
A
cc

ep
te

d
 A

rt
ic

le
Analytical probabilistic modeling of dose-volume histograms

Niklas Wahla,b,c, Philipp Hennigd,e, Hans-Peter Wiesera,b,f,g, Mark Bangerta,b

aGerman Cancer Research Center – DKFZ, Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany

bHeidelberg Institute for Radiation Oncology – HIRO, Im Neuenheimer Feld 280, 69120
Heidelberg, Germany

cDepartment of Physics and Astronomy, Ruprecht Karls University Heidelberg, Grabengasse 1,
69117 Heidelberg, Germany

dProbabilistics Numerics, Max Planck Institute for Intelligent Systems, 72076 Tübingen,
Germany

eChair for the Methods of Machine Learning, Eberhard Karls University Tübingen, 72024
Tübingen, Germany

fMedical Faculty, Ruprecht Karls University Heidelberg, Grabengasse 1, 69117 Heidelberg,
Germany

gDepartment for Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich),
85748 Garching b. München, Germany

Version 3, typeset July 21, 2020

Corresponding author(s):
Niklas Wahl: n.wahl@dkfz.de

Abstract

Purpose: Radiotherapy, especially with charged particles, is sensitive to executional
and preparational uncertainties that propagate to uncertainty in dose and plan quality
indicators, e. g., dose-volume histograms (DVHs). Current approaches to quantify and
mitigate such uncertainties rely on explicitly computed error scenarios and are thus
subject to statistical uncertainty and limitations regarding the underlying uncertainty
model. Here we present an alternative, analytical method to approximate moments, in
particular expectation value and (co)variance, of the probability distribution of DVH-
points, and evaluate its accuracy on patient data.
Methods: We use Analytical Probabilistic Modeling (APM) to derive moments of the
probability distribution over individual DVH-points based on the probability distribu-
tion over dose. By using the computed moments to parameterize distinct probability
distributions over DVH-points (here normal or beta distributions), not only the mo-
ments but also percentiles, i. e., ↵-DVHs, are computed. The model is subsequently
evaluated on three patient cases (intracranial, paraspinal, prostate) in 30- and single-
fraction scenarios by assuming the dose to follow a multivariate normal distribution,
whose moments are computed in closed-form with APM. The results are compared to
a benchmark based on discrete random sampling.
Results: The evaluation of the new probabilistic model on the three patient cases
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against a sampling benchmark proves its correctness under perfect assumptions as
well as good agreement in realistic conditions. More precisely, ca. 90 % of all com-
puted expected DVH-points and their standard deviations agree within 1 % volume
with their empirical counterpart from sampling computations, for both fractionated
and single fraction treatments. When computing ↵-DVHs, the assumption of a beta
distribution achieved better agreement with empirical percentiles than the assumption
of a normal distribution: While in both cases probabilities locally showed large devia-
tions (up to ±0.2), the respective ↵-DVHs for ↵ = {0.05, 0.5, 0.95} only showed small
deviations in respective volume (up to ±5 % volume for a normal distribution, and up
to 2 % for a beta distribution). A previously published model from literature, which
was included for comparison, exhibited substantially larger deviations.
Conclusions: With APM we could derive a mathematically exact description of mo-
ments of probability distributions over DVH-points given a probability distribution
over dose. The model generalizes previous attempts and performs well for both choices
of probability distributions, i. e., normal or beta distributions, over DVH-points.
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I. Introduction

Recent years have shown an increased interest in adequate, patient-specific uncertainty quan-
tification and mitigation for radiotherapy treatment planning both academically and clini-
cally (see, e. g., Refs. 1,2, and references therein). This development is, on the one hand,
driven by emerging irradiation with particles and their characteristic sensitivity to uncer-
tainties3,4. On the other hand, it is facilitated by fast-growing computational capabilities
that enable the computation of multiple dose scenarios with acceptable overhead.

Error dose scenarios are either computed as (1) worst case estimates, i. e., extreme real-
izations of the input uncertainty model which are used for robust optimization (as performed
and evaluated within Refs. 5,6,7,8,9,10,11), or (2) random samples from the probability dis-
tribution parameterizing the input uncertainty model12,13,14,15,16,17 for stochastic approaches.
An explicit derivation of probabilistic models remains the exception18,19,20,21,22.

Consequently, the analysis of plan uncertainty is based on the derived worst-case dose
distributions or “error bar”-distributions with their respective histograms6,7,11,23, or statis-
tical moments13,18,21,22,24 as well as percentiles14,15,17, according to the very optimization
method used in the overall planning workflow. This use of empirical uncertainty estimates,
however, exhibits limitations, in particular concerning statistical accuracy and the required
recomputations during optimization due to the changing pencil-beam weights. Further, they
conceal the inherent mathematical transformation from the input probability space (e. g. set-
up and range uncertainties) to the probability distribution over dose and the respective plan
quality indicator (QI). This aggravates their use in retrospective analyses and puts restric-
tions on the choice of optimization method and objectives, because the sampling pipeline
cannot be inverted and/or e�ciently di�erentiated.

Approaches which rigorously propagate the uncertainty may overcome these limitations.
Since they are able to provide analytical objectives, constraints, and derivatives, they can
introduce new mathematical simplifications and improve computational e�ciency by ex-
ploiting the analytical formulation for both uncertainty quantification and mitigation with
probabilistic optimization approaches18,22. Because such approaches are not susceptible to
statistical errors and the “curse of dimensionality” in scenario-based approaches, they deliver
stable and reproducible results also for complex uncertainty models. However, derivation of
such models is not trivial: Even if a model for dose probability is available, it still needs to
be propagated to the derived plan indicators by hand. Other approaches overcome this step
by re-sampling based on the derived dose uncertainty model20,21.

For DVH-points, analytical computation of moments of the probability distribution,
given a probability distribution over the dose, has been attempted before25,26,27. However,
they25,26 only provide a model for the expected value of DVH-points with an upper bound on
the DVHs’ standard deviation. Further, only simplified uncertainty models for the underlying
dose distribution were assumed: while di�erent shapes of the distributions were evaluated,
correlations between voxels were not modeled, even though correlations having crucial impact
on the higher moments of the depending probability distribution.
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To derive a full model including correlations, this work will consequently not build on

previous attempts, but provide a fresh start to a general methodology to compute the ⌫-th
moments of the probability distribution over DVH-points. The goal is to derive a generally
applicable model for DVH-probabilities allowing arbitrary assumptions on the probability
distribution over the dose distribution.

To do so, first a closed-form description for the moments of the probability distribution
of DVH-points is derived. Then, these moments parameterize a probability distribution over
the respective DVH-point. To evaluate our approach, three patient cases are investigated
with statistical reference computations (using a large number of random dose samples from
the probability distribution over set-up and range errors in fractionated and non-fractionated
treatments). Along the lines of our validation campaign, we illustrate the shortcomings of
previous work and highlight where wide approximations regarding the correlation models
(as exercised by Refs. 27) render meaningful quantification of DVH-probabilities impossible.

II. Materials & Methods

II.A. DVHs under uncertainty

II.A.1. Nominal computation

DVHs are cumulative histograms over the spatial dose distribution in a volume of interest
(VOI) v, here expressed as vector d 2 RV

+
with number of voxels V . Hence, for any given

dose parameter d̂, a DVH-point DVH(d̂;d) 2 [0, 1] equals the fraction of the volume that
receives at least dose d̂. It can be expressed as averaged Heaviside steps

DVH(d̂;d) =
1

V

X

i2v

⇥(di � d̂) , (1)

meaning that only voxels i with di � d̂ contribute to the sum which is normalized by the
total voxel count V in v and thus yielding a fractional volume. Note that (without loss of
generality) we assumed that all voxels have similar volume.

II.A.2. Uncertainty analysis of DVHs

Uncertainty analysis of DVHs is mostly performed on an empirical basis through computation
of error dose scenarios (among others Refs. 2,3,6,13,14,15,17,21,22,24,28,29). This enables
the computation of a DVH for each dose scenario (which can be either a worst-case scenario
or a random sample), from which then worst-case estimates, empirical statistical moments
as well as quantiles of the probability distribution over DVH-points are derived.

For the purpose of this work, three forms of “statistical” DVHs will be of importance.
First, uncertainty of a DVH can be evaluated through the statistical moments of each DVH-
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point, for example the expected/mean DVH and its standard deviation, which can be em-
pirically determined from ns random dose samples ds as

DVH(d̂) =
1

ns

nsX

s=1

DVH(d̂;ds) (2)

�
DVH(d̂) =

vuut 1

ns � 1

nsX

s=1

h
DVH(d̂;ds)�DVH(d̂)

i2
. (3)

Secondly we discuss “↵-DVHs”, which can be compactly expressed as

↵-DVH(d̂;d,↵) = v↵ , P (DVH(d̂;d)  v↵) = ↵ (4)

where v↵ is the volume covered with a probability P (DVH(d̂) � v↵) = ↵. Thus ↵-DVHs can
be used to give percentiles of the probability distribution of each DVH-point and, together
with the corresponding (1-↵)-DVH, the respective confidence intervals. ↵-DVHs may be
computed with the empirical marginal quantile functions for the respective DVH-points.
Alternatively, ↵-DVHs are equal to iso-probability curves on the respective dose-volume
coverage map (DVCM) (as proposed by Refs. 14). Such a DVCM assigns a probability of
coverage of each possible volume fraction for any dose threshold d̂ and can be defined as

DVCM(d̂, v;d) = P (DVH(d̂;d)  v) = F
DVH(d̂,d)(v) , (5)

where F
DVH(d̂,d)(v) is the cumulative distribution function (CDF) of the probability dis-

tribution over the respective DVH-point. Equation (5) can then be directly inserted into
Equation (4) such that the respective ↵-DVH is now the iso-curve at DVCM = ↵.

Note that such ↵-DVHs or DVCMs do not yield confidences or probabilities for the full
DVH but only over single DVH-points (i. e., they represent marginal quantiles and CDFs),
and hence do not generally represent naturally occuring DVH-scenarios.

II.B. Moments of the probability distribution over dose-volume

histograms

II.B.1. Analytical integration

If the probability distribution over the dose d has the multivariate CDF Fd, the ⌫-th moment
of the probability distribution of a transformation I(d) can be computed via integration

E [I(d)⌫ ] =

Z

RV

I(d̃)⌫dFd(d̃) (6a)

=

Z

RV

I(d̃)⌫fd(d̃)dd̃ . (6b)
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Moments of the probability distribution over a DVH may thus be explicitly calculated

by solving Equation (6) for I(d) = DVH(d̂;d). For the first non-central moment, this yields

E
h
DVH(d̂;d)

i
=

Z

RV

1

V

X

i2v

⇥(d̃i � d̂)fd(d̃)dd̃ (7a)

=
1

V

X

i

Z 1

�1
⇥(d̃i � d̂)fdi(d̃i)dd̃i (7b)

=
1

V

X

i

Z 1

d̂

fdi(d̃i)dd̃i (7c)

=
1

V

X

i

h
1� Fdi(d̂)

i
. (7d)

Similar steps lead to the mixed non-central moment E
h
DVH(d̂p;d)DVH(d̂q;d)

i
:

E
h
DVH(d̂p;d)DVH(d̂q;d)

i
=

Z

RV

1

V 2

X

il2v

⇥(d̃i � d̂p)⇥(d̃l � d̂q)fd(d̂)dd̃ (8a)

=
1

V 2

X

il2v

Z

R2

⇥(d̃i � d̂p)⇥(d̃l � d̂q)fdi;l
(d̃i;l)dd̃i;l (8b)

=
1

V 2

X

il2v

1Z

d̂p

1Z

d̂q

fdi;l
(d̃i;l)dd̃ldd̃i . (8c)

For the second non-central moment with p = q, i. e., E
h
DVH(d̂p;d)2

i
, Equation (8c)

can be expressed with the marginal bivariate cumulative distribution function Fdi;l
as

E
h
DVH(d̂;d)2

i
=

1

V 2

X

il2v

h
1� Fdi;l

⇣
d̂12

⌘i
, (9)

where 12 = (1, 1)T .

Together Equations (7), (8c) and (9) then give the (co)variance of DVH-points at d̂p
and d̂q using Cov [x, y] = E [xy]� E [x]E [y], i. e.,

Cov

h
DVH(d̂p;d),DVH(d̂q;d)

i

= E
h
DVH(d̂p;d)DVH(d̂q;d)

i
� E

h
DVH(d̂p;d)

i
E
h
DVH(d̂q;d)

i
(10)

which, in case of the variance of a DVH-point at d̂, consequently reduces to

Var

h
DVH(d̂;d)

i
= E

h
DVH(d̂;d)2

i
� E

h
DVH(d̂;d)

i2
. (11)
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Hence, for each point of a DVH for a VOI v, Equations (7) to (11) allow explicit

computation of the expected value and variance of a DVH as well as the covariance between
all DVH points, valid for any probability distribution over the dose d in v as long as its
univariate and bivariate marginal CDF can be evaluated.

While not explicitly evaluated in this work, similar steps can be taken to compute
higher moments to more accurately parameterize the underlying probability distribution.
This requires an expansion of the respective power of the sums of Heaviside steps with the
multinomial theorem and evaluation of multivariate probabilities of higher dimensionality.
We provide such a generalization in Appendix C.

II.B.2. Summary of previous work

A result similar to Equation (7) was already documented in literature25, where it was ob-
tained by interpreting the computation of the DVH according to Equation (1) as a sum of
Bernoulli experiments: Each voxel i falls into the current DVH bin at d̂ with a probability
pi = P (di > d̂) = 1 � Fdi(d̂), where Fdi is the marginal CDF for di, and does not fall into
the bin with a probability 1 � pi. With the linearity of the expectation value one then can
directly derive Equation (7d).

The result proved to be applicable with di�erent families of assumed probability dis-
tributions (i. e., Gaussian, triangular and rectangular/uniform)25,26. However, due to the
simplified uncertainty model using constant relative standard deviation and no correlation
between voxels, an exact computation of higher moments of a DVH-point’s probability dis-
tribution was not attempted.

II.C. Confidence bounds for DVH-points

II.C.1. Parameterization of the DVH probability distribution

Since Equations (7) to (11) provide expected value and covariance of any DVH-point, one
could possibly directly parameterize the probability distribution over the full DVH with
a multivariate normal distribution. This parameterization is, however, unphysical; since
DVH-points represent the fraction of a volume, their values are confined to the interval
[0, 1] in contrast to the infinite support of the multivariate normal distribution. Hence,
the probability distribution of a DVH point might be more “physically” represented by a
distribution supported only in the interval [0, 1], such as a beta distribution B(a, b) with
shape parameters a and b. The beta distribution is shortly characterized in Appendix A.
However, lacking a generalized multivariate form (for recent approaches on constructing
bivariate beta distributions see, e. g., Refs. 30,31), B(a, b) may only be used to parameterize
the marginal distribution over a single DVH-point, not the full multivariate DVH.

Current approaches applying DVH confidences define these on a marginal by-point
basis14,15,17,29. Hence, quantifying probabilities over marginal DVH-points is in line with
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literature and enables comparability. Therefore, in this work, marginal probabilities will be
evaluated, based on the (unphysical) parameterization with normal distributions as well as
the more physical approach using a beta distribution whose shape parameters a and b are ob-
tained from the respective DVH-point’s expectation value and variance with Equations (23)
and (24).

Using either a normal or beta distribution, one can directly compute DVCMs according
to Equation (5) or an ↵-DVH using

↵-DVH(d̂;d,↵) = F�1

DVH(d̂;d)
(↵)

=

8
<

:
E
h
DVH(d̂;d)

i
+

r
2Var

h
DVH(d̂;d)

i
erf

�1
(2↵� 1) | normal

I�1

↵ (a, b) | beta
,

(12)

where erf
�1 denotes the inverse error function and I�1

↵ represents the inverse of the regular-
ized incomplete beta-function.

II.C.2. Summary of previous work

A subsequent work27 (to Refs. 25,26) already formulated an analytical calculation of ↵-DVHs
as defined in Equation (4).

In summary, their model is based on the definition of a “binary random variable”27

T ↵,d̂
i =

(
1 P (di � d̂) > 1� ↵

0 P (di � d̂)  1� ↵
(13)

interpreted as “the volume receiving a dose greater than [d̂] with a probability greater than
1 � ↵”27. This interpretation then leads them to define T ↵,d̂

i = ⇥

⇣
1� ↵� Fdi(d̂)

⌘
which,

in analogy to Equation (4), translates to

↵-DVHHC
(d̂;d,↵) =

1

V

X

i2v

T ↵,d̂
i =

1

V

X

i2v

⇥

⇣
1� ↵� Fdi(d̂)

⌘
. (14)

Equation (14) substantially di�ers from our result in Equation (12). This may be
attributed to disregarding correlation across voxels in their derivations or inconsistencies in
the definition of T ↵,d̂

i , which apparently does not describe a random variable per se, but
rather includes the evaluation of a probability—in this case the probability P (di � d̂) of
uncertain dose di exceeding d̂—which is not a random but a fixed value obtained from the
CDF over di. Since Equation (14) has only been tested with an assumed uncertainty model
and not been benchmarked against sample statistics27, we incorporate Equation (14) in our
evaluations and discuss the Equation further in Section IV..
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II.D. Dose Uncertainty Model

Evaluation of Equations (7), (10) and (11) or, in general, Equation (25) requires a model
for the probability distribution over dose d, such that its CDF can be evaluated. Note that
empirical CDFs as well as analytical/parameterized CDFs can be used.

II.D.1. Gaussian model for the probability distribution over dose

For a first evaluation and validation of the new probabilistic computations, we assume

d ⇠ N (µ,⌃) , (15)

i. e., the dose follows a multivariate normal distribution with mean dose µ and covariance ⌃.
This choice of probability distribution cannot represent the true underlying probability dis-
tribution: First, the multivariate normal is supported on the full multidimensional real space,
while physical dose is bound to the positive orthant. And second, empirical evidence (e. g.
Refs. 6,24) as well as heuristic considerations show that the respective distribution exhibits
considerable skewness and is consequently not part of the symmetric Gaussian family. Alter-
natives to assumption (15) will be discussed in Section IV.. As a first order approximation,
however, Equation (15) is well suited to study the probabilistic DVH-model, because on the
one hand, its univariate and bivariate probabilities can be calculated32, which is su�cient to
compute an expected DVH and its (co)variance. On the other hand, evaluation on patient
cases with assumption (15) implicitly studies the impact of the inaccurate Gaussian dose
model on the evaluation of VOI-based dose statistics like DVHs under uncertainty. Further,
while for a single fraction treatment the non-Gaussian shape of the probability distribution
over dose is to be expected, under multiple fractions a more Gaussian-like shape may form
(for examples of voxel dose probability distributions see Refs. 6,24).

II.D.2. Computation of dose uncertainty

The Gaussian dose model from Section II.D.1. requires mean µ and covariance ⌃ for evalu-
ation. E. g., these could be empirically estimated with sample mean and covariance of a set
of discrete error scenarios.

Since the motivation of this work is to build a fully analytical model (which also fa-
cilitates future use in optimization), we rely on computation of µ and ⌃ through APM (as
introduced by Refs. 18). In previous works we could already show that APM accurately mod-
els µ and � =

p
diag(⌃)

33, and that e�cient application to patient data—especially in the
context of fractionation22—is possible. Extension to biological optimization demonstrated
applicability of APMs to intensity-modulated carbon ion therapy planning.34

APM acts as a probabilistic pencil-beam dose calculation algorithm inherently enabling
computation of moments of the probability distribution over the resulting dose. More exact,
APM represents the constituents of a pencil-beam algorithm as superpositions of Gaussian
functions (including the integrated depth dose, i. e., the Bragg peak), enabling propagation

9
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of uncertainties through the dose calculation in closed-form via analytical integration (for a
detailed explanation see Refs. 18).

The accuracy of this approximation of the pencil-beam algorithm can, in principle, be
arbitrarily chosen by varying the number of Gaussian components, thus providing also a
nominal dose calculation algorithm for inverse treatment planning that is similar in quality
to common pencil-beam algorithms. As such, it is able to provide a dose influence matrix
D 2 RV⇥B

+ with number of voxels V and number of pencil-beams B generating the dose
d 2 RV

+
from the fluence vector w 2 RB

+
via the linear transformation

di =
X

j

Dijwj . (16)

In Equation (16), i indexes voxels in the patient while j indexes pencil-beams.

Now, in addition to Equation (16), APM provides probabilistic analogs to Equation (16)
for moments of the probability distribution over d by enabling element-wise computation of
expectation value and (co)variance of elements of the dose influence matrix D. This allows
to represent the expected value of dose E [d] as a linear transformation

E [di] =
X

j

E [Dij]| {z }
Dij

wj =

X

j

Dijwj (17)

and the covariance in dose with a quadratic form

Cov [di, dl] =
X

jm

Cov [Dij, Dlm]| {z }
Vijlm

wjwm =

X

jm

Vijlmwjwm . (18)

Hence, one can denote D 2 RV⇥B
+ and V 2 RV⇥B⇥V⇥B

+ as expected dose influence matrix and
covariance influence tensor, respectively. While V is, in general, too large to be stored in
memory, the element-wise computation with APM allows on-the-fly evaluation of dependent
quantities, e. g. the variance or covariance of dose.

II.E. Validation and application of the model

The analytical probabilistic DVH-model will be evaluated on three patient cases, i. e., an
intracranial, a paraspinal, and a prostate case. Parameters used for planning and uncertainty
computations are laid out in Table 1. These cases were already evaluated in our previous
works22,33,34. Furthermore, a detailed comparison of ↵-DVHs and DVCMs is exercised to
validate empirical percentiles against results from the respective quantile functions from
Equation (4) and the previous works27.

II.E.1. Application on all cases using the fractionated treatment samples

For all three patient cases, empirical estimates DVH, �̄2

DVH
are obtained by computing

100⇥ 30 dose scenarios, i. e., 100 sampled treatment scenarios with 30 fraction each, based

10
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on a Gaussian uncertainty model using the assumed setup and range errors from Table 1
as respective standard deviation with zero mean (compare to the description of the APM
uncertainty model in Refs. 18). Additionally, expected dose µ and covariance ⌃ within
the respective VOIs was also computed with APM (see Section II.D.2.) for the same input
uncertainty model, and then fed into the herein presented DVH-models (by assuming a mul-
tivariate normal distribution as described in Section II.D.). This enabled comparison of the
sample statistics to a fully analytical method and serves as proof-of-concept of the derived
model.

II.E.2. Full validation on the intracranial case with 5000 samples

As the intracranial case is the smallest one with lowest computational overhead, we fur-
ther computed 5000 realizations of single-fraction treatments. These will be used to nearly
eliminate statistical inaccuracy for benchmarking APM.

To further validate the analytical computation itself excluding inherent mismatch of
modeled and real probability distribution over dose, the analytically computed µ and ⌃ are
additionally used to create 5000 new dose samples under the assumption that dose actually
follows a multivariate normal distribution, i. e., their samples are drawn from the distribution
N (µ,⌃). From these samples, a second statistical estimate of the DVH is obtained. This
can be used to validate if the analytical computation is actually correct under the multivari-
ate normal assumption from Equation (15). Further, DVCMs and ↵-DVHs are computed
under the assumption of marginally normally distributed DVH-points and marginally beta
distributed DVH-points. These are compared to the respective statistical estimates from the
5000 scenario samples.

III. Results

We evaluated the described methodology on three patient cases – an intracranial, paraspinal,
and prostate patient. Information about the datasets, treatment plans and the assumed input
uncertainty model can be found in Table 1.

III.A. Proof of work – computation on patient data

Figure 1 compares sample mean and standard deviation of DVHs to the respective analytical
computations with Equations (7) to (11) for treatments with 30 fractions.

For the prostate case, the sampled and analytically computed mean DVH and its stan-
dard deviation yield good agreement for both target and OAR. For the intracranial case,
especially the curves illustrating standard deviation seem to exhibit larger di�erences. How-
ever, a closer look reveals that the di�erences originate from both discrepancies of the mean
and the standard deviation estimates.

11
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Figure 1: Analytically computed expectation value and standard deviation of DVHs of a target volume
and organ at risk (OAR) for each of the three patient cases, compared to the respective sample mean and
standard deviation. For the sampling benchmark, 100 treatments were simulated by multivariate normal
sampling using the systematic errors from Table 1 as standard deviation, while for each treatment taking 30
fraction samples based on the random component.

12

This article is protected by copyright. All rights reserved. 



A
cc

ep
te

d
 A

rt
ic

le
To better quantify the di�erences between the analytical computation and the sample

reference, Figure 2 summarizes the absolute di�erence in relative volume for all patients
grouped by (1) mean and standard deviation, (2) targets and OARs, and (3) 1 and 30 fraction
treatments. Di�erences between analytical and sample computations are, in general, larger
for targets than for OARs. For the OARs, the evaluation for multiple fractions shows an
increase in accuracy. This does not seem to transfer to targets, where, although the number
of points with minimal di�erence (< 0.001) also increases, a stronger tail to higher di�erences
is present. In general, more outliers, i. e., single DVH-points with large di�erence, can be
observed when performing the calculations for a treatment in 30 fractions.

Figure 2: Histograms (bin width: 0.001) of the absolute di�erences observed between the mean and
standard deviation of all DVH-points computed analytically and via random sampling for all patients. (a,b)
show the analysis for all evaluated targets in all patients, while (c,d) display it for all evaluated OARs.

III.B. Validation of model and analytical computations

III.B.1. Distribution of single DVH-points

Figure 3 shows normalized histograms of two DVH-points (one evaluated at 57 Gy for the
target and one at 30 Gy for the brainstem of the intracranial case), comparing the samples
from the dose scenarios and from the multivariate normal approximation. Their respective
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approximations with a normal distribution visualize di�erences between the respective mo-
ments of the DVH-point’s probability distribution: in the clinical target volume (CTV), the
re-sampled mean underestimates the DVH at 57 Gy by a volume fraction of 4 %, whereas
in the brainstem di�erence between the mean / expected values is negligible. The opposite
holds true for the computed standard deviation.

Figure 3: Probability distribution over DVH-points evaluated at d̂ = 57Gy in the CTV (a) and at 30 Gy in
the brainstem (b) of the intracranial case. The histograms show the distribution from the 5000 dose scenarios
and the 5000 dose distributions re-sampled under assumption (15). NS represents a normal distribution
parameterized from sample mean and variance from the 5000 DVHs obtained from the scenario samples, NR
has ben similarly computed from the re-sampled scenarios. NA parameterizes a normal distribution based
on the analytical (APM) computation of DVH-point expectation and variance, and BA uses the same values
to parameterize a beta distribution. The vertical lines indicate the respective expected/mean values, with
the dashed black line giving the nominal value.

The analytically computed expectation value and variance of the respective DVH-points
shows no significant di�erence to the statistical moments obtained from the re-sampled
data. This is expected, since the analytical computations are mathematically exact and only
negligible numerical inaccuracy is introduced when evaluating the univariate and bivariate
normal CDF.

The Gaussian approximation is not bound to the volumetric interval [0, 1], and thus
would assign non-zero probability to non-existing, e. g., negative, volume fractions. Figure 3
thus shows corresponding approximations with beta distributions, whose shape parameters
are obtained from Equations (23) and (24) using analytically computed expectation and
variance of the DVH-point. This leads to a physically more reasonable distribution which is
further backed by the Q-Q plots comparing the quantiles of the normal and beta approxi-
mation to the empirical quantiles in Figure 4.

Figures 4a and 4b underline the problem of the infinite support of the normal distri-
bution, i. e., unphysical quantiles exist in the theoretical normal model. This goes hand in
hand with an especially pronounced disagreement between theoretical and empirical quan-
tiles approaching the boundaries of the interval [0, 1], but also concerns possible skewness
(compare Figures 3b and 4b) or excess kurtosis of the distribution (Figures 3a and 4a). These
disagreements are reduced using a beta distribution. Especially the evaluated DVH-point
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Figure 4: Quantile-quantile plots comparing empirical quantiles (y-axis) for the data (green) to quantiles
from the hypothesized normal (a,b) and beta (c,d) distributions (x-axis) obtained from analytical moment
computations (red). The thicker green and yellow lines span the 5 %–95 % and 25 %–75 % quantiles, re-
spectively. In each plot the gray area additionally enclose “physically feasible” volumes in [0, 1]. CTV and
brainstem of the intracranial case are shown for the same DVH-points as in Figure 3. The data is based on
the 5000 dose scenario samples for a single fraction.
in the brainstem in Figure 4d shows near perfect agreement with the empirical quantiles.
For all four evaluations in Figure 4, however, near perfect agreement is achieved for “inner”
quantiles, i. e., the first and third quartile.

III.B.2. Evaluation of cumulative probabilities

Next, we assess the accuracy of complete ↵-DVHs by comparing ↵-DVHs computed from the
quantile functions of the respective probability distribution parameterized from the analytical
computations with empirical quantiles over the full DVH. Furthermore we compare to the
previous attempt of analytical computation of ↵-DVHs27 as laid out in Section II.C.2..

Figure 5 shows the respective comparisons of analytically computed DVCMs to DVCMs
obtained from sample statistics (compare Equation (5)). The ↵-DVHs in Figures 5a and 5b
computed with Equation (14) (i. e., the method from Refs. 27), show significant di�erences
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to the corresponding reference ↵-DVHs from sampling.

In Figures 5c and 5d, the probabilities within the empirical DVCMs show large di�er-
ences when compared to DVCMs computed with the CDF from the Gaussian approximation,
especially near full volume coverage and near zero volume coverage, where the approximated
CDF exhibits di�erences of up to ±0.2. This is to be expected due to the infinite support
of the normal distribution, and therefore the agreement is much better with the beta ap-
proximation in Figures 5e and 5f (overall the deviation is more than halved compared to
the normal approximation). This transfers to the computation of ↵-DVHs based on the
quantile function of the beta distribution, similarly showing better agreement than with the
assumption of normally distributed DVH-points. Overall, our explicit parametrization and
evaluation of quantile functions of either normal or especially beta distributions outperforms
the previously published method27 (compare Section II.C.2.).
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Figure 5: Evaluation of probabilities and ↵-DVHs obtained through scenario sampling and analytical
computations. (a) and (b) show empirical DVCMs (indexed with S) obtained from the 5000 dose scenarios,
where the color indicates the local value of the CDF of the respective DVH-point. Corresponding ↵-DVHs
were derived, based on sampling (S) and on Ref. 27 (H). For (c) and (d) the di�erence of DVCMN , a DVCM
constructed from the normal parameterization, to DVCMS has been evaluated with corresponding ↵-DVHs
obtained from the normal quantile function. (e,f) provide a similar analysis using DVCMB and ↵-DVHs (B)
with the beta parameterization.
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IV. Discussion

The very core of this work is the description of an analytical model that can compute statisti-
cal moments of DVH-points for arbitrary probability distributions over the dose distribution.
The only requirement is that the dose distribution follows/obeys a probability distribution
function where the marginal CDFs can be evaluated. Hence, we provide a mathematically
exact formulation of the moments which eliminates statistical uncertainty (in particular in
combination with APM-based uncertainty quantification18,22); if the probability distribution
over dose is known, the respective moments can be exactly computed.

In our initial analysis, a multivariate normal distribution was assumed based on expected
dose and its covariance obtained from a probabilistic dose calculation employing APM, which
we compared to a sampling benchmark. Most of the analytically computed expected and
standard deviations of the investigated DVHs lied within ±1.5 % di�erence in volume from
the sampling benchmark. Evaluating the same model for a larger number of fractions showed
that especially for the OARs, more values cluster around the small di�erences.

Those di�erences between analytical model and sampling benchmark mainly stem from
the assumed probability distribution over the dose distribution. It is clear that the multivari-
ate normal assumption for dose uncertainty used throughout this work does not reflect every
detail of reality perfectly. This is directly obvious because dose cannot be negative while
the normal distribution has infinite support. But also deformations and anatomical varia-
tions, the non-linearity of dose deposition, and the so far not captured complexity of input
uncertainty suggest that “real” dose uncertainty will most likely manifest as non-Gaussian
probability distributions di�ering across heavily interdependent voxels. For parametrizing
such models, an appropriate family of probability distributions that reasonably models vari-
ation in voxel doses would have to be selected for which correlations could then, for example,
be modeled with copulas. While finding a suitable probabilistic model accurately describing
dose distributions under uncertainty is beyond the scope of this work, our method would
also be compatible with such advanced models, since it only requires that some form of mul-
tivariate CDF can be computed. This includes non-Gaussian analytical as well as empirical
CDFs. In doing so our model has the advantage to preserve the mathematical connection
between dose DVH-variation which would not be accessible when sampling DVH-scenarios
themselves.

Despite the inaccuracy inherent to our choice of a multivariate normal distribution, it
served as good initial proof of concept for the presented method. The multivariate normal
parametrization allowed straightforward resampling of dose scenarios to demonstrate the
exactness of the closed-form solution. The validation with results from sampled dose cubes
and DVHs on the three patient cases showed that despite using this physically flawed model,
we still obtain reasonable results, especially for the prostate and paraspinal case. The larger
deviations in the intracranial case may be attributed to the smaller VOIs compared to
the other two cases. The above discussed observation that fractionation seems to decrease
the di�erence in most voxels might be attributed to a more Gaussian shaped probability
distribution of dose uncertainty in the context of fractionation (as also indicated within

18

This article is protected by copyright. All rights reserved. 



A
cc

ep
te

d
 A

rt
ic

le
Refs. 7).

Our model describes moments of the DVH-points’ probability distributions and not the
probability distribution over the full DVHs. Therefore it is not directly possible to exactly
compute confidences on actual realizations of the full DVH. It is, however, possible to use
the computed moments to parameterize distributions over DVH points. In our evaluations
based on expected DVH-points and their standard deviation, usage of normal distributions
was a first obvious choice. To some extent it may be surprising that this yielded accept-
able results within few volume percent di�erence to the sampling benchmark: The choice
of a normal distribution (with infinite support) is in this case of a volume fraction, which
can take only values in the interval [0, 1], similarly physically unreasonable as in the case
of the dose distribution. A more plausible (concerning the support interval) parameteri-
zation was found using a beta distribution. However, both distributions do not represent
a mathematically exact model. Interpreting the calculation of a DVH-point as a series of
Bernoulli trials (similar to Refs. 25, see Section II.B.2.), suggests parameterization with
a Binomial distribution in the case of independently and identically distributed individual
voxel doses. Still, assuming independence of voxels would not be realistic. More suitable cor-
related binomial models35 make specific assumptions and are computationally demanding,
rendering them not applicable for our purpose. Nevertheless, assuming a beta distribution
(or even a normal distribution), which is parameterized by mean and standard deviation
for the DVH-point, could facilitate uncertainty propagation through models that build on
DVHs itself, e. g. in deriving biologically e�ective dose36, or refining the statistical models
for optimization purposes19.

In comparison to the previous works25,26,27, our methodology directly reproduced their
model for the expectation value of DVH-points25. Our approach using integration directly
generalizes to higher moments like covariance, while their model only yielded upper bounds
on the variance because correlations between voxels were not explicitly included. Yet, despite
the lack of an uncertainty model considering covariance in dose, they formulated confidence
bounds, i. e., ↵-DVHs27. Those were, however, in stark disagreement with the sampling
benchmark (and thence our model). This may mainly be attributed to neglecting the con-
tribution of (in)dependencies between voxels in the derivations. The di�erence of Equa-
tion (14) to a “true” confidence of dose over coverage of a volume fraction may be shown
by the following gedankenexperiment: Let us assume all V voxels in a VOI v are indepen-
dently normally distributed with a mean value of d̂ and identical variances, and therefore
exhibiting Fdi(d̂) = 0.5 in all voxels i 2 v. In this setup, one can see that the median DVH-
point at d̂ takes the value 0.5. Yet, plugging this into Equation (14) with again ↵ = 0.5
yields ↵-DVHHC

(d̂) =
1

V · V · ⇥(1 � 0.5 � 0.5) = 1 6= 0.5 (depending on the definition of
the Heaviside-step). Furthermore, in this case Equation (14) exhibits a sharp “step” around
d̂: For smaller doses d̂ � ✏, the argument of the step function in Equation (14) becomes
negative and therefore resulting in ↵-DVH(d̂ � ✏) = 1, while for larger doses it becomes
↵-DVH(d̂ � ✏) = 0. For the assumed independently distributed model, however, a smooth
decrease of the median DVH around d̂ is expected, whereas the step would be correctly
reproduced when assuming perfectly correlated voxels. Instead we suggest to interpret their
result as the “fraction of voxels whose probability of exceeding d̂ independently from each
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other is larger than 1 � ↵”. Such a quantity, however, does not have a palpable clinical
interpretation.

The applicability of a method that propagates uncertainty from dose to DVHs in terms
of treatment planning might not be directly obvious. As discussed in Section I., uncertainty
quantification usually relies on sampled (stochastic approach) or selected (worst-case ap-
proach) dose scenarios, which can directly be used to obtain similar uncertainty information
about the DVH. However, the analytical probabilistic method presented here provides a
closed-form, continuous relationship between dose uncertainty and DVH-uncertainty, which
can be useful in treatment planning.

For optimization with probabilistic constraints, the method facilitates the use of contin-
uous di�erentiable functions, which “fill the gap” between empirical samples, and could pos-
sibly enable exact definition of the “allowed” probability that certain clinical constraints are
failing. There, using the parameterization of the probability distribution over a DVH-point,
we now have functional access to the probability that a specific dose level is covered with a
certain probability via the ↵-DVH and its analytical dependence on mean and covariance of
the dose (instead of nominal dose as for conventional non-probabilisitc objectives).37,38 Us-
ing this information for planning would extend widely used margin principles39,40, which are
themselves defined based on demanding tumor coverage with a desired probability for a given
dose level. Compared to common robust approaches where the worst case is dynamically
found from a discrete pre-defined uncertainty subset in the input variables, an analytical
confidence constraint based on ↵-DVHs captures the full uncertainty space and allows for
definition of the desired robustness on the relevant endpoint. For example, 90 % probability
to cover a tumor with the 95 % of the prescribed dose could reproduce common margin
assumptions also for anatomically complex cases where margins break down, while at the
same time other probabilistic or nominal endpoints could be optimized. Since these objec-
tives (or also constraint functions) continue to be functions of mean and covariance of dose,
optimization would remain possible using conventional (quasi-)Newton optimizers. This,
however, comes at the cost of deriving the arguably complex gradients (w.r.t. dose mean &
covariance), which could be mitigated by using automatic di�erentiation41, accompanied by
a computationally challenging, yet “embarrassingly parallel” (co)variance computation.37,38

Further, the role of model inaccuracy in such a probabilistic optimization approach would
need further investigation—previous investigations, however, suggest that the assumption of
normal distributions in probabilistic optimization still enables mitigation of dose uncertain-
ties even if the “real” distribution di�ers substantially42. A full analysis of computational
performance and resulting dose distributions of such an optimization approach would exceed
this manuscript and may be part of a future study.

Further, the probabilistic model only requires the dose’s probability distribution and
is independent of the method used to obtain it. This allows its general application, e. g.,
in (retrospective) plan analyses or in combination with sampling-based stochastic optimiza-
tion approaches. For plan analysis and comparison, the closed-form connection of dose and
DVH-uncertainty could be used to observe how higher dose uncertainty (simulated by scal-
ing covariance in desired voxels, for example) would impact the DVH and therefore target
coverage. When relying on sample statistics for the dose instead of a probabilstic dose calcu-
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lation, the parameterizations can be useful to extrapolate to areas not covered by samples.
Additionally, the method could also be used in scenarios where computation of uncertainties
statistically is no longer possible (e. g. when analysing an older cohort) based on assumptions
over the dose probability distributions while still retaining the mathematical link between
dose and DVH probabilities, which may be useful for machine learning applications investi-
gating plan uncertainties.

And last but not least, the generral concept does not only apply to the computation
of DVH points. As already indicated within Ref. 37, the concept may—given mathematical
e�orts—be extended to other plan quality metrics as mean dose or equivalent uniform dose
(EUD), or distinct treatment planning objective and constraint functions.

V. Conclusion

We presented a method to calculate moments of the probability distribution over DVH-
points given a known probability distribution over the dose distribution. The resulting
analytical model corrects and generalizes previous attempts and can be readily combined
with every method able to quantify a probability distribution over dose of either empirical
or probabilistic nature.

We successfully benchmarked the model against excessive sampling (with and without
fractionation), proving mathematical correctness and good agreement even with unrealistic
but common assumptions for probability distributions within the computational pipeline.
The methodology can serve as blueprint for future models on other QIs and can provide
a generalizable framework for confidence-constrained probabilistic treatment plan optimiza-
tion.
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Appendices

A Beta distribution

Suppose a random variable X follows a beta distribution, i. e., X ⇠ B(a, b) with shape
parameters a and b.

Within the interval x 2 [0, 1] (for a > b > 1, x 2 (0, 1) otherwise) its probability density
function (PDF) fX(x) is given by

fX(x) =
1

B(a, b)
xa�1

(1� x)b�1 (19)

where the normalization B(a, b) is the beta-function.

The CDF
FX(x) = Ix(a, b) (20)

requires evaluation of the regularized incomplete beta-function Ix.

Expectation and variance of X are then given by

E [X] =
a

a+ b
, (21)

Var [X] =
ab

(a+ b+ 1)(a+ b)2
=

E [X]
2 b

a2 + ab+ a
. (22)

The shape parameters a and b can be inferred from sample statistics, i. e., the sample
mean x̄ and the sample variance �̄2, with the method of moments based on Equations (21)
and (22) for �̄2 < x̄(1� x̄):

â = x̄

✓
x̄(1� x̄)

�̄2
� 1

◆
, (23)

â = (1� x̄)

✓
x̄(1� x̄)

�̄2
� 1

◆
= x̄(1� x̄)â . (24)
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B Patient Data Information

Table 1: Information on the three patient datasets used for evaluation (similar to Ref. 22).

patient intra-cranial para-spinal prostate

beam angles 60°, 120° 135°, 180°, 225° 90°, 270°
prescribed dose 60 Gy 60 Gy 70 Gy (76 Gy)

beamlet distance 3 mm 4 mm 5 mm
#beamlets 1705 13274 6803
resolution (1.2⇥ 1.2⇥ 3)mm3 (3⇥ 3⇥ 3)mm3 (2⇥ 2⇥ 3)mm3

setup error [std. dev.] (1mm)sys + (2mm)rand (1mm)sys + (2mm)rand (1mm)sys + (3mm)rand

range error [std. dev.] (3.5%)sys + (1mm)rand (3.5%)sys + (1mm)rand (3.5%)sys + (1mm)rand

C Generalized model for the ⌫-th moment of a proba-

bility distribution over a DVH-point

Using multi-index notation with the multi-index  = (1,2, . . . ,V ) 2 NV
0

and by definition
of a multi-indexed Heaviside step ⇥


(d̃� d̂) =

Qn
i=1

⇥(d̃i � d̂)i , one can provide a compact
general formula to compute the ⌫-th non-central moment of the probability distribution of
a DVH-point, i. e.,
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where Fd(d̂ · 1⌫) corresponds to the evaluation of a ⌫-variate marginal probability and
1⌫ 2 R⌫ is a vector with each of the ⌫ components equal to 1. For example, in the case of
⌫ = 3 and V = 4, given an index combination  = (2, 0, 1, 0) (satisfying the sum condition
|| = ⌫ = 3), the trivariate probability Fd1;1;3((d̂, d̂, d̂)

T
) needs to be evaluated. Note that

the possible “doubling” of an index (i. e., i > 1) can also be eliminated in the underlying
integral using ⇥(x)i = ⇥(x). This reduces the given example to an evaluation of a bivariate
probability Fd1;3((d̂, d̂)

T
) = Fd1;1;3((d̂, d̂, d̂)

T
).
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Table 1: Information on the three patient datasets used for evaluation (similar to Wahl et al.22) 

patient intra-cranial para-spinal prostate 
beam angles 60°, 120° 135°, 180°, 225° 90°, 270° 
prescribed dose 60 Gy 60 Gy 70 Gy (76 Gy) 
beamlet distance 3 mm 4 mm 5 mm 
#beamlets 1705 13274 6803 
resolution (1.2 x 1.2 x 3) mm³ (3 x 3 x 3) mm³ (2 x 2 x 3) mm³ 
setup-error [std. dev.] (1 mm)sys + (2 mm)rand (1 mm)sys + (2 mm)rand (1 mm)sys + (3 mm)rand 
range-error [std. dev.] (3.5 %)sys + (1 mm)rand (3.5 %)sys + (1 mm)rand (3.5 %)sys + (1 mm)rand 
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