
Mathematisch-
Naturwissenschaftliche
Fakultät

Methoden des Maschinellen Ler-
nens

Masterarbeit

Composing Neural Networks and Proba-
bilistic Graphical Models

Eberhard Karls Universität Tübingen
Mathematisch-Naturwissenschaftliche Fakultät
Methoden des Maschinellen Lernens
Johannes van den Heuvel, johanheuvel5@gmail.com, 2023

Bearbeitungszeitraum: August2022-February2023

Betreuer/Gutachter: Prof. Dr. Philipp Hennig, Universität Tübingen
Zweitgutachter: Prof. Dr. Jakob Macke, Universität Tübingen

Selbstständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Masterarbeit selbständig und nur
mit den angegebenen Hilfsmitteln angefertigt habe und dass alle Stellen, die dem
Wortlaut oder dem Sinne nach anderen Werken entnommen sind, durch Angaben von
Quellen als Entlehnung kenntlich gemacht worden sind. Diese Masterarbeit wurde
in gleicher oder ähnlicher Form in keinem anderen Studiengang als Prüfungsleistung
vorgelegt.

Johannes van den Heuvel (Matrikelnummer 5714872), February 13, 2023

3

Acknowledgments

I want to thank Marius Hobbhahn for providing practical supervision and the weekly
meetings.

5

Contents

1. Introduction 9

2. Background 11
2.1. Expectation Maximization (EM) . 11

2.1.1. Evidence Lower Bound (ELBO) 11
2.1.2. EM algorithm . 13

2.2. Variational Inference (VI) . 13
2.3. Variational Message Passing (VMP) 14

2.3.1. Bayesian Networks . 14
2.3.2. Local updates . 15
2.3.3. Conjugate-Exponential Models 16

2.4. Variational Autoencoder (VAE) . 18
2.4.1. Encoder-Decoder architecture 19

3. Structured Variational Autoencoder (SVAE) 21
3.1. Optimizing the local latents . 22
3.2. Natural gradients of global parameters 23

3.2.1. Natural Gradients of the SVAE 24
3.3. Gradients of the autoencoder parameters 25

4. Graphical Models 27
4.1. Gaussian Mixture Model (GMM) . 27
4.2. Linear Dynamical System (LDS) . 29
4.3. More models . 30

5. Methods 31
5.1. SVAE-GMM . 31
5.2. SVAE-LDS . 32
5.3. SVAE . 33

6. Results 35
6.1. SVAE-GMM . 36

6.1.1. Initialization of the SVAE-GMM 36
6.1.2. Manipulation of latent variables 38

6.2. SVAE-LDS . 39
6.2.1. Importance of different latent variables 39

7

Contents

6.2.2. Manipulation of latent variables 40
6.2.3. Manipulation of global variables 42
6.2.4. Retraining of global variables 43

7. Conclusion 45

A. Mixture model updates 47
A.1. Optimizing mean-field factor . 47
A.2. Additional conjugacy structure of the local latent variables 48
A.3. Code . 49

B. Information form operations 51
B.1. Filtering, Sampling, and Smoothing 53
B.2. Filtering . 53
B.3. Rauch-Tung-Striebel Smoothing . 55
B.4. Backward sampling . 57

C. Exponential family 59
C.1. Definition . 59
C.2. Conjugacy . 59
C.3. KL-Divergence . 60
C.4. Expected Value . 61

D. Distributions 63
D.1. Dirichlet . 63
D.2. Categorical . 64
D.3. Multivariate Normal . 65
D.4. Matrix Normal . 67
D.5. Inverse Wishart . 68
D.6. Normal Inverse Wishart . 69

8

1. Introduction

Neural networks are popular Machine Learning models, and deep learning is
currently the main paradigm. One of the reasons for this popularity is their flexibility.
However, this flexibility comes with a downside and neural networks are also “black-
boxes”. While this is not a crucial issue in predictive or generative performance it is
in other applications.

One such application is scientific modeling. Neural networks are not well suited
for this task, as they are difficult to interpret. Even if neural networks can model
something and perform well on a task, the model is often not understandable for
humans. However, even within predictive or generative tasks black-box models have
downsides. For example, modularity is a key principle in software development,
and black-box models are not modular. This makes it more difficult to debug and
test models.

In this thesis, we will take a look at a model that combines deep learning with another
paradigm, probabilistic machine learning. The Structured Variational Autoencoder1,
is a composition between a neural network and a probabilistic graphical model.
Because of this composition, the model is both flexible enough for complex data and
also interpretable.

The contribution of this thesis is twofold. First, reducing the technical debt of the
original work [JDW+16]. This thesis provides a more detailed explanation of the
background, and mathematical details required to understand it. Furthermore, the
original code is not up to date and does not support easy replication of the experi-
ments. This thesis provides a new implementation of the model and experiments
using PyTorch. Second, this thesis investigates some of the strengths and weaknesses
of the composition. In general probabilistic graphical models are more interpretable
than neural networks, which also holds for the composition. Because we can interpret
the model better, it is also easier to tweak specific parts after training.

1previously introduced in [JDW+16].

9

2. Background

This chapter contains the mathematical background needed to understand the
Structured Variational Autoencoder algorithm. First, we will look at Expectation
Maximization (section 2.1) which will be used to understand the basics of probabilistic
inference. Expectation maximization is an iterative method to find point estimates
for parameters. Rather than finding point estimates, we could also use Variational
Inference (section 2.2) to fit an entire posterior distribution. It is possible to “automate”
variational inference using Variational Message Passing (section 2.3). Finally, the
Variational Autoencoder (section 2.4) is a way to scale up variational inference.

2.1. Expectation Maximization (EM)

Expectation Maximization (EM) is a general method to maximize the likelihood for
probabilistic models having latent variables [DLR77, MK07]. EM provides the basis
for later discussion of Variational Inference.

2.1.1. Evidence Lower Bound (ELBO)

Figure 2.1.: Graphical representation of a generative model.

Consider a probabilistic model with observed random variables Y, latent random
variables Z, and parameters θ, as in Figure 2.1. Note that θ is a collection of

11

Chapter 2. Background

parameters, i.e. the prior and likelihood depend on different subsets of θ. We have
the following generative process for sample i:

1. sample latent Z(i) from the prior distribution P(Z|θ∗)

2. sample observation Y(i) from the likelihood P(Y|Z,θ∗)

Then we want to infer what the most likely parameters θ are that produced the
observed Y(i)’s. We want to find θ such that the likelihood P(Y|θ) is maximized:

θ∗ =max
θ

P(Y|θ) =max
θ

∑
Z

P(Z,Y|θ), (2.1)

where the second equality follows from marginalization.

Suppose it is not feasible to directly optimize P(Y|θ), and that optimization of
P(Z,Y|θ) is much easier. Applying the chain rule to the right side term in (2.1) results
in the following 1

P(Z,Y) = P(Z|Y)P(Y) (2.2)

⇔ P(Y) =
P(Z,Y)
P(Z|Y)

(2.3)

Applying the logarithm and expectation EQ(Z), which depends on a new distribution
Q(Z|θ) also parameterized by θ, to both sides:

E
Q(Z)

[
logP(Y)

]
= E

Q(Z)

[
log

P(Z,Y)
P(Z|Y)

]
= E

Q(Z)

[
logP(Z,Y)

]
− E

Q(Z)

[
logP(Z|Y)

]
.

(2.4)

The left-hand side does not depend on Q(Z), so the expectation can be dropped.
Adding and subtracting EQ(Z)

[
logQ(Z)

]
gives

logP(Y) = E
Q(Z)

[
logP(Z,Y)− logQ(Z)

]
− E

Q(Z)

[
logP(Z|Y)− logQ(Z)

]
= E

Q(Z)

[
log

P(Z,Y)
Q(Z)

]
− E

Q(Z)

[
log

P(Z|Y)
Q(Z)

]
=L(Q)+KL(Q||P)
≥ L(Q).

(2.5)

Where the inequality follows from theKL(Q||P) always being positive. The function
L is called the Evidence Lower Bound (ELBO), as it lower bounds the evidence term
on the left. And the final result is

logP(Y) ≥ L(Q) (2.6)
1θ is omitted for notational convenience.

12

2.2. Variational Inference (VI)

2.1.2. EM algorithm

The Expectation Maximization (EM) algorithm consists of two steps, the expectation
step and maximation step, between which we alternate: 2

E-step: max
Q
L(Q;θ), (2.7)

M-step: max
θ
L(Q;θ). (2.8)

In the E-step (2.7) L is maximized w.r.t. the distribution Q. Recall the definition of
the ELBO

L(Q) = logP(Y)−KL(Q||P) (2.9)

Optimizing the ELBO w.r.t. Q is equivalent to maximizing −KL(Q||P) as P(Y) is
constant w.r.t. Q(Z). As the KL is always positive it follows that this maximized
when −KL = 0 and thus Q∗ = P.

In the M-step (2.8) we maximize Lw.r.t. the parameters θ. This can be achieved by
both increasing logP(Y) and decreasing −KL(Q||P). Thus after the M-step, Q is no
longer equal to P.

(a) E-step (b) M-step

Figure 2.2.: Steps in the EM algorithm, adapted from [BN06]. In the first figure Q is
set equal to P. In the second figure both the L and theKL increase.

2.2. Variational Inference (VI)

In the previous section Q(Z) was set equal to P(Z|Y). However, often this step
is intractable because P(Z|Y) = P(Z,Y)/P(Y) and we cannot evaluate the evidence

2
L depends on θ as Q(Z|θ)

13

Chapter 2. Background

term P(Y) =
∫

P(Z,Y)dZ. Instead, Variational Inference [JGJS99, WJ+08] uses the mean-
field assumption. In this approximation, Q is chosen such that it factorizes into
independent Qis

Q(Z) =
M∏

i=1

Qi(Zi). (2.10)

We want to find the distribution Q that maximizes the lower bound L(Q). Due to
factorization, it is possible to do this in an iterative fashion. This can be shown by
isolating Q j(Z j) in the ELBO

L(Q) = E
Q(Z)

[
log

P(Z,Y)
Q(Z)

]
= E

Q(Z)

[
logP(Z,Y)− logQ(Z)

]
= E

Q j(Z j)

[
E

∼Q j(Z j)

[
logP(Z,Y)

]
− logQ j(Z j)

]
+ const

= −KL(Q j|| E
∼Q j(Z j)

[
logP(Z,Y)

]
)+ const

(2.11)

where E∼Q j(Z j) is the expectation w.r.t. to all factors except Q j(Z j).

Suppose that we maximize L(Q) w.r.t. Q j and keep all other Qi fixed. The last line
of (2.11) shows that this is equivalent to maximizing a negative Kullback-Leibler
divergence between Q j and E∼Q j(Z j)

[
logP(Z,Y)

]
, as the constant factor does not

depend on Q j. And so the optimal Q∗j is

logQ∗j(Z j) = E
∼Q j(Z j)

[
logP(Z,Y)

]
+ const. (2.12)

The additive constant is the normalization constant, required to make sure Q∗ is a
valid distribution. The above equation states that the optimal solution for the factor
log Q j is obtained by setting it equal to the expected value, concerning all {Qi, j}, of
the log joint distribution of the hidden and visible variables.

2.3. Variational Message Passing (VMP)

Variational Message Passing [WBJ05] makes it easier and faster to apply factorized
variational inference. It does so by using local computations and message passing
on the graphical model.

2.3.1. Bayesian Networks

A Probabilistic Graphical Model (PGM) is a Bayesian Network that represents a set of
variables and their conditional dependencies via a directed acyclic graph. Each node
is a variable, and the directed edges between them indicate dependencies.

14

2.3. Variational Message Passing (VMP)

Figure 2.3.: A Bayesian Network

Take for example the following joint distribution

P(Y1,Y2,Z1,Z2,Z3),

as in Figure 2.3. Then by the product rule this decomposes into

P(Y1|Y2,Z1,Z2,Z3)P(Y2|Z1,Z2,Z3)P(Z1,Z2,Z3).

Because of the properties of the Bayesian Network 3 this is equivalent to the following

P(Y1|Z1,Z2)P(Y2|Z2,Z3)P(Z).

Where the variables that are conditionally independent are eliminated. E.g. Y1 is
conditionally independent of Y2 given Z2, so we can omit Y2 in the conditional
P(Y1|Z1,Z2). In a more general manner, the joint distribution P(Y) can be written as

P(Y) =
∏

i

P(Yi|pai) (2.13)

where pai stands for the parent of node i. For example, the parent nodes of Y1 are Z1
and Z2.

2.3.2. Local updates

It is possible to do the variational inference updates using information from only local
nodes. This also forms the connection between variational inference and bayesian
networks.

Starting with equation (2.12) first generalize P(Z,Y) to P(X) i.e. X can now be
both latent or observed variables. Then substitute the form of the joint probability
distribution with P(X) =

∏
i P(Xi|pai):

logQ∗j(Z j) = E
∼Q j(Z j)

log
∏

k

P(Xk|pak)

+ const (2.14)

3D-seperation [Pea88, BN06]

15

Chapter 2. Background

Any terms that do not depend on Q j are included in the constant term. This term can
be split into two, one which depends on the parents of Z j, and one which depends
on the children of Z j

logQ∗j(Z j) = E
∼Q j(Z j)

[
logP(Z j|pa j)

]
+

E
∼Q j(Z j)

log
∏
k∈ch j

P(Xk|pak)

+ const
(2.15)

Figure 2.4.: Visialization of the Markov blanket, an adaptation of figure from [WBJ05].
The update w.r.t. Z j depends on the parents pa j and the children ch j of Z j.
These terms are the messages from the corresponding nodes and reflect
the local nature of the updates.

2.3.3. Conjugate-Exponential Models

In the case that the distributions are in the exponential family 4 there are important
simplifications. For conjugate-exponential models, we have the following

logP(Z|paZ) = ηZ(paZ)TtZ(Z)−AZ(ηZ(paZ)) (2.16)

logP(Y|Z,cpZ) = ηY(Z,cpZ)TtY(Y)−AY(ηY(Z,cpZ)) (2.17)

Because P(Z|paZ) is conjugate to P(Y|Z,cpZ), it is possible to express P(Y|Z,cpZ) in
the same functional form w.r.t. Z as P(Z|paZ)

logP(Y|Z,cpZ) = ηYZ(Y,cpZ)TtZ(Z)−AZ(ηYZ(Y,cpZ)) (2.18)

4see Appendix C

16

2.3. Variational Message Passing (VMP)

Substituting the above equations into (2.15) it follows that

logQ∗Z(Z) = E
∼Q(Z)

[
ηZ(paZ)TtZ(Z)−AZ(ηZ(paZ))

]
+

∑
k∈chZ

E
∼Q(Z)

[
ηYZ(Yk,cpk)TtZ(Z)−AZ(ηYZ(Yk,cpk))

]
+ const

(2.19)

which is equivalent to

logQ∗Z(Z) = E
∼Q(Z)

ηZ(paZ)+
∑

k∈chZ

ηYZ(Yk,cpk)


T

tZ(Z)

+ const

(2.20)

So we get that Q∗Z is an exponential family distribution of the same form as P(Z|paZ)
with natural parameters

η∗Z = E
∼Q(Z)

ηZ(paZ)+
∑

k∈chZ

ηYZ(Yk,cpk)

 (2.21)

We can see in (2.17) and (2.18) that P(Y|Z,cpZ) is linear w.r.t. to both tY(Y) and tZ(Z)
respectively, a property we will use next. Because of this linearity, it is possible to
reparameterise these functions in terms of the expectations

E
[
ηZ(paZ)

]
= η̃Z

(
{E [ti]}i∈paZ

)
(2.22)

E
[
ηYZ(Yk,cpk)

]
= η̃YZ

(
E [tk] , {E

[
t j

]
} j∈cpk

)
(2.23)

The message from a parent node Z to a child node Y is the expectation under Q of
the natural statistic vector

mZ→Y = E [tZ] (2.24)

The message from a child node Y to a parent node Z is

mY→Z = η̃YZ

(
E [tY] , {mi→Y}i∈cpZ

)
(2.25)

If node X is observed the expectation E [tX] is replaced by tX. So we get that the
natural parameters in (2.21) can be computed using local updates shown in (2.24),
(2.25)

η∗Z = η̃Z
(
{mi→Z}i∈paZ

)
+

∑
j∈chZ

m j→Z (2.26)

17

Chapter 2. Background

2.4. Variational Autoencoder (VAE)

The Variational Autoencoder [KW13] was developed with the aim of performing
efficient approximate inference and learning with directed probabilistic models
whose continuous latent variables and/or parameters have intractable posterior
distributions.

Figure 2.5.: Graphical representation of generative model denoted by the solid lines.
The dashed lines indicate the variational approximation.

Recall in (2.4) where Q(Z|θ) was introduced. Instead, here we will instead introduce
Q(Z|Y,ϕ). In the following the parameters θ and ϕ are denoted by a subscript

logPθ(Y) = E
Qϕ(Z|Y)

[
logPθ(Z,Y)− logQϕ(Z|Y)

]
− E

Qϕ(Z|Y)

[
logPθ(Z|Y)− logQϕ(Z|Y)

]
= E

Qϕ(Z|Y)

[
log

Pθ(Z,Y)
Qϕ(Z|Y)

]
− E

Qϕ(Z|Y)

[
log

Pθ(Z|Y)
Qϕ(Z|Y)

]
=L(Q;θ,ϕ)+KL(Qϕ||Pθ(Z|Y))

≥ L(Q;θ,ϕ).

(2.27)

We can decompose the ELBO into a reconstruction and regularizer term as follows

L(Q;θ,ϕ) = E
Qϕ(Z|Y)

[
log

Pθ(Z,Y)
Qϕ(Z|Y)

]
= E

Qϕ(Z|Y)

[
log

Pθ(Y|Z)P(Z)
Qϕ(Z|Y)

]
= E

Qϕ(Z|Y)

[
logPθ(Y|Z)

]
−KL(Qϕ||Pθ(Z))

(2.28)

18

2.4. Variational Autoencoder (VAE)

The Monte Carlo estimator for this objective is

L(Q;θ,ϕ) ≈
1
L

L∑
l=1

logPθ(Y,Z(l))− logQϕ(Z(l)
|Y), (2.29)

where Z∼Qϕ(Z|Y). However, this has high variance when used for gradients [PBJ12].
Instead we can use the reparameterization trick, and use Z̃ = gϕ(ϵ,x), with ϵ ∼ p(ϵ).
Then we can use the following Monto Carlo estimator

L(Q;θ,ϕ) ≈
1
L

L∑
l=1

logPθ(Y, gϕ(ϵ(l),Y))− logQϕ(gϕ(ϵ(l),Y)|Y), (2.30)

For example, in the case Q is a Gaussian distribution we get

Z = µ+σ⊙ϵ and ϵ ∼N(0, I) (2.31)

2.4.1. Encoder-Decoder architecture

In practice, we can use Multilayer Perceptrons (MLPs) to model the encoder and
decoder. The encoder models the Gaussian Qϕ(Z) and outputs a mean µ and variance
Σ such that we get

Qϕ(Z) =N(µ(Y;ϕ),Σ(Y;ϕ)) (2.32)

Then the latents Z are obtained using the reparameterization trick (2.31). Finally, the
decoder models the log-likelihood Pθ(Y|Z), such that we get

Pθ(Y|Z) =N(µ(Z;θ),Σ(Z;θ)) (2.33)

This model can be trained end-to-end, where the gradients for the encoder and
decoder can be found by automatic differentiation on L(Q;θ,ϕ).

19

3. Structured Variational Autoencoder
(SVAE)

The Structured Variational Autoencoder [JDW+16] is a composition of a probabilistic
graphical model and a neural network. This composition aims to achieve both the
flexibility of a neural network and the structure of a probabilistic graphical model.
One way of looking at this model is as a generalization of the variational autoencoder
(section 2.2).

As in the variational autoencoder, the SVAE uses the observations Y to obtain
approximations for the latent variables. Additionally, the local latent variables X
have additional structure, such as clusters of Gaussians (section 4.1). These local
latent variables X also require optimization, which is done using variational message
passing (section 2.3). To do efficient local optimization the distributions should be in
the exponential family. However, this is not the case if a neural network is used to
approximate the latent variables. To fix this issue a trick is used, which is represented
by ϕ.

Figure 3.1.: Graphical representation of the structured variational autoencoder.

In the next sections, we will first look at the SVAE objective, and how we get there
using partial optimization of the local latent variables (section 3.1). Second, using

21

Chapter 3. Structured Variational Autoencoder (SVAE)

the SVAE objective we can obtain the natural gradients used to optimize the global
variables (section 3.2). Thirdly, by automatic differentiation w.r.t. the SVAE objective
the parameters of the encoder and decoder are updated (section 3.3).

3.1. Optimizing the local latents

Let p(x|θ) be an exponential family and let p(θ) be its corresponding conjugate prior,
i.e.

p(θ) = exp{⟨ηθ, tθ(θ)⟩− logZθ(η0
θ)} (3.1)

p(x|θ) = exp{⟨ηx(θ), tx(x)⟩− logZx(η0
x)} (3.2)

Let p(y|x,γ) be a general family of densities, with the exponential family prior
on its parameters p(γ). For fixed y consider the mean field family of densities
q(θ,γ,x) = q(θ)q(γ)q(x) and the mean-field variational inference objective

L(q(θ)q(γ)q(x)) ≜ E
q(θ)q(γ)q(x)

[
log

p(θ)p(γ)p(x|θ)p(y|x,γ)
q(θ)q(γ)q(x)

]
(3.3)

We take q(θ), q(γ), q(x) to be in the same exponential family as p(θ), p(γ), p(x|θ)
respectively; with natural parameters ηθ, ηγ, and, ηx. We end up with the following
mean field variational inference objective

L(ηθ,ηγ,ηx) ≜ E
q(θ)q(γ)q(x)

[
log

p(θ)p(γ)p(x|θ)p(y|x,γ)
q(θ)q(γ)q(x)

]
(3.4)

To perform efficient optimization we choose the variational parameter ηx as a
function of ηθ and ηγ. We could set ηx to be a local partial optimizer of L. However,
optimizing over general densities p(y|x,γ) can be computationally expensive. Instead
we choose ηx to be a optimizer over a surrogate objective L̂

L̂(ηθ,ηγ,ηx,ϕ) ≜ E
q(θ)q(γ)q(x)

[
log

p(θ)p(γ)p(x|θ)expψ(x; y,ϕ)
q(θ)q(γ)q(x)

]
= E

q(θ)q(x)

[
log

p(θ)p(x|θ)expψ(x; y,ϕ)
q(θ)q(x)

]
+ const

(3.5)

where we pulled terms involving γ into the constant which does not depend on ηx.
The function ψ(x; y,ϕ) is defined in a form related to the exponential family:

ψ(x; y,ϕ) ≜ r(y;ϕ)Ttx(x), (3.6)

and fits into the conjugate structure. The function r is called the recognition model, e.g.
an MLP. We can find ηx as a partial local optimizer

η∗x(ηθ,ϕ) ≜ argmax
ηx

L̂(ηθ,ηγ,ηx,ϕ) (3.7)

22

3.2. Natural gradients of global parameters

Given this η∗x the SVAE objective is defined as

LSVAE(ηθ,ηγ,ϕ) ≜L(ηθ,ηγ,η∗x(ηθ,ϕ)) (3.8)

and the related optimization problem we want to solve

max
ηθ,ηγ,ϕ

LSVAE(ηθ,ηγ,ϕ) (3.9)

Without additional conjugacy structure, see Section A.2, these local optimizations can
be performed with generic gradient-based methods and automatic differentiation
[DA15].

3.2. Natural gradients of global parameters

Assume we have the following objective, as in (stochastic) variational inference
[HBWP13]:

L(ηθ) ≜ E
q(θ)q∗(x)

[
log

p(θ)p(x, y|θ)
q(θ)q∗(x)

]
(3.10)

for which we want to obtain the gradients w.r.t. to the global parameters θ. For
this, the conjugacy property of the exponential family is used, which is shown in
Proposition 1.

Proposition 1. Let the densities p(θ) and p(x|θ) be defined as in (3.1) and (3.2). We have
the relations

p(θ,x) = exp{⟨ηθ+ (tx(x),1), tθ(θ)⟩− logZθ(ηθ)} (3.11)
p(θ|x) = exp{⟨ηθ+ (tx(x),1), tθ(θ)⟩− logZθ(ηθ+ (tx(x),1)} (3.12)

and hence in particular the posterior p(θ|x) is in the same exponential family as p(θ) with
the natural parameter ηθ+ (tx(x),1). Similarly with multiple likelihood terms p(xi|θ) for
i = 1,2, · · · ,N we have

p(θ)
N∏

i=1

p(xi|θ) = exp{⟨ηθ+
N∑

i=1

(tx(xi),1), tθ(θ)⟩− logZθ(ηθ)} (3.13)

From the conjugacy property, it follows that the posterior p(θ|x) is in the same
exponential family as the prior p(θ). The only difference between the prior and
posterior are the natural parameters. This property is important for the proof of
Proposition 2, which states the gradient.

Proposition 2. Let the objective L(ηθ) be defined as in (3.10). Then the gradient ∇L(ηθ) is

∇
2 logZθ(ηθ)

(
η0
θ+ Eq∗(x)

[
(txy(x, y),1)

]
−ηθ

)
(3.14)

where q∗(x) is a local partial optimizer of the mean-field objective for fixed global variational
parameters ηθ.

23

Chapter 3. Structured Variational Autoencoder (SVAE)

Proof. Because q∗(x) is a local partial optimizer of the mean-field objective we have
that

∇L(ηθ) = ∇ηθ E
q(θ)q∗(x)

[
log

p(θ)p(x, y|θ)
q(θ)q∗(x)

]
(3.15)

Using Proposition 1 we can write the right-hand side without the gradient as

E
q(θ)q∗(x)

log
exp{⟨η0

θ
+ (txy(x, y),1), tθ(θ)⟩− logZθ(η0

θ
)}

exp{⟨ηθ, tθ(θ)⟩− logZθ(ηθ)}

 (3.16)

by plugging in the exponential family definitions. This expression is equivalent to

⟨η0
θ+ Eq∗(x)

[
(txy(x, y),1)

]
−ηθ,Eqθ

[tθ(θ)]⟩− (logZθ(η0
θ)− logZθ(ηθ)) (3.17)

Using Eq(θ)[tθ(θ)] = ∇ logZθ(ηθ) (Appendix C.4) we get

∇ logZθ(ηθ)
(
η0
θ+ Eq∗(x)

[
(txy(x, y),1)

]
−ηθ

)
− (logZθ(η0

θ)− logZθ(ηθ)) (3.18)

and we get the final result by then taking the gradient w.r.t. ηθ and using the product
rule:

∇
2 logZθ(ηθ)

(
η0
θ+ Eq∗(x)

[
(txy(x, y),1)

]
−ηθ

)
− logZθ(ηθ)+ logZθ(ηθ) (3.19)

□

3.2.1. Natural Gradients of the SVAE

In the previous section, we looked at a VI objective without non-linear observations.
The gradients w.r.t. the global parameters for this objective can be extended for the
SVAE objective (3.8).

∇ηθLSVAE =∇
2 logZθ(ηθ)

(
η0
θ+ Eq∗(x)

[
(txy(x, y),1)

]
−ηθ

)
+∇ηθη

∗

x(ηθ,ϕ)
(
∇xL(ηθ,ηγ,η∗x(ηθ,ϕ))

) (3.20)

This follows from the chain rule1 applied to the SVAE objective. The first term was
derived in the previous section. In the case of variational inference, the second
part is zero. This is not the case for the SVAE, but it can be estimated using the
reparameterization trick.

The natural gradient [Ama98] is defined by

∇̃L(ηθ) ≜ (∇2 logZθ(ηθ))−1
∇L(ηθ) (3.21)

1chain rule on g(x) ≜ f (x, y∗(x)) gives ∇g(x) = ∇x f (x, y∗(x))+∇y∗(x)∇y f (x, y∗(x))

24

3.3. Gradients of the autoencoder parameters

where∇2 logZθ(ηθ) is the Fisher information matrix. In the context of the SVAE, natural
gradient descent is effectively a second-order optimization problem. In general,
second-order optimization problems provide faster convergence compared to first-
order optimization problems. Often this faster convergence comes at a higher cost of
computing the second-order gradients. For the second term, we do need to compute
the Fisher information matrix. However, when ηθ is small in dimension compared
to the other parameters this is not much extra computation.

3.3. Gradients of the autoencoder parameters

To compute an unbiased stochastic estimate of the gradients we can use the repa-
rameterization trick as in Section 2.4. We rewrite the LSVAE objective into a term that
requires this sample-based approximation and one that can be computed directly.

LSVAE(ηθ,ηγ,ϕ) = E
q(γ)q∗(x)

[
logp(y|x,γ)

]
−KL(q(θ)q(γ)q∗(x)||p(θ,γ,x)).

(3.22)

Here the first term needs to be estimated using the reparameterization trick.

Let γ̂(ηγ) ∼ q(γ) and x̂(ϕ) ∼ q∗(x). Then unbiased estimates of the gradients are given
by

∇ϕLSVAE(ηθ,ηγ,ϕ) ≈ ∇ϕ logp(y|x̂(ϕ), γ̂(ηγ))

−∇ϕKL(q(θ)q∗(x)||p(θ,x))
(3.23)

∇ηγLSVAE(ηθ,ηγ,ϕ) ≈ ∇ηγ logp(y|x̂(ϕ), γ̂(ηγ))

−∇ηγKL(q(γ)||p(γ))
(3.24)

which we can compute by doing automatic differentiation over the Monto-Carlo
estimate of

LSVAE(ηθ,ηγ,ϕ) ≈ logp(y|x̂(ϕ), γ̂(ηγ))
−KL(q(θ)q(γ)q∗(x)||p(θ,γ,x))

(3.25)

25

4. Graphical Models

Graphical models1 are an alternative representation of a joint distribution. A graphical
model represents a set of variables and their conditional dependencies via a directed
acyclic graph (section 2.3.1). Each node is a variable, and the directed edges between
them indicate dependencies. This representation can help with operations such as
Variational Message Passing (section 2.3). In addition, we can use it to construct
models, which is done in the next sections.

4.1. Gaussian Mixture Model (GMM)

Figure 4.1.: Graphical representation of the Gaussian Mixture Model, following the
generative model in equation (4.1). Each datapoint Yi belongs to a cluster
k, which is determined by the (local) latent variable Zi. The (global)
cluster parameters µk and Σk are shared across all data points.

A Gaussian Mixture Model (GMM) is used to model several distinct “clusters” of data
points. It is possible to observe the data points, but not which cluster they belong
to. Each cluster is modeled using a Gaussian distribution, with a latent2 variable

1In this context a graphical model refers to a probabilistic graphical model.
2A latent variable is not observed.

27

Chapter 4. Graphical Models

determining which cluster a data point belongs to.

π ∼Dir(α)

(µk,Σk) iid
∼ NIW(λ)

zn|π
iid
∼ π

yn|zn,γ, {(µk,Σk)}Kk=1
iid
∼ N(µzn ,Σzn)

(4.1)

For the GMM the graphical model is shown in Figure 4.1, using the equations in
(4.1). These equations are also called the generative model and describe how a data
point is generated. Every data point yn is sampled from a Gaussian distribution
with parameters (µk,Σk) depending on which cluster k it belongs to. The cluster
assignments k are sampled from a Categorical distribution with parameters Zi. The
priors for the Gaussian and Categorical are the Normal Inverse Wishart and Dirichlet
distributions respectively. The parameters of the GMM can be optimized using the
EM algorithm (see section 2.1).

γ ∼ p(γ)

xn
iid
∼ N(0, I)

yn|xn,γ
idd
∼ N(µ(xn;γ),Σ(xn;γ))

(4.2)

The model above is inflexible and assumes that the observations yn are Gaussian. In
equation (4.2), a generative model is shown that assumes a non-linear function, such
as a neural network. Here µ(xn;γ) and Σ(xn;γ) depend on xn, trough some non-linear
function. The parameters are optimized using the maximum likelihood principle
(see the VAE in section 2.4).

π ∼Dir(α)

(µk,Σk) idd
∼ NIW(λ)

γ ∼ p(γ)

zn|π
idd
∼ π

xn
idd
∼ N(µ(zn),Σ(zn))

yn|xn,γ
idd
∼ N(µ(xn;γ),Σ(xn;γ))

(4.3)

The generative model in (4.2) is model flexible in modeling the observations yn, but
it does not model the latent variables zn. By creating a composition of the GMM
with non-linear observations it is possible to combine the strengths of both. The
combination of the GMM with a neural network is the SVAE-GMM, the generative
model is shown in (4.3). The SVAE-GMM is flexible in modeling the density of the
observations, and it models the latent variables.

28

4.2. Linear Dynamical System (LDS)

4.2. Linear Dynamical System (LDS)

Figure 4.2.: Graphical representation for the Linear Dynamical System. The observa-
tions yi are dependent on the (local) latent states xi. The latent states xi
are dependent on the previous latent states xi−1. The (global) parameters
γ and θ parametrize these relations. In this figure only four time steps
are shown, this can be extended to any number of time steps.

A Linear Dynamical System (LDS) is a model that is used to model time series data,
where observations are dependent on the previous observations. The graphical
model is shown in Figure 4.2.

µ1,Q1 ∼NIW(ν,Φ,κ,µ0)
A,Q ∼MNIW(ν,Φ,K,M)

x1 ∼N(µ1,Q1)
xt ∼N(Axt−1,Q)

yt|xt ∼N(Cxt,R)

(4.4)

The generative model is shown in (4.4). An observation yt is sampled from a Gaussian
distribution with parameters C and R, dependent on the latent state xt. The latent
state xt is sampled from a Gaussian distribution with parameters A and Q, dependent
on the previous latent state xt−1. The transition and initial parameters use the Matrix
Normal Inverse Wishart and the Normal Inverse Wishart distribution as a prior
respectively.

29

Chapter 4. Graphical Models

µ1,Q1 ∼NIW(ν,Φ,κ,µ0)
A,Q ∼MNIW(ν,Φ,K,M)
γ ∼ p(γ)

x1 ∼N(µ1,Q1)
xt ∼N(Axt−1,Q)

yt|xt,γ ∼N(µ(xt;γ),Σ(xt;γ))

(4.5)

As in the previous section for the GMM, it is possible to replace the linear observation
inN(Cxt,R) with a non-linear observation,N(C(xt;γ), R(xt;γ)) where the parameters
of the Gaussian depend on a parameterized function, such as a neural network. This
results in the SVAE-LDS.

4.3. More models

We have seen two different instantiations of the SVAE, the SVAE-GMM and the SVAE-
LDS. These are just two examples, and there exist many more possible compositions.
In the next section it will be shown how it is conceptually simple to create a new
composition, we “just”3 need to derive new local updates.

3In practice this can be non-trivial. In addition, other changes need to be done, such as data preparation.

30

5. Methods

In the following section, we will dissect the (pseudo) code 1 of the SVAE. Note that
the code displayed here is somewhat simplified.

The SVAE algorithm is a culmination of the previous sections and is displayed
in Algorithm 1. In step 1, the encoder r is used to predict the potentials ψ. These
potentials are used to perform inference (see section 2.3). The results of the inference
step are the latent variables x̂, statistics t̄x, and localKL. These quantities are used
to compute the gradients for the encoder and decoder (see section 2.4.1), and the
natural gradient for the global variables.

Algorithm 1: Estimate SVAE lower bound and its gradients
Input: parameters (ηθ,ηγ,ϕ) and data sample y

function: SVAEGradients (ηθ,ηγ,ϕ, y)
ψ← r(yn;ϕ)
(x̂, t̄x,KL

local)← PGMInference
(
ηθ,ψ

)
γ̂ ∼ q(γ)
L←N logp

(
y|x̂, γ̂

)
−NKLlocal

−KL(q(θ)q(γ)||p(θ)p(γ))
∇̂ηθL← η0

θ
−ηθ+N(t̄x,1)+N(∇ηx logp(y|x̂, γ̂),0)

return: lower bound L, natural gradient ∇̃ηθL, gradients ∇ηγ,ϕL
function: PGMInference(ηθ,ψ)

q∗(x)←OptimizeLocalFactors(ηθ,ψ)
return: sample x̂ ∼ q∗(x), statistics Eq∗(x) tx(x), divergence

Eq(θ)KL(q∗(x)||p(x|θ))

The code is implemented using Python and PyTorch [PGM+19]. In the next sections,
we will look at a small part of this implementation. First at the PGMInference
function for the SVAE-GMM and the SVAE-LDS, then return to the main SVAE
training loop.

5.1. SVAE-GMM

Recall that the GMM is a mixture model, and both the cluster assignment and the
cluster parameters need to be optimized. This cannot be done in a single optimization

1Full Python code is available at github.com/JohanvandenHeuvel/SVAE

31

Chapter 5. Methods

step, as the cluster assignment depends on the cluster parameters and vice versa.
Which implies that an inner optimization loop is required.

The function local_optimization shows this inner optimization loop. The loop
contains a step to optimize the cluster parameters (µ,Σ) and a step to optimize
the cluster assignments z (for more detail about the contents of these functions see
appendix A.2). As shown in Algorithm 1, this function takes in the potentials ψ and
the global parameters ηθ. The function also returns latents x̂, statistics t̄x and the
localKL, which is not shown in the code snippet.

1 def local_optimization(potentials , global_param):
2 label_stats = initialize_meanfield(label_parameters , potentials).double

()
3 for i in range(epochs):
4 # Gaussian x
5 _, gaussian_stats , gaussian_kld = gaussian_optimization(
6 gaussian_parameters , potentials , label_stats
7)
8 # Label z
9 _, label_stats , label_kld = label_optimization(

10 gaussian_parameters , label_parameters , gaussian_stats
11)

The global parameters of the GMM are the parameters of the Dirichlet distribution
and the Normal Inverse Wishart distribution, as these are the prior distributions.
These global parameters are updated using the natural gradient (see section 3.2).

5.2. SVAE-LDS

The local parameters of the SVAE-LDS are the latent nodes xt. Messages from the
parent node xt−1 and child nodes xt+1 and yt are required to update node xt using
message passing. However, messages from the parents depend on their parents and
messages from the children on their children.

Because of this dependence, there are two steps to updating the local parameters.
First, all the (forward) messages from the parents are calculated. Second, do the
inverse and calculate the (backward) messages from the children. During the second
step, also update the local parameters. See more about Kalman filtering, smoothing,
and sampling in the appendix; sections B.2, B.3, and B.4 respectively.

32

5.3. SVAE

1 def local_optimization(potentials , global_param):
2 forward_messages , logZ = info_kalman_filter(
3 init_params=init_param , pair_params=(J11, J12, J22, logZ),

observations=y
4)
5 _, expected_stats = info_kalman_smoothing(
6 forward_messages , pair_params=(J11, J12, J22)
7)
8 samples = info_sample_backward(
9 forward_messages , pair_params=(J11, J12, J22), n_samples=n_samples

10)

The global parameters of the SVAE-LDS are the parameters for the priors of the
transition mechanics A, Q and the initial condition µ1, Q1. The prior distributions
are the Matrix Normal Inverse Wishart and Normal Inverse Wishart respectively.

5.3. SVAE

Returning to the main SVAE training loop, the Python implementation of Algorithm
1 is shown in the code below.

This code is similar to an implementation of the VAE (see 2.4.1). However, here in
addition the natural gradient is computed, as described in section 3.2. Note that this
code is the same for different models, such as the GMM and LDS discussed above.
The main difference lies in how local_optimization is implemented.

1 global_prior = init_global_params()
2 global_param = init_global_params()
3 optimizer = Adam()
4 global_optimizer = SGD()
5 for epoch in range(epochs):
6 for y in dataset:
7 potentials = encoder(y)
8 x, stats, local_kld = local_optimizer(potentials , global_param)
9 nat_grad = natural_gradient(stats, global_param , global_prior)

10 eta_theta = global_optimizer.update(global_param , nat_grad)
11 mu_y, log_var_y = decoder(x)
12 global_kld = kld(global_param , global_prior)
13 loss = reconstruction_loss(y, mu_y, log_var_y) + local_kld +

global_kld
14 optimizer.update(encoder, decoder, loss)

33

6. Results

In the following section, empirical experiments are done to investigate the behavior
of the SVAE. For this purpose, two different graphical models are used. The first
one is a Gaussian Mixture Model (section 4.1), used to model 2D point data. The
second one is a Linear Dynamical System (section 4.2), used for a 1D time series. For

Observations

Reconstruction

Potentials

Latents

Linear

h

J

Linear

mu

Sigma

Encoder

Decoder

Figure 6.1.: SVAE-LDS showing the general SVAE setup.

the encoder and decoder (section 2.4.1), fully connected neural networks are used.
The encoder consists of a single hidden layer of size 50, which splits into two layers
of size 50, one for the mean and one for the variance of the potentials. The decoder
also consists of a single hidden layer of size 50, which splits into two layers of size
50, one for the mean and one for the variance of the reconstruction. The encoder
and decoder weights are initialized using samples fromN(0,1e−2). The activation
functions used are ReLUs. Specific details of the models, such as the data generation,
are described in their respective sections.

35

Chapter 6. Results

(a) Observations (b) GMM (c) VAE (d) SVAE

Figure 6.2.: Figure showing the different approaches to model 2D synthetic spiral
data. (a): the observations we want to model. (b): the GMM requires
multiple clusters to model the spirals. This is because the Gaussian shape
is inflexible. (c): the VAE models the shape well. However, data points
are not assigned to clusters. (d): the SVAE is also able to model the shape
well. In addition, data points are assigned to clusters, which are indicated
by the color of the points.

6.1. SVAE-GMM

For the GMM residual connections are used together with the encoder and decoder.
The residual connections are linear layers going directly from the input to the latent
dimension, and the latent dimension to the output dimension. As the residual
connections are doing linear regression they learn faster than the encoder or decoder.
This is important for getting a good starting point. For the experiments, synthetic
data is created. The data consists of five different spirals (Figure 6.2a). These different
spirals are distinct clusters, and the expectation is that a model assigns data points
in the same spiral to the same cluster.

The GMM requires multiple clusters to model the spirals (Figure 6.2b), as Gaussians
are quite inflexible in shape. The VAE can model the shape of the spirals (Figure
6.2c) but does not assign data points to clusters. The SVAE-GMM combines their
strengths and both models the shape of the spirals and assigns data points to clusters
(Figure 6.2d).

This shows that the SVAE-GMM can combine both modeling strengths. However, it
still has the weakness of the GMM, that it not always converges to the solution we
would expect.

6.1.1. Initialization of the SVAE-GMM

The initial conditions for the SVAE-GMM are very important in how likely it is that
the algorithm converges to a good solution. An intuitive way of understanding this is
as follows. At each iteration, the SVAE-GMM optimizes the local variables. This local
optimization consists of alternating steps between optimizing the cluster parameters

36

6.1. SVAE-GMM

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

(a) Good initialization
−8 −6 −4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

(b) No residuals
−8 −6 −4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

(c) Bad global priors

Figure 6.3.: Figure showing the different initializations in latent space. (a): an ini-
tialization that is likely to converge to a good solution. (b): an initial
condition where the residual weights are initialized using the normal
distribution, and how this results in a different output scale; you can
hardly even spot the latent data points. (c): sup-optimal priors for the
global variables look like; in this case, the clusters are not well spread
out and overlap each other, most likely this will converge to a solution
where a single cluster is assigned to all the data points.

(µ,Σ) and the cluster assignments z. Local optimization depends on the potentials
ψ, the output of the encoder. If any of these quantities are initialized poorly, the
whole optimization will go in the wrong direction. Bad potentials result in the local
variables essentially fitting the wrong observations. Bad cluster parameters result
in wrong cluster assignments, and wrong cluster assignments result in bad cluster
parameter updates. This spirals quickly out of control.

To combat this, residual connections are used. Residual connections are linear layers
going directly from input to output1. These connections are initialized using "random
partial isometry"2. This initialization achieves that the output has a similar “scale”
as the input. The encoder and decoder weights are initialized close to zero, i.e.
their initial outputs are close to zero. As a result, the combined initial outputs are
dominated by the residual connections and thus have a similar scale as the inputs
due to initialization. Different initialization or no residual connections does not work
well (Figure 6.3b).

Additionally, good priors for the global parameters are required. The main importance
is that clusters are well distributed over the data points. Otherwise, data points
are assigned to distant clusters, and the data will be modeled by a smaller number
of clusters than expected. For example, having bad priors resulting in several

1The combined output is ŷ = f (x)+Ax where f (x) is the neural network and Ax the linear regression.
2This initializes the weight matrix using the Q matrix from the QR decomposition. The QR decompo-

sition is taken of the smallest square matrix that encompasses the weight matrix. Each element of
this square matrix is normally distributed.

37

Chapter 6. Results

−100 −50 0 50
−100

−50

0

50

100

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

(a) Baseline

−100 −50 0 50
−100

−50

0

50

100

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

(b) Remove a cluster

−100 −50 0 50
−100

−50

0

50

100

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

(c) Move a cluster

Figure 6.4.: Manipulation of the GMM. The first row shows the latent space; the
second row shows the output space. (a): shows the baseline. (b): shows
results for removing a cluster. (c): shows the results after moving a
cluster.

overlapping clusters (Figure 6.3c) often results in a final model where all data points
are assigned to a single, large cluster.

6.1.2. Manipulation of latent variables

In this section, we will show how the GMM can be manipulated. We will show how
the latent space and output space change when we move or remove a cluster.

It is possible to remove a cluster by setting the corresponding weight to zero. This
will result in the cluster being removed from the latent space, and the corresponding
data points will be assigned to the other clusters (see Figure 6.4b).

It is also possible to move a cluster by changing the mean of the corresponding
Gaussian. This will result in the cluster being moved into the latent space (see Figure
6.4c).

38

6.2. SVAE-LDS

Figure 6.5.: SVAE result for the LDS. The first row shows the training data. The
second row shows predictions from the SVAE model, an average of 50
predictions. The red line indicates at which point the potentials are set to
zero.

6.2. SVAE-LDS

In the context of this project, synthetic data is generated (see Figure 6.5). Each time
step consists of a single frame, which consists of 12 pixels. The goal is then, given
some previous frames, to predict the next frame in the sequence.

The SVAE-LDS can model the data well and can extrapolate over a longer period
(see Figure 6.5).

6.2.1. Importance of different latent variables

One of the supposed advantages of the SVAE is that it is more interpretable, but is
this the case? Is it possible to identify certain latent states that are related to certain
properties in the output? To investigate this, single latent variables are multiplied by
a scalar. In this experiment, we multiply one of the latent variables x(i) by a factor
for all time steps. Using these modified latent variables as input to the decoder, the
data is reconstructed. To measure the quality of the reconstruction the mean squared
error is used.

One surprising result was that the mean squared error is hardly affected by multiply-
ing a latent variable by 0 (see Figure 6.6). However, this can be attributed to the high
correlation between the variables. When x(j) is generated, it includes information
from x(i), and thus setting the latter to 0 does not remove the information in the
former. Furthermore, the decoder likely has redundancy and does not rely on a
single latent input. The second observation is that only for a factor of 100 there is a
large difference. This also can be explained by correlation, but also that the decoder
is quite robust to manipulations to its input.

39

Chapter 6. Results

1 2 3 4 5 6 7 8 9 10
Latent variable

0

1

2

3

4

5

6

M
SE

1e 6
factor 0.0
factor 0.1
factor 1.0
factor 10
factor 100

Figure 6.6.: Manipulation of local variables by multiplicative factors. The values
shown are the average over 10 runs.

6.2.2. Manipulation of latent variables

There are more possible ways to manipulate the local latent variables. In the last
section, we multiplied latent variables with factors. In this section, we will shift
the latent variables and change the input data. The goal is to better understand the
relation between the local variables and the reconstruction.

First, to test the robustness of the reconstruction we shift the latent variables by a
constant. This is achieved by setting x(i) = x(i)+δ for all time steps. In this experiment,
δ is chosen to be 100, about the same as the range on the y-axis. What this achieves is
that the shifted latent variables have no overlap with the non-shifted latent variables.
Even though this degrades the reconstruction, it is still recognizable (see Figure 6.7b).
This is surprising as the values of the bottom of the shifted latent variables are equal
to the top of the non-shifted latent variables. This shows that the decoder is robust to
translation invariance, and uses relative differences rather than absolute differences
between its inputs.

Second, we want to show that the global variables of the PGM indeed learn the
properties of the system. This is done by two experiments, in the first one the input
frequency of the input data is changed and in the second one, there is no input data
at all during evaluation. During training, the input frequency is not changed. In
the first experiment, if the SVAE-LDS would use the input data to propagate the
input frequency, we would see this frequency continue after feeding the input data.

40

6.2. SVAE-LDS

60 80 100 120 140
200

100

0

100

200

60 80 100 120 140

0

2

4

6

8

10

(a) Baseline

60 80 100 120 140

0

100

200

60 80 100 120 140

0

2

4

6

8

10

(b) Shift y-axis

60 80 100 120 140

400

200

0

200

400

60 80 100 120 140

0

2

4

6

8

10

(c) Frequency of input data

60 80 100 120 140
40

20

0

20

40

60 80 100 120 140

0

2

4

6

8

10

(d) No starting potentials

Figure 6.7.: The left column shows the latent dimension, and the right column
shows the reconstruction. Before step 100 the system also receives input
data from the current frame to predict the next frame, except for figure
(d). (b): Shifting the latent variables by a constant. The reconstruction
being robust against this shows translation invariance. (c): Changing the
frequency of the input data after training. This shows that the global
parameters learned the correct frequency. (d): Not having input data at
any point in the evaluation. This shows that the system is not dependent
on input after training.

41

Chapter 6. Results

Figure 6.9.: Manipulation of the global variables can change properties of the output.
Here a column of the transition matrix is multiplied by factors 0.8, 0.9,
1.0, 1.1, and 1.2, resulting in different output frequencies. In the figure,
the average of 50 samples is shown.

This is not the case. Furthermore, in the second experiment, no data at all is fed. The
SVAE-LDS is still able to reconstruct the data. This shows that the system models the
generative process, implying that we can access properties of the generative process
through the global variables.

6.2.3. Manipulation of global variables

0 2 4 6 8

0

2

4

6

8

0.57

-0.07

0.25

0.25

-0.29

-0.27

-0.25

0.25

-0.23

-0.22

-0.90

0.38

-0.93

-0.93

1.04

0.98

0.91

-0.93

0.86

0.85

0.16

0.01

0.48

0.16

-0.18

-0.17

-0.16

0.16

-0.15

-0.15

0.13

0.08

0.13

0.45

-0.15

-0.14

-0.13

0.14

-0.12

-0.13

-0.25

-0.04

-0.26

-0.26

0.60

0.27

0.25

-0.26

0.23

0.23

-0.12

-0.10

-0.13

-0.13

0.14

0.45

0.12

-0.13

0.12

0.12

-0.23

0.01

-0.23

-0.23

0.27

0.25

0.55

-0.23

0.21

0.21

0.06

0.09

0.06

0.06

-0.07

-0.07

-0.06

0.38

-0.06

-0.06

-0.04

-0.09

-0.04

-0.04

0.05

0.05

0.04

-0.05

0.37

0.05

0.05

-0.12

0.05

0.05

-0.06

-0.05

-0.05

0.05

-0.04

0.29

Figure 6.8.: The transition matrix A of the
SVAE-LDS.

In the previous experiments, manipu-
lation was done on local latent vari-
ables. However, direct manipulations
ignore the dependency between latent
variables due to correlation. This corre-
lation occurs in the local optimization
of the LDS. Instead, we can manipu-
late the global transition matrix. This
is essentially a step up, and instead of
manipulating local variables, the global
variables are manipulated.

In this experiment, we manipulate the
transition matrix (see Figure 6.8) of a
trained SVAE-LDS. This is the matrix
A in the relation xt =N(Axt−1,Q). The
transition matrix indicates to which ex-
tent the value of the latent variable x(i)

t

depends on the value of the latent variable x(j)
t−1, ignoring the noise. Even though

there seems to be structure in this matrix, it is difficult to interpret what this means.
However, it is possible to manipulate this matrix and see what happens to the output.

42

6.2. SVAE-LDS

60 80 100 120 140

200

0

200

60 80 100 120 140

0

2

4

6

8

10

(a) Not retrained.

60 80 100 120 140

100

50

0

50

100

60 80 100 120 140

0

2

4

6

8

10

(b) Retrained

Figure 6.10.: Retraining of the global variables can be used to change the learned
frequency. The left column shows the latent variables, and the right
column shows the output. The frequency of the input data is changed.
In the first row, the SVAE-LDS is not retrained and reproduces the
frequency of the original data. In the second row, the global variables
are updated.

It is difficult to quantify the effect of manipulation. However, in this particular
example, we identified a column of the transition matrix that is semi-responsible for
the frequency of the output (see Figure 6.9). This column is the 7th column in the
transition matrix. Note that this column does not seem special in any way if we just
look at the transition matrix.

6.2.4. Retraining of global variables

It is also possible to retrain the global variables and get a different frequency. In
the SVAE algorithm, the natural gradient is used to update the global variables
(Algorithm 1). First, the potentials ψ are computed by passing the new data through
the encoder. This is only done once. Second, the local optimization is done to get the
statistics t̂x. Finally, the natural gradient is computed and used to update the global
parameters. The decoder is not needed.

By doing the partial updates of the SVAE-LDS it is possible to retrain the global
variables (see Figure 6.10). Doing partial updates is much faster than training the
whole system. Furthermore in theory it is possible to use Bayesian updating here,
and even a single example could be used to update the global variables.

43

7. Conclusion

The first goal of this thesis was to make the SVAE more accessible. This was achieved
by providing a detailed explanation of the background and mathematical details.
Furthermore, the algorithm is implemented in PyTorch and made available. Both
the SVAE-GMM and the SVAE-LDS performed well on their respective tasks.

The second goal was to investigate the interpretability of the SVAE. For the SVAE-
GMM we tested our understanding by manipulating the model. We found that
moving or removing a cluster in the latent space has the expected result in the
reconstruction. While it is possible to do similar manipulations for a neural network,
it lacks the interpretability of the SVAE-GMM.

More evidence for the interpretability of the SVAE was found in experiments done on
the SVAE-LDS. Using manipulations of the local and global variables we found that
the SVAE-LDS shows translation invariance and that the global parameters learn the
overall dynamics of the data. The latter was shown by the model’s ability to generate
the data during testing, without any access to the data. Because of the structure of
the SVAE-LDS it is possible to conclude from that that the global parameters learned
the dynamics. This is also empirically supported as it was shown that it is possible to
change the frequency of the output by manipulating global parameters. This change
can also be systematically induced, by retraining the global parameters on new data.

However, the SVAE also has its share of problems. In the case of the SVAE-GMM
we saw that the initial conditions are important. If they are not chosen well, the
SVAE will not produce a good model. While we can see this in low-dimensional
data, choosing good initial conditions is difficult in high-dimensional data. This is a
problem inherited from the GMM, and is not specific to the SVAE.

This is not an issue for the SVAE-LDS, but experiments showed another problem.
We found that the local latent variables of the LDS were highly correlated. This is a
behavior often seen within neural networks, and the SVAE also suffers from this.
Due to the high correlation, it becomes difficult to interpret the SVAE. While it’s true
that we have access to the parameters of the graphical model, it can still be difficult
to interpret these parameters.

We hope that this work will inspire others to explore the possibilities of combining
neural networks and graphical models. This thesis and the accompanying code
provide a good starting point for this exploration. The empirical results for the
interpretability of the SVAE are promising. However, more work is needed to fully

45

Chapter 7. Conclusion

understand if the composition of neural networks and graphical models is a solution
to the interpretability issue of neural networks.

46

A. Mixture model updates

A.1. Optimizing mean-field factor

The derivations here are partly based on contents of the appendix of [JDW+16].

Proposition 3. Assume that we have the following mean field variational inference objective

E
q(a)q(b)q(c)

[
log

p(a,b,c)
q(a)q(b)q(c)

]
(A.1)

For fixed q(a),q(c) the partially optimal factor q∗(b)

q∗(b) ≜ argmax
q(b)

E
q(a)q(b)q(c)

[
log

p(a,b,c)
q(a)q(b)q(c)

]
, (A.2)

is defined by
q∗(b) ∝ exp{ E

q(a)q(c)
logp(a,b,c)} (A.3)

In particular if p(c|b,a) is an exponential family with p(b|a) its natural exponential family
conjugate prior and logp(b,c|a) is a multi-linear polynomial in the statistics tb(b) and tc(c)
written

p(b|a) = exp{⟨η0
b(a), tb(b)⟩− logZb(η0

b(a))} (A.4)

p(c|b,a) = exp{⟨η0
c (b,a), tc(c)⟩− logZc(η0

c (b,a))}

= exp{⟨tb(b),η0
c (a)T(tc(c),1)⟩}

(A.5)

for some matrix η0
c (a). Then the optimal factor can be written as

q∗(b) = exp{⟨η∗b, tb(b)⟩− logZb(η∗b)} (A.6)

with
η∗b ≜ Eq(a)

[
η0

b(a)
]
+ E

q(a)q(c)

[
⟨η0

c (a), (tc(c),1)⟩
]

(A.7)

If c⊥⊥ b|a then

η∗b ≜ Eq(a)

[
η0

b(a)
]
+ E

q(c)

[
(tc(c),1)

]
(A.8)

47

Appendix A. Mixture model updates

Proof. Start by rewriting the expectation in (A.2)

E
q(a)q(b)q(c)

[
log

p(a,b,c)
q(a)q(b)q(c)

]
= E

q(b)

[
E

q(a)q(c)
logp(a,b,c)− logq(b)

]
= E

q(b)

[
logexp E

q(a)q(c)
logp(a,b,c)− logq(b)

]
=− E

q(b)

[
q(b)
p̃(b)

]
+ const

=−KL(q(b)||p̃(b))+ const

(A.9)

which is maximized by setting q(b) equal to p̃(b) as thenKL is zero. The rest follows
by plugging in exponential family densities. Note the similarity of this derivation
and sections 2.1, 2.2. □

A.2. Additional conjugacy structure of the local latent
variables

We can assume additional structure in the local latent variables. This allows us
to exploit this structure and make inference faster. We do this by introducing an
additional set of local latent variables z, in addition to the local latent variables x. I.e.
here we are adding local latent variable z to the model described at the start of this
section.

Let p(z,x|θ) be an exponential family and p(θ) its corresponding natural exponential
family conjugate prior,

p(θ) = exp{⟨η0
θ, tθ(θ)⟩− logZθ(η0

θ)} (A.10)

p(z,x|θ) = exp{⟨η0
zx(θ), tzx(z,x)⟩− logZzx(η0

zx(θ))}
= exp{⟨tθ(θ), (tzx(z,x),1)⟩}

(A.11)

Let tzx(z,x) be a multi-linear polynomial in the statistics tz(z) and tx(x), and let p(z|θ)
and p(x|z,θ) be a conjugate pair of exponential families, writing

p(z|θ) = exp{⟨η0
z(θ), tz(z)⟩− logZz(η0

z(θ))} (A.12)

p(x|z,θ) = exp{⟨η0
x(z,θ), tx(x)⟩− logZz(η0

x(z,θ))}

= exp{⟨tz(z),η0
x(θ)T(tx(x),1)⟩}

(A.13)

Let p(y|x,γ) be a general family of densities and let p(γ) be an exponential family
prior on its parameters of the form

p(γ) = exp{⟨η0
γ, tγ(γ)⟩− logZγ(η0

γ)} (A.14)

48

A.3. Code

As before, construct a mean field objective

L(ηθ,ηγ,ηz,ηx) ≜ E
q(θ)q(γ)q(z)q(x)

[
log

p(θ)p(γ)p(z|θ)p(x|z,θ)p(y|x,γ)
q(θ)q(γ)q(z)q(x)

]
(A.15)

with the surogate objective

L̂(ηθ,ηγ,ηx,ϕ) ≜ E
q(θ)q(z)q(x)

[
log

p(θ)p(z|θ)p(x|z,θ)ψ(x; y,ϕ)
q(θ)q(z)q(x)

]
(A.16)

LSVAE(ηθ,ηγ,ϕ) ≜L(ηθ,ηγ,η∗z(ηθ,ϕ),η∗x(ηϕ)) (A.17)

Where η∗z(ηθ,ϕ) and η∗x(ηϕ) are the local partial optimizers of L̂ given fixed values of
the other parameters ηθ,ϕ and satisfy the first order optimality conditions

∇ηzL̂(ηθ,η∗z(ηθ,ϕ),η∗z(ηθ,ϕ),ϕ) = 0 (A.18)

∇ηxL̂(ηθ,η∗z(ηθ,ϕ),η∗z(ηθ,ϕ),ϕ) = 0 (A.19)

Then we get that η∗z and η∗x are given by

η∗z = Eq(θ)

[
η0

z(θ)
]
+ E

q(θ)q(x)

[
⟨η0

x(θ), (tx(x),1)⟩
]

(A.20)

η∗x = E
q(θ)q(z)

[
η0

x(z,θ)
]
+ r(y;ϕ) (A.21)

The updates follow from the previous section A.1.

A.3. Code

Next, we will take a look at the local optimization for the GMM. These up-
dates are derived in A.2. Especially see Equation (A.21) for the updates shown in
gaussian_optimization, and Equation (A.20) for the updates shown inlabel_optimization
.

1 def gaussian_optimization(gaussian_parameters , potentials , label_stats):
2 # message from parent to child
3 gaussian_potentials = torch.tensordot(
4 label_stats , gaussian_parameters , [[1], [0]]
5)
6 # update parameters
7 # message from parent + message from child
8 eta_x = gaussian_potentials + potentials
9 # message from child to parent

10 gaussian_stats = Gaussian(eta_x).expected_stats()
11 gaussian_kld = (
12 torch.tensordot(potentials , gaussian_stats , 3) - Gaussian(eta_x).

logZ()
13)
14 return eta_x, gaussian_stats , gaussian_kld.item()

49

Appendix A. Mixture model updates

1 def label_optimization(gaussian_parameters , label_parameters ,
gaussian_stats):

2 # message from parent to child
3 label_potentials = torch.tensordot(
4 gaussian_stats , label_parameters , [[1], [0]]
5)
6 # update parameters
7 # message from parent + message from child
8 eta_z = label_potentials + potentials
9 # message from child to parent

10 label_stats = Dirichlet(eta_z).expected_stats()
11 label_kld = (
12 torch.tensordot(potentials , label_stats , 3) - Dirichlet(eta_z).logZ

()
13)
14 return eta_z, label_stats , label_kld.item()

50

B. Information form operations

0 25 50 75 100
time

0

5

10

15

20

la
te

nt
 x

true
predicted
smoothed

0 25 50 75 100
time

2

4

6

8

10

12

14

16

18
ob

s y

observed
sampled

Figure B.1.: Example of a Linear Dynamical System. Left: shows the true, predicted
and smoothed latent variables. Right: shows the true and predicted
observations.

One way to parametrize the Multivariate Gaussian is the Information Form (B.1)1. This
particular form makes the operations required for Kalman filtering and smoothing
much easier.

1Appendix D.4 shows the Standard and Exponential forms

51

Appendix B. Information form operations

Information Form

p(x|J,h) = exp
{
−

1
2

xT Jx+hTx− logZ
}

(B.1)

where
logZ =

1
2

hT J−1h−
1
2

log |J|+
n
2

log2π

and
Σ = J−1

µ = J−1h

To do Kalman filtering and smoothing there are two important operations, condition-
ing and marginalization. These operations are defined using the information form of
the Gaussian, as this results in an easier conditioning step.

Conditioning
If,

p(x) =N(x|J,h) (B.2)

p(y|x) ∝N(x|Jobs,hobs) (B.3)

then,
p(x|y) =N(x|J+ Jobs,h+hobs) (B.4)

Marginalization
If, [

x1
x2

]
∼N

([
J11 J12
JT
12 J22

]
,

[
h1
h2

])
(B.5)

then,
x2 ∼N(J22− JT

12J−1
11 J12,h2− JT

12J−1
11 h1) (B.6)

with the normalization constant,

logZ−
1
2

hT
1 J−1

11 h1+
1
2

log |J11| −
n
2

log2π (B.7)

52

B.1. Filtering, Sampling, and Smoothing

B.1. Filtering, Sampling, and Smoothing

Using the information form, with corresponding conditioning and marginalization
steps, filtering, sampling, and smoothing are done as follows. Take the following model

x1 ∼N(µ1,Q1) (B.8)
xt+1 ∼N(Atxt+Btut,Qt) (B.9)

yt ∼N(Ctxt+Dtut,Rt) (B.10)

Writing this in the information form we get that the initial distribution is

x1 ∼N(J =Q−1
1 ,h =Q−1µ1) (B.11)

The transition dynamics are given by

p(xt+1|xt) ∝N
([

J11 J12
JT
12 J22

]
,

[
h1
h2

])
(B.12)

with

J11 = AT
t Q−1

t At (B.13)

J12 = −AT
t Q−1

t (B.14)

J11 =Q−1
t (B.15)

h1 = −uT
t BT

t At (B.16)

h2 = uT
t BtQ−1

t (B.17)

and the observations are given by

p(yt|xt) ∝N(xt|Jobs,hobs) (B.18)

Jobs = CT
t R−1

t Ct (B.19)

hobs = (yt−Dtut)R−1
t Ct (B.20)

B.2. Filtering

Begin with the initial distribution

p(x1) =N(x1|J1|0,h1|0). (B.21)

Assume, inductively, that xt|y1:t−1 ∼N(Jt|t−1,ht|t−1). Conditioning on the t-th observa-
tion yields

p(xt|y1:t) =N(xt|Jt|t,ht|t) (B.22)
Jt|t = Jt|t−1+ Jobs (B.23)
ht|t = ht|t−1+hobs (B.24)

53

Appendix B. Information form operations

tt - 1 tt - 1

Figure B.2.: Forward Kalman filter. Shown are the steps for J, but they are analogous
for h. Left: shows the prediction step (B.26). Right: shows the condi-
tioning step (B.23). In the context of the SVAE Jobs are the potentials
(section 3). In order to estimate the current parameters: First, predict the
estimation Jt|t−1 using the previous estimation Jt−1|t−1; Second, combine
Jt|t−1 with the actual observation Jobs to obtain Jt|t.

Then predict the next latent state by writing the joint distribution of xt and xt+1, and
marginalize out xt. This completes one iteration, and provides input to the next.

p(xt+1|y1:t) = p(xt|y1:t)p(xt+1|xt) =N(xt|Jt+1|t,ht+1|t) (B.25)

Jt+1|t = J22− JT
12

(
Jt|t+ J11

)−1
J12 (B.26)

ht+1|t = h2− JT
12

(
Jt|t+ J11

)−1 (
ht|t−h1

)
(B.27)

In the code the Python implementation of the forward filter is shown (Figure B.2).
The main function is info_kalman_filter, which repeats the condition and predict
operations for every time step t. For every time step t: do the condition step in
info_condition, then do the predict step in info_predict. Without the information
parameterization the function info_conditionwould be much more verbose. The
info_predict function is just info_marginalizewith an extra step.

54

B.3. Rauch-Tung-Striebel Smoothing

1 def info_condition(J, h, J_obs, h_obs):
2 return J + J_obs, h + h_obs
3

4 def info_marginalize(J11, J12, J22, h):
5 J_pred = J22 - J12.T @ torch.linalg.solve(J11, J12)
6 h_pred = -J12.T @ torch.linalg.solve(J11, h)
7 return J_pred, h_pred
8

9 def info_predict(J, h, J11, J12, J22):
10 J_new = J + J11
11 return info_marginalize(J_new, J12, J22, h)
12

13 def info_kalman_filter(init_params , pair_params , observations):
14 J, h = init_params
15 J11, J12, J22 = pair_params
16

17 forward_messages = []
18 for (J_obs, h_obs) in observations:
19 J_cond, h_cond = info_condition(J, h, J_obs, h_obs)
20 J, h = info_predict(J_cond, h_cond, J11, J12, J22)
21 forward_messages.append(((J_cond, h_cond), (J, h)))
22

23 return forward_messages

B.3. Rauch-Tung-Striebel Smoothing

To obtain the natural gradient for the global parameters the expected statistics
are required (section 3.2). In turn, these expected statistics require the conditional
distribution given all the data. This is done using smoothing.

Jt|T = Jt|t+ J11− J12(Jt+1|T − Jt+1|t+ J22)−1JT
12

ht|T = ht|t+h1− J12(Jt+1|T − Jt+1|t+ J22)−1(ht+1|T −ht+1|t+h2)
(B.28)

Smoothing is implemented across two different Python functions. The main function
info_kalman_smoothing takes care of the loop going back through time and saving
the smoothed parameters. The helper function info_rts_smoothing contains the
update equations (B.28) doing the smoothing.

55

Appendix B. Information form operations

t + 1t t + 1t

Figure B.3.: Kalman backward sampling and smoothing, both going back through
time. Left: obtain current sample xt using estimated parameters Jt|t from
the filtering operation and future sample xt+1. Rigth: smooth the current
estimated parameters Jt|t into Jt|T by using information from the future.
This future information is available from the previous filtering operation.

1 def info_kalman_smoothing(forward_messages , pair_params):
2 (J_smooth, h_smooth), _ = forward_messages[-1]
3 loc, scale = info_to_standard(J_smooth , h_smooth)
4 E_xxT = scale + outer_product(loc, loc)
5 E_xnxT = 0.0
6

7 expected_stats = [(loc, E_xxT, E_xnxT)]
8 backward_messages = [(J_smooth , h_smooth)]
9 for i, (cond_msg , pred_msg) in enumerate(reversed(forward_messages[:-1]

)):
10 loc_next , _, _ = expected_stats[i]
11 J_smooth , h_smooth , stats = info_rst_smoothing(
12 J_smooth , h_smooth , cond_msg , pred_msg , pair_params , loc_next
13)
14 backward_messages.append((J_smooth , h_smooth))
15 expected_stats.append(stats)
16

17 expected_stats = process_expected_stats(list(reversed(expected_stats)))
18 return list(reversed(backward_messages)), expected_stats

56

B.4. Backward sampling

1 def info_rts_smoothing(J, h, cond_msg , pred_msg , pair_params , loc_next):
2 J_cond, h_cond = cond_msg
3 J_pred, h_pred = pred_msg
4 J11, J12, J22 = pair_params
5

6 temp = J - J_pred + J22
7 J_smooth , h_smooth = info_marginalize(
8 A=temp, B=J12, C=(J_cond + J11), h1=h - h_pred, h2=h_cond)
9

10 loc, scale = info_to_standard(J_smooth , h_smooth)
11 E_xnxT = -torch.linalg.solve(temp, J12.T) @ scale + outer_product(

loc_next , loc)
12 E_xxT = scale + outer_product(loc, loc)
13 stats = (loc, E_xxT, E_xnxT)
14

15 return J_smooth , h_smooth , stats

B.4. Backward sampling

After computing good estimates for Jt|t and ht|t, sampling can be done by going back
in time. Using the conditional for xt, draw the first sample. Then, using this sample,
draw the next sample xt−1. Repeat this step until the first time step is reached, and
the last sample x1 is obtained.

p(xt|y1:t,xt+1) ∝ p(xt|y1:T)p(xt+1|xt))

∝N(xt|Jt|t,ht|t)N(xt|J11,h1−xT
t+1JT

12)

∝N(xt|Jt|t+ J11,ht|t+h1−xt+1JT
12)

(B.29)

In the following code segment, the Python implementation of backward sampling
is shown. As described above, the first sample is obtained by using the estimated
parameters for the last time step. Then, until the first time step is reached, use the
previous sample (one step in the future) to obtain the next sample (current time
step).

57

Appendix B. Information form operations

1 def info_sample_backward(forward_messages , pair_params):
2 J11, J12, J22 = pair_params
3

4 J_pred, h_pred = forward_messages[-1]
5 next_sample = Gaussian(J_pred, h_pred).rsample()
6

7 samples = [next_sample]
8 for J_pred, h_pred in reversed(forward_messages[:-1]):
9

10 J = J_pred + J11
11 h = h_pred - next_sample @ J12
12

13 # get the sample
14 next_sample = Gaussian(J, h).rsample()
15 samples.append(next_sample)
16

17 return list(reversed(samples))

58

C. Exponential family

C.1. Definition

Given a statistic function tx : X → Rn and a a base measure νX, we can define an
exponential family of probability densities on X relative to νX and indexed by the
natural parameter ηx ∈R

n by

p(x|ηx) ∝ exp{ηT
x tx(x)}, ∀ηx ∈R

n (C.1)

i.e. for every specific ηx we have one member of the family. In case we want equality,
rather then proportionality, we need a normalization constant. This is defined as
follows

Zx(ηx) ≜
∫

exp{ηT
x tx(x)}νX(dx), (C.2)

giving us the equality

p(x|ηx) = exp{ηT
x tx(x)− logZx(ηx)}. (C.3)

Additionaly we can introduce parameter θ, and parametrize the natural parameter
with θ

p(x|θ) = exp{ηx(θ)Ttx(x)− logZx(ηx(θ))}, (C.4)

Definition C.1.1. We define the natural parameter space as the set of all normalizable
natural parameters

H ≜ {η ∈Rn
|Zx(η) <∞}, (C.5)

By Θ = η−1
x (H) we denote the set of parameters that correspond to normalizable densities.

C.2. Conjugacy

Given the definition of the exponential family p(x|θ) as in (C.4), define the statistic
function tθ :Θ→Rn+1 as the concatenation

tθ(θ) ≜ (ηx(θ),− logZx(ηx(θ))). (C.6)

We call the exponential family with statistic function tθ(θ), denoted by

p(θ) = exp{ηT
θtθ(θ)− logZθ(ηθ)} (C.7)

59

Appendix C. Exponential family

the conjugate prior of p(x|θ). We can use the prior statistic function tθ(θ) to rewrite
the likelihood p(x|θ)

p(x|θ) = exp{ηx(θ)Ttx(x)− logZx(ηx(θ))}

= exp{tθ(θ)T(tx(x),1)}.
(C.8)

We will now look at the conjugacy properties of (C.4) and (C.7). First all we have

p(x,θ) = p(x|θ)p(θ)

= exp{tθ(θ)T(tx(x),1)}exp{ηT
θtθ(θ)− logZθ(ηθ)}

= exp{(tx(x),1)Ttθ(θ)}exp{ηT
θtθ(θ)− logZθ(ηθ)}

= exp{((tx(x),1)+ηθ)Ttθ(θ)− logZθ(ηθ)}.

(C.9)

Second, we have

p(θ|x) = p(x,θ)/p(x)

= exp{((tx(x),1)+ηθ)Ttθ(θ)− logZθ((tx(x),1)+ηθ)}.
(C.10)

The above equations show that the posterior p(θ|x) with the natural parameter
ηθ+ (tx(x),1) is in the same exponential family as p(θ).

C.3. KL-Divergence

The Kullback-Leibler divergence (KL) is defined as

KL(p(x;η1)||p(x;η2)) =
∫

p(x;η1) log
p(x;η1)
p(x;η2)

dx (C.11)

= E
p(x;η1)

[
log

p(x;η1)
p(x;η2)

]
(C.12)

Then if the distributions are exponential family we get that

KL(p(x;η1)||p(x;η2)) = E
p(x;η1)

[
log

p(x;η1)
p(x;η2)

]
(C.13)

= E
p(x;η1)

log
exp(ηT

1 t(x)− logZ(η1))

exp(ηT
2 t(x)− logZ(η2))

 (C.14)

= E
p(x;η1)

[
(η1−η2)Tt(x)− logZ(η1)+ logZ(η2)

]
(C.15)

= (η1−η2)T E
p(x;η1)

[t(x)]− logZ(η1)+ logZ(η2) (C.16)

= (η1−η2)Tµ1− logZ(η1)+ logZ(η2) (C.17)
(C.18)

60

C.4. Expected Value

C.4. Expected Value

For the exponential family we have that∫
h(x)exp{ηTT(x)−A(η)}dx = 1 (C.19)

which implies that

A(η) = log
∫

h(x)exp{ηTT(x)}dx (C.20)

The first derivative of A(η) is the expected value, as shown below

δA(η)
δη

=
δ
δη

(
log

∫
h(x)exp{ηTT(x)}dx

)
=

∫
h(x)exp{ηTT(x)}T(x)dx

expA(η)

=

∫
h(x)exp{ηTT(x)−A(η)}T(x)dx

=

∫
p(x|η)T(x)dx

= E
η

[T(x)]

(C.21)

61

D. Distributions

D.1. Dirichlet

Standard Form

p(x|α) =
1
β(α)

k∏
i=1

xαi−1
i (D.1)

with the beta function

β(α) =
∏k

i=1Γ(αi)

Γ(
∑k

i=1αi)
(D.2)

and standard parameter α.

Exponential Form

p(x|α) = exp{⟨α−1, logx⟩− logβ(α)} (D.3)

with natural parameter η1 = α−1 and corresponding statistic t1 = logx.

The following gives use the exponential form:

explogp(x|α) = exp{log
1
β(α)

k∏
i=1

xαi−1
i }

= exp{log
k∏

i=1

xαi−1
i − logβ(α)}

= exp{
k∑

i=1

(αi−1) logxi− logβ(α)}

= exp{⟨α−1, logx⟩− logβ(α)}

Expected Statistics

E[logx] = ψ(α j)−ψ(
k∑

i=1

αi) (D.4)

63

Appendix D. Distributions

The following gives the derivative of the log normalization constant:

∂ logZ
∂α j

=
∂ logβ(α j)

∂α

=
∂
∂α j

log
∏k

i=1Γ(αi)

Γ(
∑k

i=1αi)


=

k∑
i=1

∂
∂α j

log
Γ(αi)

Γ(
∑k

i=1αi)


=

k∑
i=1

∂
∂α j

logΓ(αi)− logΓ(
k∑

i=1

αi)


= ψ(α j)−ψ(

k∑
i=1

αi)

D.2. Categorical

Standard Form

f (x|p) =
k∏

i=1

pxi
i (D.5)

and standard parameter p.

Exponential Form

f (x|p) = exp{⟨x, logp⟩} (D.6)

with natural parameter η1 = logp and corresponding statistic t1 = x.

The following gives use the exponential form:

explog f (x|p) = exp{log
k∏

i=1

pxi
i }

= exp{
k∑

i=1

xi logpi}

= exp{⟨x, logp⟩}

64

D.3. Multivariate Normal

Expected Statistics

E[logx] = ψ(α j)−ψ(
k∑

i=1

αi) (D.7)

The following gives the derivative of the log normalization constant:

∂ logZ
∂α j

=
∂ logβ(α j)

∂α

=
∂
∂α j

log
∏k

i=1Γ(αi)

Γ(
∑k

i=1αi)


=

k∑
i=1

∂
∂α j

log
Γ(αi)

Γ(
∑k

i=1αi)


=

k∑
i=1

∂
∂α j

logΓ(αi)− logΓ(
k∑

i=1

αi)


= ψ(α j)−ψ(

k∑
i=1

αi)

D.3. Multivariate Normal

Standard Form

p(x|µ,Σ) = |2πΣ|−
1
2 exp(−

1
2

(x−µ)TΣ−1(x−µ)) (D.8)

Exponential Form

p(x|µ,Σ) =exp{⟨vec(−
1
2
Σ−1),vec(xxT)⟩+ ⟨Σ−1µ,x⟩

−
1
2

[
d log2π+ log |Σ|+µTΣ−1µ

]
}

where vec standing for vectorizing, i.e. flatten matrix into single vector.

η1 = Σ
−1

η2 = vec(−
1
2
Σ−1)

T1 = x

T2 = vec(xxT)

µ = −
1
2
η−1

2 η1

Σ = −
1
2
η−1

2

65

Appendix D. Distributions

The following gives the exponential form:

explogp(x|µ,Σ) =exp{log |2πΣ|−
1
2 exp(−

1
2

(x−µ)TΣ−1(x−µ))}

=exp−
1
2

(
(x−µ)TΣ−1(x−µ)+ log2πd+ log |Σ|

)
=exp{−

1
2

(
(xTΣ−1x−µTΣ−1x−xTΣ−1µ+µTΣ−1µ)

+ log2πd+ log |Σ|
)
}

=exp{⟨−
1
2
Σ−1,xxT

⟩F+ ⟨Σ
−1µ,x⟩

−
1
2

[
d log2π+ log |Σ|+µTΣ−1µ

]
}

=exp{⟨vec(−
1
2
Σ−1),vec(xxT)⟩+ ⟨Σ−1µ,x⟩

−
1
2

[
d log2π+ log |Σ|+µTΣ−1µ

]
}

which then gives:

A(η) = −
1
4
ηT

1η
−1
2 η1−

1
2

log | −2η2|

Expected Statistics

E[x] = µ (D.9)

E[xxT] =
δA(η)
δη2

(D.10)

As according to the cumulant generating function properties we can find

E[x] =
δA(η)
δη1

=
δ
δη1
−

1
4
ηT

1η
−1
2 η1−

1
2

log | −2η2|

=
δ
δη1
−

1
4
ηT

1η
−1
2 η1

= −
1
2
ηT

1η
−1
2

=
1
2

(Σ−1µ)T
∗2Σ

= µ

66

D.4. Matrix Normal

D.4. Matrix Normal

Standard Form

p(X|M,U,V) =
exp

(
−

1
2 Tr

[
V−1(X−M)TU−1(X−M)

])
(2π)np/2

|V|n/2|U|p/2
(D.11)

The Matrix Normal and Multivariate Normal are equivalent in the following way:

X ∼MN(M,U,V) (D.12)

if and only if

vec(X) ∼N(vec(M),V⊗U) (D.13)

First, focus on the numerator:

−
1
2

Tr
[
V−1(X−M)TU−1(X−M)

]
= −

1
2

Tr
[
(X−M)TU−1(X−M)V−1

]
= −

1
2
⟨(X−M),U−1(X−M)V−1

⟩F

= −
1
2

vec(X−M)Tvec(U−1(X−M)V−1)

= −
1
2

vec(X−M)T
(
V−1
⊗U−1

)
vec(X−M)

= −
1
2

vec(X−M)T (V⊗U)−1 vec(X−M)

= −
1
2

(vec(X)−vec(M))T (V⊗U)−1 (vec(X)−vec(M))

which in order of steps is, cyclic property of the trace, trace equivalent to Frobenius
inner product, Frobenius inner product is equivalent to the product of vectorized
elements, vectorization of matrix multiplication, property of the Kronecker product,
property of vectorization.

Second, for the denominator we can use the determinant property:

|V⊗U| = |V|n|U|p

67

Appendix D. Distributions

D.5. Inverse Wishart

Standard Form

p(x|Ψ,ν) =
|Ψ|

ν
2

2
νp
2 Γp(ν2)

|x|−(ν+p+1)/2 exp{−
1
2

Tr(Ψx−1)} (D.14)

where Γp is the multivariate gamma function.

Exponential Form

p(x|Ψ,ν) = exp{⟨−
(ν+p+1)

2
, log |x|⟩+ ⟨−

1
2
Ψ,x−1

⟩F− log
2
νp
2 Γp(ν2)

|Ψ|
ν
2
} (D.15)

with

η1 = −
v+p+1

2

η2 = −
1
2
Ψ

T1 = log|x|

T2 = x−1

The exponential form is derived as follows:

exp{logp(x|Ψ,ν)} =exp{log
|Ψ|

ν
2

2
νp
2 Γp(ν2)

|x|−(ν+p+1)/2 exp{−
1
2

Tr(Ψx−1)}}

=exp{log |x|−(ν+p+1)/2 exp{−
1
2

Tr(Ψx−1)}

− log
2
νp
2 Γp(ν2)

|Ψ|
ν
2
}

=exp{−
(ν+p+1)

2
log |x| −

1
2

Tr(Ψx−1)

− log
2
νp
2 Γp(ν2)

|Ψ|
ν
2
}

=exp{⟨−
(ν+p+1)

2
, log |x|⟩+ ⟨−

1
2
Ψ,x−1

⟩F

− log
2
νp
2 Γp(ν2)

|Ψ|
ν
2
}

(D.16)

68

D.6. Normal Inverse Wishart

D.6. Normal Inverse Wishart

We have the following generative process

Σ ∼W−1(ν,Ψ)

µ|Σ ∼N(µ0,κ
−1Σ)

(D.17)

for which the pdfs can be found in section D.5 and D.4 respectively.

Standard Form

p(µ,Σ|µ0,κ,ν,Ψ) =N(µ0,κ
−1Σ)W−1(ν,Ψ)

=
|Ψ|

ν
2 |Σ|−(ν+p+1)/2

2
νp
2 Γp(ν2)|2πκ−1Σ|

1
2

exp{−
1
2

Tr(ΨΣ−1)

−
1
2

(µ−µ0)TκΣ−1(µ−µ0)}

(D.18)

Exponential Form

p(µ,Σ|µ0,κ,ν,Ψ) ∝ exp{⟨−
1
2

log |Σ|,ν+p+2⟩

+ ⟨−
1
2
Σ−1,Ψ+κµ0µ

T
0 ⟩

+ ⟨Σ−1µ,κµ0⟩

+ ⟨−
1
2
µTΣ−1µ,κ⟩}

(D.19)

with normalization constant:

logZ = log
|Ψ|

ν
2

2
νp
2 Γp(ν2)(2πκ−1)

p
2

(D.20)

η1 = ν+p+2

η2 =Ψ+κµ0µ
T
0

η3 = κµ
T
0

η4 = κ

T1 = −
1
2

log |Σ|

T2 = −
1
2
Σ−1

T3 = Σ
−1µ

T4 = −
1
2
µTΣ−1µ

κ = η4

µ0 =
η3

η4

Ψ= η2−
η3ηT

3

η4

ν = η1−p−2

69

Appendix D. Distributions

p(µ,Σ|µ0,κ,ν,Ψ) ∝ |Σ|−(ν+p+2)/2 exp{−
1
2

Tr(ΨΣ−1)−
κ
2

(µ−µ0)TΣ−1(µ−µ0)}

∝ exp{log |Σ|−(ν+p+2)/2
−

1
2

Tr(ΨΣ−1)−
κ
2

(µ−µ0)TΣ−1(µ−µ0)}

∝ exp{⟨−
1
2

log |Σ|,ν+p+2⟩

+ ⟨−
1
2
Σ−1,Ψ⟩F

+ ⟨−
1
2
Σ−1,κµ0µ

T
0 ⟩

+ ⟨Σ−1µ,κµ0⟩

+ ⟨−
1
2
µTΣ−1µ,κ⟩}

∝ exp{⟨−
1
2

log |Σ|,ν+p+2⟩

+ ⟨−
1
2
Σ−1,Ψ+κµ0µ

T
0 ⟩

+ ⟨Σ−1µ,κµ0⟩

+ ⟨−
1
2
µTΣ−1µ,κ⟩}

Again we can rewrite the normalization constant as a function of the natural
parameters instead

A(η) = log
|η2−

η3ηT
3

η4
|
η1−p−2

2

2
(η1−p−2)p

2 Γp(η1−p−2
2)(2πη−1

4)
p
2

(D.21)

Expected Statistics

E[T2] =
ν
2
Ψ−1 (D.22)

E[T3] = −2E[T2]µ0 (D.23)

E[T4] = µT
0
E[T3]
−2

+
p

2κ
(D.24)

E[T1] =
1
2

log |Ψ| −
p
2

log2−
1
2
ψp(

ν
2

) (D.25)

70

D.6. Normal Inverse Wishart

E[T2] =
δA(η)
δη2

=
η1−p−2

2
δ
δη2

log |η2−
η3ηT

3

η4
|


=
η1−p−2

2

η2−
η3ηT

3

η4

−1

=
ν
2
Ψ−1

E[T3] =
δA(η)
δη3

=
η1−p−2

2
δ
δη3

log |η2−
η3ηT

3

η4
|


=
η1−p−2

2

η2−
η3ηT

3

η4

−1 (
−2
η3

η4

)
=−2

ν
2
Ψ−1µ0

=−2E[T2]µ0

E[T4] =
δA(η)
δη4

=
η1−p−2

2
δ
δη4

log |η2−
η3ηT

3

η4
|

− p
2
δ
δη4

log(
2π
η4

)

=
η1−p−2

2

ηT
3

η4

η2−
η3ηT

3

η4

−1
η3

η4
+

p
2η4

=
ηT

3

η4

E[T3]
−2

+
p

2η4

= µT
0
E[T3]
−2

+
p

2κ

E[T1] =
δA(η)
δη1

=
δ
δη1

η1−p−2
2

log |Ψ| −
(η1−p−2)p

2
log2− logΓp(

η1−p−2
2

)

=
1
2

log |Ψ| −
p
2

log2−
1
2
ψp(

ν
2

)

71

Bibliography

[Ama98] Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural
computation, 10(2):251–276, 1998.

[BN06] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and
machine learning, volume 4. Springer, 2006.

[DA15] David Duvenaud and Ryan P Adams. Black-box stochastic variational
inference in five lines of python. In NIPS Workshop on Black-box Learning
and Inference, 2015.

[DLR77] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum
likelihood from incomplete data via the em algorithm. Journal of the
Royal Statistical Society: Series B (Methodological), 39(1):1–22, 1977.

[HBWP13] Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley.
Stochastic variational inference. Journal of Machine Learning Research,
2013.

[JDW+16] Matthew J Johnson, David K Duvenaud, Alex Wiltschko, Ryan P Adams,
and Sandeep R Datta. Composing graphical models with neural networks
for structured representations and fast inference. Advances in neural
information processing systems, 29, 2016.

[JGJS99] Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and
Lawrence K Saul. An introduction to variational methods for graphical
models. Machine learning, 37(2):183–233, 1999.

[KW13] Diederik P Kingma and Max Welling. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114, 2013.

[MK07] Geoffrey J McLachlan and Thriyambakam Krishnan. The EM algorithm
and extensions, volume 382. John Wiley & Sons, 2007.

[PBJ12] John Paisley, David Blei, and Michael Jordan. Variational bayesian
inference with stochastic search. arXiv preprint arXiv:1206.6430, 2012.

[Pea88] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of
plausible inference. Morgan kaufmann, 1988.

[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca

73

Bibliography

Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative
style, high-performance deep learning library. In Advances in Neural
Information Processing Systems 32, pages 8024–8035. Curran Associates,
Inc., 2019.

[WBJ05] John Winn, Christopher M Bishop, and Tommi Jaakkola. Variational
message passing. Journal of Machine Learning Research, 6(4), 2005.

[WJ+08] Martin J Wainwright, Michael I Jordan, et al. Graphical models, expo-
nential families, and variational inference. Foundations and Trends® in
Machine Learning, 1(1–2):1–305, 2008.

74

