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Iogp(x | ) = L(q,0) + Dk (qllp(z | X,6))

Zq Iog( e )) Dru(gllp(z | x,6)) Zq z) log ((;)79))

» For EM, we minimized KL-divergence to find ¢ = p(z | x, 0) (E), then maximized £(q, 6) in 6.
» What if we treated the parameters 6 as a probabilistic variable for full Bayesian inference?

Z+—ZzU0

» Then we could just maximize £(q(z)) wrt. g (not z!) to implicitly minimize Dy, (q||p(z | X)),
because log p(x) is constant. This is an optimization in the space of distributions g, not
(necessarily) in parameters of such distributions, and thus a very powerful notion.

» In general, this will be intractable, because the optimal choice for g is exactly p(z | x). But maybe
we can help out a bit with approximations. Amazingly, we often don’t need to impose strong
approximations. Sometimes we can get away with just imposing restrictions on the factorization
of g, not its analytic form.
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logp(x) = L(q) + D(qllp(z | X))

/q log( ))dz Dk (qllp(z | X)) /q log( ))>d

» For EM, we minimized KL-divergence to find g = p(z | x, 8) (E), then maximized £(q, 6) in 6.
» What if we treated the parameters 6 as a probabilistic variable for full Bayesian inference?

z+—zU®0

» Then we could just maximize £(q(z)) wrt. g (not z!) to implicitly minimize Dy (q|p(z | X)),
because log p(x) is constant. This is an optimization in the space of distributions g, not
(necessarily) in parameters of such distributions, and thus a very powerful notion.

» In general, this will be intractable, because the optimal choice for g is exactly p(z | x). But maybe
we can help out a bit with approximations. Amazingly, we often don't need to impose strong
approximations. Sometimes we can get away with just imposing restrictions on the factorization
of g, not its analytic form.
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Mean Field Theory URUBINGER

Factorizing variational approximations

Consider a joint distribution p(x, z) withz € R”
to find a “good” but tractable approximation q(z), assume that it factorizes q(z) = [[; gi(zi).
Initialize all g; to some initial distribution
teratively compute

L(q) = /qj logp(x,z) dz; — /q,log g; dz; + const.

= =Dk (g;(2)[Ip(x, 7)) + const.
and maximize wrt. g;. Doing so minimizes D (q(z;)||p(; 2;)), thus the minimum is at g with

log 9’ (z) = logp(x,z;) = Eq(logp(x, z)) + const. (%)
note that this expression identifies a function g;, not some parametric form.
the optimization converges, because —£(g) can be shown to be convex wrt. g.

In physics, this trick is known as mean field theory (because an n-body problem is separated into n sep-
arate problems of individual particles who are affected by the “mean field” p summarizing the expected
effect of all other particles).
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» is a general framework to construct approximating probability distributions g(z) to non-analytic
posterior distributions p(z | x) by minimizing the functional

q* = arg min Dy, (q(2)[Ip(z | X)) = arg max £(q)
geQ qeQ

» the beauty is that we get to choose g, so one can nearly always find a tractable approximation.
» |f we impose the mean field approximation q(z) = [, q(z), get
log 9’ (z) = Eq j+(logp(x,z)) + const..

» for Exponential Family p things are particularly simple: we only need the expectation under g of
the sufficient statistics.

Variational Inference is an extremely flexible and powerful approximation method. Its downside is that

constructing the bound and update equations can be tedious. For a quick test, variational inference is
often not a good idea. But for a deployed product, it can be the most powerful tool in the box.
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Example: The Gaussian Mixture Model

C

'TUBIN(_.EN

Returning to EM

» Remember EM for Gaussian mixtures 6 := (m, u, )

N K
pez|wSm) =TT m* - N Cros e Bi)™
n=1k=1
N
=1I »r@ |7 -pa | 2010, )
n=
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Example: The Gaussian Mixture Model

Returning to EM

» Remember EM for Gaussian mixtures 6 := (m, u, )

N K

pzlmSm) =TT - N s e S0

n=1k=1
» For Bayesian inference, turn parameters into variables
POz, m, 1, X) = p(X, 2 [ m,p, 5) - p(m) - p(p | E) - p(X)
K
r (Ek:] ak)

=D(r|a)=—— L J[r>"
Pl =Pl ) = ey~ 1
K
p(i | %) -p(E) = [N (s m, S/ B) - WS W, v)
k=1
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Constructing the Variational Approximation

Example: The fixture Model [Exposition from Bishop, PRM

» We know that the full posterior p(z, 7, i1, 3 | X) is intractable (check the grapht)
» But let's consider an approximation q(z, m, i, 2) with the factorization

Q(Zv ™ [y E) = CI(Z) ’ Q(W’ Hs 2)

» from (%), we have

|Og q*(Z) = EG(TF,,LL,Z) (lOg p(X7Z7 Ty [y Z)) + const.
=E (w) (|09P(Z | ™) + Eq(u,s) (Iogp(x | Z, 1, X)) + const.

1
= Zzznk ( a(m) (109 7)) + 5 Bq(u,3) (log |2~ = (0 — )T (X — Mk))) +-const.

=:log pr

) H H pi definery = ank , then g*( H l_IrZ”k With Eq(;) 2] = o

j=1Pnj
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Constructing the Variational Approximation

using g(z, , u, ) = q(2) - q(m, p, X)

» Define some convenient notation:

N N N
_ 1 1 _ _
Ny == E Ik Xy = Ny E InkXn Sk = N, E Tk (Xn — Xi) (Xn — Xe)T
n=1 n=1

» from (x), we have

log g™ (m, p, ¥) = Eq(zy (logp(x,z, 7, u, X)) + const.

=Eqy (Iogp )+ > logpp, ) + logp(z | ) +Z|ogp X | 2, s ))

K
K
=logp(m) + > _10gp(, Tk) + Eq(z (logp(z | 7))
k=1
N K
+ Z ZE(ZM log N (Xn; fa, 3¢) + const.
n=1 k=1
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cting the Variational Approximation

using q(z, m, i, ) = q(2) - q(m, p, X)

K

log q* (m, 1, ) = logp(m) + > l0g p(puk, Bi) + Eq() (logp(z | 7))
k=1
N K
+ZZE Znk) 109 N (Xp; g, By) 4 const.

n=1 k=1
K
» The bound exposes an induced factorization into q(7, 4, 2) = q(7 Hq L, k)
k=1

where logq(m) = logp(m) + Eq,) (logp(z | 7)) + const.
=(a— 1)ZlogwarZZrnklogwarconst.
k
q(m) = D(m, o := a+ N¢)  with Ny = Zrnk
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Constructing the Variational Approximation

using 1(2) - q(m, p, o [Exposition from Bi

K
log g™ (m, 1, ) = logp(m) + > 10g (s, ) + Eq() (logp(z | 7))

k=1

N K

+ Z ZE Znk) 10g NV (X3 1k, 2¢) + const.
n=1 k=1
K
» The bound exposes an induced factorization into g(m, p, 2 H q(pues 2x)

where (leaving out some tedious algebra) g* (puk, Xx) = N (pk; My, Ek/ﬁk)W(E; s Wi, 1)

1 _
—(Bm+NeX¢)  ver=v 4N

with ﬂk = ﬁ + Ny mg = 3
k

Ne g~ m)(x —m)T

W= W NS+ e
k +kk+6+Nk
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Properties of the Dirichlet

Some tabulated identities, required for the concrete algorithm

p(x | a) =D a) = Hjﬁ‘ld) 1;[)(%_1 = B(Ta) 1;[)(%_1 b= Zad

Ep(xg) = &
vary (1) = 2420
COV(Xg, Xi) = — a4t
mode(xg) = %

IEp('Og Xg) = F (ag) = (&)

p)=—Jp()logp(x)dx = = 3"y (ag = 1)(F (ag) = F (&)) + 0g B()

vVvVvyYy VVY

_d gy . -
Where f (z) = £ logI'(z) (the "digamma-function”).
scipy.special.digamma(z) https://dlmf.nist.gov/5
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Constructing the Variational Approximation

closing the loop

» Recall from above:

[Exposition from Bishop, PRML 2006, Chapte

1
logg™(z Zzznk ( q(m (logme) + 7 Eo(u, (o (109 157 = (6 — ) TS (x — Mk))) +-const.

=:log ppg

> now we can evaluate py, using tabulated identities
l0g Tk 1= Ep(r;ay) (l0g k)

and for the Wishart:
10g 12k := By 1,0, (100 15

—1
EN(HMmk’Ek/ﬁk)W(E;W:,kal’k)((Xn = ) TET (X0 — puk))
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= () —F (Z ak>

k

D
1—d
1I):E:F (Vk+2> + Dlog 2 + log [Wy|

d=1

= DB+ k(X — M) TWy(Xp — my)



Constructing the Variational Approximation

connection to EM [Exposition from Bishop, PRM

» this yields the update equation

I D V)
Bazu) = 20 (=5 = %o = mg W <))

compare this with the EM-update
1
Mok o< | S| exp (Q(Xn - ,uk)TEk_1 (Xn — Mk))
» Here, variational Inference is the Bayesian version of EM: Instead of maximizing the likelihood for

0 = (u, 23, ), we maximize a variational bound.
» One advantage of this is that the posterior can actually “decide” to ignore components:
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Example

The 0OId Faithful Dataset, using oo = 10—° [from Bist
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Latent Dirichlet Allocation

[Blei, D. M., Ng, A. Y. & Jordan, M

Todraw Iy words wy; € [1,...,V] of documentd € [1,...,D]:
» Draw K topic distributions 64 over V words from

» Draw D document distributions over K topics from
» Draw topic assignments ¢ of word wg; from

» Draw word wg; from

Useful notation: nge, = #{i : Wy = v, Cje = 1}. Write nge. := [N, - - -
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p(© | B) = [Ti_y D6k Bo)
p(I | ) = [Tj_s D(mg; ag)
p(C|I0) = [T, ot

p(Wgi =V | €4, ©) = [, 0,

,ndk\/] and Ngk. = Ev Ngky, €tC.



A Variational Bound

Find the g reminder

p(C, 11,0, W) = (ﬁ (15 g > <ﬁ : (Hk 17rcd’k)> . (12[ ‘ (Hf:1 0/6%)) : (ﬁp(ek;ﬁk)>
d=11

d=1 d=11=1 =1i=1 k=1

» The posterior p(IT, ©, C | W) is intractable. We want an approximation g that factorises

q(H7 o, C) = q(C) . q(H7 6)

» To find the best such approximation — the one that minimizes Dy, (q||p(1L, ©, C | W)), we
maximize the ELBO (minimize variational free energy)

q) = /q(C,@,H)log (W) dC doe di1
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Mean-Field Theory: Putting Lectures 18-20 to use reminder: ng, = #{i : Wgi =V, Coik = 1} Ngk. = D, Ntk €1C

D D Iy Dy K
p(c* H7 67 W) - (H 7Td, (8 %] > <H (Hk 1 7Tcmk)> . <H (Hf:1 9/25\’/};,)) : (H D(eka ﬁk))
d=1i=1 k=1

d=1 d=1i=1
Recall from above: To maximize the ELBO of a factorized approximation, compute the mean field
log g™ (z;) = E;ji(logp(x,2)) + const.

K

|Og q*(C) = Eq(l[,@) Z Cyik |Og(7rdk9kwd,) +const. = Z Z Cdik (]Eq(m@)(log degdwd,)) —+const.
d,ik d,i k=1

=:10g gk

Thus, q(C) = Iy, a(ca) with g(ea) = TT, A, where Fai = vai/ 2o Voik
(Note: Thus, Eq(Cqik) = k)
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Constructing the Bound R &

Mean-Field Theory: Putting Lectures 18-20 to use reminder: ng, = #{i : Wgi =V, Coik = 1} Ngk. = D, Ntk €1C

ﬁ i (Hk wcd,k)> _ (12[ l (Hf:1 9;;;)) : (ﬁp(@k; ﬁk)>
! k=1

d=1i= d=1i=1

p(C,1L, O, W) = (HD 7Td7ad> <

Recall from above: To maximize the ELBO of a factorized approximation, compute the mean field
log g™ (z;) = E;ji(logp(x,2)) + const.

log q* (I, ©) = Eq1, qes)) | D (ok — 1+ Mok ) 109 g + D (B — 1+ npy) 10g b, | + const.

d.k kv
K K vV
= Z(Oédk =1+ Eq(c) (N )) log gk + Z Z(ﬁkv =1+ Eq(c)(Nxv)) 109 O, + coOnst.
k=1 k=1 v=1

- £

g (I, 0) =

K
D (w4 dg, = log. +30:)) - [[ P <0k;/3kv = [Bu + ZZ%, (Woi = V)]u=1,..., ) ~
k=1
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The Variational Approximation

closing the loop

d
q(mg) =D | mg; Qg = adk+Z’~Ydik‘| vd=1,...,D
= k=1, K
D
Q(ek) =D | 6 Bkv = | B + ZZﬁdikH(Wdi = V)‘| vk=1,...,K
d = v=1,...,V
9(ca) Hvﬁfk’k vdi=1,....1

where Ygik = vaik/ >« vaik and (note that =, ag = const.)
Yok = €XP (Eq(ry (109 k) + Eq(a,) (109 Ok, ))

= €exp ( (ijk) + F( ﬁkwd, - <Z ﬂkv))
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The ELBO TUBINGEN

useful for monitoring / bug-fixing

o et “r N
p(C, 11,0, W) = (H D(2 . aar) o T+ dk.) ) (H]_Fl“v(gkk))nefvm T+ w)
k=1 v V7 y=1

adk e
We need
L(q,W) = Eq(logp(W,C, ©,1I)) + H(q)
:/q(c,@,n)logp(w,c,@,n) dCd@dH—/q(C,@,H) 10gq(C, ©, IT) dC dO dll

/qC@H)Iogp(WC@H)dCd@dH+ZH (0k Br)) +ZH (g ag) —s—Zva
di

The entropies can be computed from the tabulated values. For the expectation, we use
Eqccy(Nary) = > val(Wai = v) and use Ep(.5)(log mg) = F (dg) — F (&) from above.
Dirty secret: In practice, the ELBO itself isn't strictly necessary.
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Building the Algorithm e

updating and evaluating the bound

1 procedure LDA(W, o, B)

2 | Ak — DIRICHLET_RAND(cv) [/ nitalize
3 L+——00

" while £ not converged do

5 ford=1,....D;k=1,...,Kdo

6 ‘ ddk — ok + Z/- :Ydlk // update document-topics distributions
7 end for

8 fork=1,...,K;v=1,...,Vdo

9 ‘ Bkv — By + Ed,i ’Vd/kﬂ(Wd; = \/) // update topic-word distributions
10 end for

" ford=1,....,0;k=1,...,K;i=1,...,lydo

12 Adik < eXp(F () + F(ﬂkwm) - F2, Bw) /| update word-topic assignments
13 Vetik <+ Vel / Vet

14 end for .

15 L < BOUND(¥, w, &, ) /| update bound
16 end while

; end grocedure

1
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p(c'/ H’ 97 W)

£(0) = [ a(c.0.m1og (250

> dCde dII

Variational Inference is a powerful mathematical tool to construct efficient approximations to intractable
probability distributions (not just point estimates, but entire distributions). Often, just imposing factoriza-

tion is enough to make things tractable. The downside of variational inference is that constructing the
bound can take significant ELBOw grease. However, the resulting algorithms are often highly efficient
compared to tools that require less derivation work, like Monte Carlo.

“Derive your variational bound in the time it takes for your Monte Carlo sampler to converge.”
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The Toolbox
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Framework:

/P(X1,X2) dx, = p(x1) p(x1,X2) = p(x1 | X2)p(x2) p(x1y)

_ Py [X)p(x)
py)

Modelling:

>

>
>
>
>
>
>

graphical models

Gaussian distributions

(deep) learnt representations

Kernels

Markov Chains

Exponential Families / Conjugate Priors
Factor Graphs & Message Passing

Computation:

>

vVvyvVvyyvyy

Monte Carlo

Linear algebra / Gaussian inference
maximum likelihood / MAP
Laplace approximations

EM (iterative maximum likelihood)
variational inference / mean field
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