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Catch-up from Last Time: UNIVERSITAT
o , e ' TUBINGEN
» Probabilities are the mathematical formalization of uncertainty
» Two basic rules
product rule: P(A,B) = P(A | B) - P(B) = P(B | A) - P(A)
sumrule: P(A) = P(A,B) + P(A, —B)

» Corollary: Bayes' Theorem .
prior for X' likelihood for X

poNg —
P - POIX) PX)-P(D] X)
PX|D) = -
Lo 5@ > PO | X)P(x)
posteriorfor A given evidence for the model ~ *€¥

» This extends deductive reasoning to plausible reasoning

Today:
» Building an intuition for probability
» The computational complexity of probabilistic inference
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Plausible reasoning extends Boolean Logic

Catch-Up from last time

UNIVERSITAT
TUBINGEN

Lemma (from Bayes’ theorem)
A= B:P(B|A)=1implies

P(B'| A) =1 ‘modus ponens”
P(B | -A) < P(B)
P(A|B) > P(A)

P(=A | =B) = 1 'modus tollens”

Lemma (from Bayes’ theorem)
P(B | A) > P(B) implies

P(B|A) = P(B)
P(B|—A) < P(B)
P(A|B) = P(A)
P(=A | -B) = P(-A)
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if Ais true, then B is true

Ais true implies B is true

A is false implies B becomes less plausible
B is true implies A becomes more plausible
B is false implies A is false

if Ais true, then B becomes more plausible
A is true implies B becomes more plausible
A is false implies B becomes less plausible
B is true implies A becomes more plausible
B is false implies A becomes less plausible
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Boole was a Bayesian

t, 1854, §XVI, p

George Boole
(1815-1864)
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Computational Difficulties of Probability Theory

obal notion

1] P(A,B,....2) =...

2] P(-A,B,....2) =...

3] P(A,-B,....2)=...
[67108863j P(ﬁA,ﬁB,...,Zj =...
(67108 864] P(-A,=B,...,=Z) =1~ P(..)

» requires not just large memory, but computing marginals like P(A) is also very expensive
» nb: just committing to a single guess is much (exponentially in n) cheaper
» can we specify the joint distribution with fewer numbers?

Prababilistic ML — P. Hennig, SS 2020 — Lecture 01: Probabilistic Reasoning — © Philipp Hennig, 2020 CC BY-NC-SA 3.0


https://youtu.be/YWK74ZNPrHc?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=825

EBERHARD KARLS

UNIVERSITAT
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Computing with Probabilities
» Probabilistic reasoning extends propositional logic

» instead of tracking a single true value, we have to assign probabilities to combinatorially many
hypotheses

Being uncertain is potentially much more expensive in terms of computation and memory than simply

committing to a single hypothesis. This is the challenge of probabilistic reasoning in practice.
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1elpful in the remainder

So far, A was a propositional variable that forms formulae:

P(A) = probability that formula A is true
P(=A) =1 — P(A) = probability that formula —=A is true

From now on A is a propositional variable with values in {0, 1}, i.e. P(A) is a function of two possible
input values A = 1 and A = 0, i.e. with slightly unusual notation:

P(A = 1) = probability that formula A is true
P(A=0)=1—P(A=1) = probability that formula A is false

Stating that P(A, B) = P(A) - P(B) means all of the following

PA=1,B=1)=PA=1)-PB=1) PA=1,B=
PA=0,B=1)=PA=0)-PB=1) P(A=0,B=0)=P(A=0) PB

|
o
I
=
I
=
s
o
Il
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Independence TUBINGEN

Chiefly a computational concept

Definition (independence)

Two variables A and B are independent, if and only if their joint distributions factorizes into so-called
marginal distributions, i.e.

P(A,B) = P(A) P(B)

In that case P(A|B) = P(A). Notation: A L B. Information about B does not give information about A
and vice versa.
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Independence UTOKNGEN"

Chiefly a computational concept

Definition (independence)

Two variables A and B are independent, if and only if their joint distributions factorizes into so-called
marginal distributions, i.e.

P(A,B) = P(A) P(B)

In that case P(A|B) = P(A). Notation: A L B. Information about B does not give information about A
and vice versa.

Example: Two cains.

A = coin 1 shows heads
B = coin 2 shows heads @
ThenA 1L B.
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Conditional Independence U EIAT

Chiefly a computational concept [Example: Stefan Harmeling]

Definition (conditional independence)

Two variables A and B are conditionally independent given variable C, if and only if their conditional
distribution factorizes,

P(A,B|C) = P(A|C) P(B|C)

In that case we have P(A|B, C) = P(A|C), i.e. in light of information C, B provides no (further) information
about A. Notation: A 1L B| C
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Conditional Independence U EIAT

Chiefly a computational concept [Example: Stefan Harmeling]

Definition (conditional independence)

Two variables A and B are conditionally independent given variable C, if and only if their conditional
distribution factorizes,

P(A,B|C) = P(A|C) P(B|C)

In that case we have P(A|B, C) = P(A|C), i.e. in light of information C, B provides no (further) information
about A. Notation: A 1L B| C

Example: Two coins and a bell. 0 a
A = coin 1 shows heads
B = coin 2 shows heads
C = bell rings if both coins show the same result 0

Al B
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Conditional Independence U EIAT

Chiefly a computational concept [Example: Stefan Harmeling]

Definition (conditional independence)

Two variables A and B are conditionally independent given variable C, if and only if their conditional
distribution factorizes,

P(A,B|C) = P(A|C) P(B|C)

In that case we have P(A|B, C) = P(A|C), i.e. in light of information C, B provides no (further) information
about A. Notation: A 1L B| C

Example: Two coins and a bell. 0 a
A = coin 1 shows heads
B = coin 2 shows heads

C = bell rings if both coins show the same result 0
Al BandA 1. C
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Conditional Independence U EIAT

Chiefly a computational concept [Example: Stefan Harmeling]

Definition (conditional independence)

Two variables A and B are conditionally independent given variable C, if and only if their conditional
distribution factorizes,

P(A,B|C) = P(A|C) P(B|C)

In that case we have P(A|B, C) = P(A|C), i.e. in light of information C, B provides no (further) information
about A. Notation: A 1L B| C

Example: Two coins and a bell. 0 a
A = coin 1 shows heads
B = coin 2 shows heads

C = bell rings if both coins show the same result 0
Al B andA 1. C andB 1L C,
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Conditional Independence

Chiefly a computational concept [Example: Stefan Harmeling]

Definition (conditional independence)

Two variables A and B are conditionally independent given variable C, if and only if their conditional
distribution factorizes,

P(A,B|C) = P(A|C) P(B|C)

In that case we have P(A|B, C) = P(A|C), i.e. in light of information C, B provides no (further) information
about A. Notation: A 1L B| C

Example: Two coins and a bell. 0 a
A = coin 1 shows heads
B = coin 2 shows heads

C = bell rings if both coins show the same result 0
Al BandA 1l CandB 1 C, butA AL B|C
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Conditional Independence

Chiefly a computational concept [Example: Stefan Harmeling]

Definition (conditional independence)

Two variables A and B are conditionally independent given variable C, if and only if their conditional
distribution factorizes,

P(A,B|C) = P(A|C) P(B|C)

In that case we have P(A|B, C) = P(A|C), i.e. in light of information C, B provides no (further) information
about A. Notation: A 1L B| C

Example: Two coins and a bell. 0 a
A = coin 1 shows heads
B = coin 2 shows heads

C = bell rings if both coins show the same result
Al BandA 1l CandB 1 C, butA A B|C andA AL C|BandB A C|A.
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Computing with Probabilities
» Probabilistic reasoning extends propositional logic

» instead of tracking a single true value, we have to assign probabilities to combinatorially many
hypotheses

» Two variables A and B are conditionally independent given variable C, if and only if their
conditional distribution factorizes,

P(A,B|C) = P(A|C) P(B|C)
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EB)

Parameter Counting UROBINGEN

le adapted from Pe: / MacKay,

A = the alarm was triggered

E = there was an earthquake

B = there was a break-in

R = an announcement is made on the radio

Joint probability distribution has 2* — 1 = 15 = 8 + 4 + 2 + 1 parameters
P(A,E,B,R) =P(A|R,E,B)-P(R|E,B)-P(E|B)-P(B).
Removing irrelevant conditions (domain knowledge!) reduces to 8 = 4 + 2 + 1 + 1 parameters:
P(AE,B,R) =P(A|E,B)-P(R|E)-P(E)-P(B)

Prababilistic ML — P. Hennig, SS 2020 — Lecture 01: Probabilistic Reasoning — © Philipp Hennig, 2020 CC BY-NC-SA 3.0 u 12


https://youtu.be/YWK74ZNPrHc?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=2800

A Graphical Representahon

J \T
TUBINGEN

Our first [adapted from Pearl, 1

P(AE,B,R) =P(A|E,B)-P(R|E)-P(E)-P(B)

A = the alarm was triggered

E = there was an earthquake

B = there was a break-in

R = an announcement is made on the radio
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CondmonaH%obaanyTabms TUBNGER

P(A.E,B,R) =P(A|E,B)-P(R|E)-P(E)-P(B)

PB=1)=10"3 PB=0)=1-10"°
PEE=1)=10""° PE=0)=1-10"3
and
PR=1|E=1)=1.0 P(R=1|E=0)=0.0

and, using f = 1072, aj = 0.99, ae = 0.01

PA=0|B=0E=0)=(1—1) PA=1|B=0E=0)=
PA=0|B=1E=0)=(1—H(1—a) P(A = HB_1E_®—1—( — (1 = ap)
PA=0[B=0EFE=1)=(1—N(-a) PA=T1[B=0FE=1)=1-(1-H(1— ae)
PA=0B=1EFE=1)=(1-N1-ap)(1—ae) PA=T[B=1E=1)=1-(1-H(1—ap)(1 -
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Conditional Probab|l|ty Tables

"TUBINGEN

P(A,E,B.R) = P(A | E,B) -

P(B=1)=1073
PE=1)=10""°
and
PR=1]E=1)=1.0

and, using f = 1072, aj = 0.99, ae = 0.01

P(A=0|B=0,E=0)=0.99
P(A=0|B=1,E=0)=0.00999
P(A=0|B=0E=T1)=0.98901
PA=0|B=1E=1)=0.0098901
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P(R|E)-P(E)-P(B)

PR=1|E=0)=0.0

P(A=1|B=0,E=0)=0.001
PA=1|B=1F=0)=0.99001
PA=1|B=0F=1)=0.01099
PA=1|B=1E=1)=0.9901099

o
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Inference

Conditional dey nce [adapted from Pearl,

What is the probability that there was a break-in and/or an earthquake, given that the alarm went off?
P(A=1|B,E)P(B)P(E)

PBE|A=1)= PG
PA=1)=P(A=1|B=0,E=0)PB=0)PE =0)
+PA=1|B=0,E=1)P(B=0)PE=T1)
+PA=1|B=1E=0)PB=1)P(E=0)
FPA=1|B=1E=1)PB="T)PE=T)
= 0.000998 -+ 0.000 989 + 0.000 010979 + 0.000 000 99 = 0.002

thus — note conditional dependence!
PB=0,E=0|A=1)=04993 PB=1E=0]|A=1)=0.4947
PB=0,E=1|A=1)=0.0055 PB=1,E=1]A=1)=0.0005
PB=0|A=1)=PB=0,E=0|A=1)+PB=0,E=1|A=1)=0.505
PB=1|A=1)=PB=1,E=0|A=1)+PB=1E=1|A=1)=0.495
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EBE

Inference URUbINGER

Explainin

What is the probability for a break-in, given alarm and radio announcement?
PB=0,E=1|A=1)
PE=1|A=1)
PB=0,E=1]A=1)

PB=0|E=1A=1)=

PB=1]E=1,A=1)= (P(E:1A|:1) )
= PE=1E=1]A=1) =0.08

PB=0,E=1[A=1)+PB=TE=1]A=1)

The radio announcement is explaining away the break-in as the explanation for the alarm.
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What is Probabilistic Reasoning?

or

Always write down the probability of everything.
David JC MacKay (1967-2016)

identify all relevant variables: A, R, E, B
define joint probability P(A, R, £, B) aka. the generative model
observations fix certain variables: A = 1

inference takes place exclusively by Bayes’ Theorem
n.b.: this requires integrating out (marginalizing) latent variables not
being inferred.

vvyYyy
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Directed Graphical Models U EIAT

aka. Bayesian networks, Bayes nets, belief networks, .. [Judea Pearl, Probabilistic Reasoning in Intelligent Systems, 1988]

Definition (Bayesian Network, preliminary definition — more in later lectures)

A Directed Graphical Model (DGM), aka. Bayesian Network is a probability distribution over variables
{X1,...,Xp} that can be written as

D
P(X1,X, .- Xo) = [ [ p (i | pa(X)

=

where pa(X;) are the parental variables of X;, that is, X; ¢ pa(X;) ¥ X; € pa(X;). ADGM can be
represented by a Directed Acyclic Graph (DAG) with the propositional variables as nodes, and arrows
from parents to children.
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Every Probability Distribution is a DAG

It's just not helpful concept

By the Product Rule, every joint can be factorized into a (dense) DAG.

P(A,E,B,R) = P(A| E,B,R)-P(R | E,B)-P(E | B)-P(B)
A = the alarm was triggered

e G E = there was an earthquake
B = there was a break-in
R = an announcement is made on the radio
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EBERHARD KARLS

Every Probability Distribution is a DAG UNIVERSITAT %

It's just not alw helpful concept

The direction of the arrows is not a causal statement.

A = the alarm was triggered
E = there was an earthquake

ev‘e B = there was a break-in
R = an announcement is made on the radio
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EBERHARD KARLS

Every Probability Distribution is a DAG UNIVERSITAT %

It's just not al a helpful concept

But the representation is particularly interesting when it reveals independence.

P(AE,B,R) =P(A|E,B)-P(R|E)-P(E)-P(B)

A = the alarm was triggered

E = there was an earthquake

B = there was a break-in

R = an announcement is made on the radio
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Deducing Conditional Independencies

back to our example

P(AJE,B,R) =P(A|E,B)-P(R|E)-P(E)-P(B)

A = the alarm was triggered

E = there was an earthquake

B = there was a break-in

R = an announcement is made on the radio

Which independencies can we infer only from the graph?
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Atomic Independence Structures

imply conditional

For uni- and bi-variate graphs, conditional independence is trivial.
For tri-variate sub-graphs, there are three possible structures:

graph factorization implications

ALl CI|B
P(A’B’ C)=P(CIB)-PBIA)-P(A) not,|i.g.,A AcC
G ALLC|B

P(A.B,C) =P(A|B)-P(CIB)-P(B) \inotig.A A C

AlC

P(A,8,0) = P(BI A,C)-P(C)-PA) i 4 n g B

(i)
(2]
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Deducing Conditional Independencies

0 our example

graph factorization implications

ALC|B
P(A,8,C) =P(C1|8)-P(BIA)-P(A) but not,|i.g.,A nc
ALC|B
(i) @ P(A,8,C) =P(A[B)-P(C|B)-P(B) but not,|i.g,,A nc
< : > Al C
(i) P(4,8,C) = P(B ] A,C) - P(C) - P(A) butnot,i.g, A 4L C|B

Which independencies can we infer only from the graph?

®/@\@
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Deducing Conditional Independencies

0 our example

graph factorization implications

ALC|B
P(A,8,C) =P(C1|8)-P(BIA)-P(A) but not,|i.g.,A nc
ALC|B
(i) @ P(A,8,C) =P(A[B)-P(C|B)-P(B) but not,|i.g,,A nc
< : > Al C
(i) P(4,8,C) = P(B ] A,C) - P(C) - P(A) butnot,i.g, A 4L C|B

Which independencies can we infer only from the graph?

(2) - RULA|EedE LS
®R@/‘
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Deducing Conditional Independencies

0 our example

graph factorization implications

ALC|B
P(A,8,C) =P(C1|8)-P(BIA)-P(A) but not,|i.g.,A nc
ALC|B
(i) @ P(A,8,C) =P(A[B)-P(C|B)-P(B) but not,|i.g,,A nc
< : > Al C
(i) P(4,8,C) = P(B ] A,C) - P(C) - P(A) butnot,i.g, A 4L C|B

Which independencies can we infer only from the graph?

a » RUA|EandE 1L B
» butalso (R 1L B | E), (R 1L B),
@ @ (R 1L B | E,A), with more work
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The Graph for Two Coins and a Bell BRI

ot a perfect tool

—1)=0. - =1)=1 PC=1]A=1,8=0)=0
P(B=1)=05 PC=1|A=0B=1)=0 PC=1|A=0B=0)=1

These CPTs imply P(A|B) = P(A), P(B|C) = P(B) and P(C|A) = P(C) and P(C | B) = P(C).
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The Graph for Two Coins and a Bell

=1)=0. = B=1)=1 PC=1|A=1,8=0)=0
P(B=1)=05 PC=1]A=0,B=1)=0 PC=1|A=0,8=0)=1

These CPTs imply P(A|B) = P(A), P(B|C) = P(B) and P(C|A) = P(C) and P(C | B) = P(C).
We thus have three factorizations:
1. P(A,B,C) = P(C|A,B) - P(A|B) - P(B)
2. P(A,B,C) =P(A|B,C) - P(B|C) - P(C)
3. P(A,B,C) = P(B|C,A) - P(CIA) - P(A)

P(C|A,B) - P(A) - P(B)
P(AIB,C) - P(B) - P(C)
P(B|C,A) - P(C) - P(A)
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The Graph for Two Coins and a Bell

t a perfect tool

P(A=1)=0.5 PC=1]A=1,B=1)=1 PC=1]A=1,B=0)=0
P(B=1)=0.5 PC=1]A=0,B=1)=0 PC=1|A=0,B=0)=1
These CPTs imply P(A|B) = P(A), P(B|C) = P(B) and P(C|A) = P(C) and P(C | B) = P(C).
We thus have three factorizations:

1. P(A,B,C) = P(C|A,B) - P(A|B) - P(B) = P(C|A,B) - P(A) - P(B)
2. P(A,B,C) = P(A|B,C) - P(B|C) - P(C) = P(A|B,C) - P(B) - P(C)
P(A) =P
C

3. P(A,B,C) = P(B|C,A) - P(C|A) - P(A) = P(BIC,A) - P(C) - P(A)
Each corresponds to a graph. Note that each can only express some of the independencies:

Cr—@ O @ &
() ) (©)
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Graphical Models and Conditional Independence
» Multivariate distributions can have exponentially many degrees of freedom.
» (conditional) independence helps reduce this complexity to make things tractable

» (directed) graphical models provide a notation from which conditional independence can be read
off using simple rules.

» Every probability distribution is a DAG, but not every independence structure of a distribution is
captured by a DAG of it.

» We will return to graphs later in the course.

Conditional independence is a tool (and may be required)
to keep inference tractable in multi-variate problems.
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Geschichtlich ist die U{;nb Angi|
GréBen derjenige mathematische
veier oder mehrerer  keitsrechnung ihr eigenartiges age
i von LAPLACE, PoissoN, TCHEBYCHEFF, MARKOFF, LIAPOUNOFF, V.
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e vielumstrittene Frage iiber das Wesen des Wahrschein
hat, die Voraussetzungenzu prizisieren. bei denen man
scheinungen fiir ge&ngtig unabhingig halten kann.
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