Journal of
mathematics, 16(1):1–3, 1966.

Hilal Asi and John C Duchi. The importance of better
models in stochastic optimization. Proceedings of the
National Academy of Sciences, 116(46):22924–22930,
2019.

Atılım Günes Baydin, Barak A Pearlmutter, Alexey An-
dreyevich Radul, and Jeffrey Mark Siskind. Automatic
differentiation in machine learning: a survey. The Journal
of Machine Learning Research, 18(1):5595–5637, 2017.

Atilim Gunes Baydin, Robert Cornish, David Martinez Ru-
bio, Mark Schmidt, and Frank Wood. Online learning rate
adaptation with hypergradient descent. In International
Conference on Learning Representations (ICLR), 2018.

Leonard Berrada, Andrew Zisserman, and M Pawan Kumar.
Training neural networks for and by interpolation. arXiv
preprint arXiv:1906.05661, 2019.

Jon Cockayne, Chris J Oates, Ilse CF Ipsen, Mark Girolami,
et al. A Bayesian conjugate gradient method. Bayesian
Analysis, 14, 2019.

Yann N Dauphin, Harm de Vries, Junyoung Chung, and
Yoshua Bengio. Rmsprop and equilibrated adaptive learn-
ing rates for non-convex optimization. In ICML workshop
on Deep learning, 2015.

Filip de Roos and Philipp Hennig. Active probabilistic
inference on matrices for pre-conditioning in stochastic
optimization. In The 22nd International Conference on
Artificial Intelligence and Statistics, volume 89 of Pro-
ceedings of Machine Learning Research. PMLR, 2019.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive sub-
gradient methods for online learning and stochastic opti-
mization. Journal of Machine Learning Research, 2011.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
Learning. MIT Press, 2016.

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster,
generalize better: Stability of stochastic gradient de-
scent. In International Conference on Machine Learning.
PMLR, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 2016.

Philipp Hennig, Michael A Osborne, and Mark Girolami.
Probabilistic numerics and uncertainty in computations.
Proceedings of the Royal Society A: Mathematical, Phys-
ical and Engineering Sciences, 471(2179):20150142,
2015.

Diederik Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. International Conference on
Learning Representations (ICLR), 2014.

Alex Krizhevsky. Learning multiple layers of features from
tiny images. Master’s thesis, Department of Computer
Science, University of Toronto, 2009.

Nicolas Loizou, Sharan Vaswani, Issam Laradji, and Simon
Lacoste-Julien. Stochastic polyak step-size for sgd: An
adaptive learning rate for fast convergence. arXiv preprint
arXiv:2002.10542, 2020.

Maren Mahsereci and Philipp Hennig. Probabilistic line
searches for stochastic optimization. The Journal of Ma-
chine Learning Research, 18(1):4262–4320, 2017.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-
sacco, Bo Wu, and Andrew Y Ng. Reading digits in
natural images with unsupervised feature learning. In
NIPS Workshop on Deep Learning and Unsupervised
Feature Learning, 2011.

Jorge Nocedal and Stephen Wright. Numerical optimization.
Springer Science & Business Media, 2006.

Adam Paszke, Sam Gross, Francisco Massa, and et. al. Py-
torch: An imperative style, high-performance deep learn-
ing library. In Advances in Neural Information Processing
Systems (NeurIPS), pages 8024–8035, 2019.

Boris Polyak. Introduction to Optimization. 1987.

Martin Riedmiller and Heinrich Braun. Rprop-a fast adap-
tive learning algorithm. In Proc. of ISCIS VII). Citeseer,
1992.

Herbert Robbins and Sutton Monro. A stochastic approx-
imation method. The annals of mathematical statistics,
22(3):400–407, 1951.

Michal Rolinek and Georg Martius. L4: Practical loss-based
stepsize adaptation for deep learning. In Advances in
Neural Information Processing Systems (NeurIPS), pages
6433–6443, 2018.

H. H. Rosenbrock. An automatic method for finding the
greatest or least value of a function. The Computer Jour-
nal, 3, 1960.

9

Sebastian Ruder. An overview of gradient descent opti-
mization algorithms. Technical report, arXiv:1609.04747,
2016.

Tom Schaul, Sixn Zhang, and Yann Lecun. No more pesky
learning rates. In International Conference on Machine
Learning (ICML), 2013.

Frank Schneider, Lukas Balles, and Philipp Hennig. Deep-
OBS: A deep learning optimizer benchmark suite. In
International Conference on Learning Representations
(ICLR), May 2019.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey
Hinton. On the importance of initialization and momen-
tum in deep learning. International Conference on Ma-
chine Learning (ICML), pages 1139–1147, 2013.

Sharan Vaswani, Aaron Mishkin, Issam Laradji, Mark
Schmidt, Gauthier Gidel, and Simon Lacoste-Julien. Pain-
less stochastic gradient: Interpolation, line-search, and
convergence rates. In Advances in Neural Information
Processing Systems, pages 3732–3745, 2019.

Sharan Vaswani, Frederik Kunstner, Issam Laradji, Si Yi
Meng, Mark Schmidt, and Simon Lacoste-Julien. Adap-
tive gradient methods converge faster with over-
parameterization (and you can do a line-search). arXiv
preprint arXiv:2006.06835, 2020.

Jingfeng Wu, Wenqing Hu, Haoyi Xiong, Jun Huan,
Vladimir Braverman, and Zhanxing Zhu. On the noisy
gradient descent that generalizes as sgd. In International
Conference on Machine Learning. PMLR, 2020.

Sergey Zagoruyko and Nikos Komodakis. Wide residual
networks. In Edwin R. Hancock Richard C. Wilson and
William A. P. Smith, editors, Proceedings of the British
Machine Vision Conference (BMVC), pages 87.1–87.12.
BMVA Press, September 2016. ISBN 1-901725-59-6.
doi: 10.5244/C.30.87. URL https://dx.doi.org/
10.5244/C.30.87.

Matthew D Zeiler. Adadelta: An adaptive learning rate
method. Technical report, arXiv:1212.5701, 2012.

10

https://dx.doi.org/10.5244/C.30.87
https://dx.doi.org/10.5244/C.30.87

x1

x
2

Adam - η : 10−4

0 50 100 150 200

Iteration

10−1

100

101

102

fi

(a) Fixed η

x1

x
2

Adam - η : 10−2

0 50 100 150 200

Iteration

10−1

100

101

102

fi

(b) Fixed η

x1

x
2

Adam - η : 10−4

0 50 100 150 200

Iteration

10−1

100

101

102

fi

(c) Adapted η

Figure 4: Influence of variance (learning rate) adaption for inference step on 2-d Rosenbrock (1960) function. Each figure
shows the standard step of the optimizer (), the inference with Ri = 0, i.e., Polyak step (), inference with fixed
Ri = 0.1 () and the inference with adaptive Ri = 0.05fi (). Each run used the Adam optimizer with β1 = 0.7,
β2 = 0.999 and starting learning rate indicated in the figure title. Each of the inference steps use the correct f∗ = 0. The
gray line uses Ri = 0 and is therefore agnostic to the learning rate and should result in the same iterates for all three setups.
This is the case up to approximately iteration 100 after which they deviate.

A PROBABILISTIC MODEL

The main parameters of the probabilistic model (f∗, Ri,
η) have a complicated interplay which affects the modus
operandi of the algorithm, depending on available infor-
mation. Fig. 4 highlights some of the difficulties related
to setting the parameters η, f∗ and Ri in the probabilistic
update. If the global lower bound f∗ is known (0 in this
case) it is still not straightforward to properly set η w.r.t.
Ri. Adapting the variance on-the-go alleviates this problem
when Ri > 0 and when the standard step of the underlying
optimizer is used. One could just as easily consider an algo-
rithm where f∗ is estimated and provided externally instead
of Ri.

11

RMSprop

100

Adagrad SGD Momentum Adam

m
n

is
t

lo
gr

eg

10−1

100

fm
n

is
t

m
lp

10−1

100

fm
n

is
t

2c
2d

100

ci
fa

r1
0

3c
3d

10−1

100

sv
h

n
w

rn
16

4

T
ra

in
in

g
lo

ss

Figure 5: Training loss for the experiments presented in the main part of the paper. For details see Sec. B.

B ADDITIONAL EXPERIMENTS

The experiments are presented in the same way as the re-
sults of the paper. Meaning that each figure shows a loss
metric for different test problems (rows) and optimizers
(columns). The leftmost graph in each group (thin gray bor-
der) has a fixed learning rate and next to it (thick black
border) is the proposed adaptation. A dashed border indi-
cates results for hypergradient descent Baydin et al. [2017]
and the dash-dotted are results for L4 Rolinek and Martius
[2018]. Each graph contains experiments with initial learn-
ing rates indicated by colors in the range 10−5 () through
10−3 () to 100 (). In the case of L4 the learning is
replaced with αL4 values between 0.15 () and 0.25 ().
In every problem each optimizer ran for 50 epochs except
for cifar10_3c3d which ran for 100 epochs. All hyperparam-
eters of the optimizers were left at the default values except
for the momentum term of the proposed adaptation which
was set to 0.5 instead of default 0.9 for Momentum and
Adam. Here we additionally include the results of RMSprop
and Adagrad in the comparison. The training loss of the
experiments in the main paper are available in Fig. 5 and a
zoomed-in version of the test accuracy can be seen in Fig. 6.

B.1 CIFAR-100

To test the optimization on a larger model and dataset we
used the ResNet18 implementation from the Pytorch model
zoo and trained the model on the CIFAR-100 dataset with a
batch size of 128. The used l2-regularization of 5 ·10−4 was
too low for the model which resulted in overfitting and poor
generalization performance, but the overall trend compared
to the problems from DeepOBS is still visible. In Fig. 7
we see different metrics evolve during the training and the
learning rate. For each of the optimizers there seems to be
an initial convergence point for the learning rate that then
transitions into a more noisy regime.

12

RMSprop

0.8

0.9

1.0
Adagrad SGD Momentum Adam

m
n

is
t

lo
gr

eg

0.75

0.85

0.95

fm
n

is
t

m
lp

0.75

0.85

0.95

fm
n

is
t

2c
2d

0.500

0.675

0.850

ci
fa

r1
0

3c
3d

0.8

0.9

1.0

sv
h

n
w

rn
16

4

T
es

t
ac

cu
ra

cy

Figure 6: Test accuracy for the experiments presented in the main part of the paper. For details see Sec. B.

13

RMSprop

0.0

0.5

1.0

Adagrad SGD Momentum Adam

ci
fa

r1
00

re
sn

et

T
ra

in
in

g
ac

cu
ra

cy

RMSprop

0.0

0.5

1.0
Adagrad SGD Momentum Adam

ci
fa

r1
00

re
sn

et

T
es

t
ac

cu
ra

cy

RMSprop

0

3

6
Adagrad SGD Momentum Adam

ci
fa

r1
00

re
sn

et

T
ra

in
in

g
lo

ss

10−6

10−4

10−2

100

ci
fa

r1
00

re
sn

et

L
ea

rn
in

g
ra

te

Figure 7: Results for a model trained on CIFAR-100 for 50 epochs. All the settings and limits are the same as the results
from DeepOBS. The last row shows the learning rate that was used at the end of each epoch for the proposed learning rate
adaptation.

14

	1 INTRODUCTION
	1.1 Contributions

	2 METHOD
	2.1 Probabilistic Model
	2.2 Choice of covariance
	2.3 Accelerated gradient updates

	3 ALGORITHM
	3.1 Parameters
	3.2 Implementation
	3.3 Computation

	4 EXPERIMENTS
	4.1 (F)MNIST
	4.2 CIFAR-10
	4.3 SVHN
	4.4 Discussion

	5 Related Work
	6 CONCLUSION
	A PROBABILISTIC MODEL
	B ADDITIONAL EXPERIMENTS
	B.1 CIFAR-100

