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Abstract

Linear systems are the bedrock of virtually all numerical computation. Machine
learning poses specific challenges for the solution of such systems due to their
scale, characteristic structure, stochasticity and the central role of uncertainty in
the field. Unifying earlier work we propose a class of probabilistic linear solvers
which jointly infer the matrix, its inverse and the solution from matrix-vector
product observations. This class emerges from a fundamental set of desiderata
which constrains the space of possible algorithms and recovers the method of
conjugate gradients under certain conditions. We demonstrate how to incorporate
prior spectral information in order to calibrate uncertainty and experimentally
showcase the potential of such solvers for machine learning.

1 Introduction

Arguably one of the most fundamental problems in machine learning, statistics and scientific com-
putation at large is the solution of linear systems of the form Az, = b, where A € R3" is a
symmetric positive definite matrix [1-3]. Such matrices usually arise in the context of second-order
or quadratic optimization problems and as Gram matrices. Some of the numerous application areas
in machine learning and related fields are least-squares regression [4], kernel methods [5], Kalman
filtering [6], Gaussian (process) inference [7], spectral graph theory [8], (linear) differential equations

[9] and (stochastic) second-order methods [10].

Linear systems in machine learning are typically large-scale, have characteristic structure arising
from generative processes, and are subject to noise. These distinctive features call for linear solvers
that can explicitly make use of such structural information. While classic solvers are highly optimized
for general problems, they lack key functionality for machine learning. In particular, they do not
consider generative prior information about the matrix.

An important example are kernel Gram matrices, which exhibit specific sparsity structure and spectral
properties, depending on the kernel choice and the generative process of the data. Exploiting such
prior information is a prime application for probabilistic linear solvers, which aim to quantify
numerical uncertainty arising from limited computational resources. Another key challenge, which
we will not yet address here, are noisy matrix evaluations arising from data subsampling. Ultimately,
linear algebra for machine learning should integrate all sources of uncertainty in a computational
pipeline — aleatoric, epistemic and numerical — into one coherent probabilistic framework.

Contribution This paper sets forth desiderata for probabilistic linear solvers which establish first
principles for such methods. From these, we derive an algorithm incorporating prior information
on the matrix A or its inverse A~!, which jointly estimates both via repeated application of A.
This results in posterior beliefs over the two operators and the solution which quantify numerical
uncertainty. Our approach unifies and extends earlier formulations and constitutes a new way of
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Figure 1: Illustration of a probabilistic linear solver. Given a prior for A or H modelling the linear
operator A and its inverse A~!, posterior beliefs are inferred via observations y; = As;. This
induces a distribution on the solution x., quantifying numerical uncertainty arising from finite
computation. The plot shows k& = 3 iterations of Algorithm 1 on a toy problem of dimension n = 5.

interpreting linear solvers. Further, we propose a prior covariance class which recovers the method
of conjugate gradients as its posterior mean and uses prior spectral information for uncertainty
calibration, one of the primary shortcomings of probabilistic linear solvers. We conclude by presenting
simplified examples of promising applications of such solvers within machine learning.

2 Probabilistic Linear Solvers

Let Az, = b be a linear system with A € REI"™ positive definite and b € R". Probabilistic linear
solvers (PLS) [11-13] iteratively build a model for the linear operator A, its inverse H = A~" or the
solution x,, represented by random variables A, H or x. In the framework of probabilistic numerics
[14, 15] such solvers can be seen as Bayesian agents performing inference via linear observations
Y = [y1,...,yx] € R"*F resulting from actions S = [sy,...,sx] € R"*¥ given by an internal
policy (s | A,H,x, A, b). For a matrix-variate prior p(A) or p(H) encoding prior (generative)
information, our solver computes posterior beliefs over the matrix, its inverse and the solution of the
linear system. An illustration of a probabilistic linear solver is given in Figure 1.

Desiderata We begin by stipulating a fundamental set of desiderata for probabilistic linear solvers.
To our knowledge such a list has not been collated before. Connecting previously disjoint threads,
the following presents a roadmap for the development of these methods. Probabilistic linear solvers
modelling A and A~! must assume matrix-variate distributions which are expressive enough to
capture structure and generative prior information either for A or its inverse. The distribution choice
must also allow computationally efficient sampling and density evaluation. It should encode symmetry
and positive definiteness and must be closed under positive linear combinations. Further, the two
models for the system matrix or its inverse should be translatable into and consistent with each other.
Actions s; of a PLS should be model-based and induce a tractable distribution on linear observations
y; = As;. Since probabilistic linear solvers are low-level procedures, their inference procedure
must be computationally lightweight. Given (noise-corrupted) observations this requires tractable
posteriors over A, H and x, which are calibrated in the sense that at convergence the true solution x,
represents a draw from the posterior p(x | Y, S). Finally, such solvers need to allow preconditioning
of the problem and ideally should return beliefs over non-linear properties of the system matrix
extending the functionality of classic methods. These desiderata are summarized concisely in Table 1.

2.1 Bayesian Inference Framework

Guided by these desiderata, we will now outline the inference framework for A, H and x forming
the base of the algorithm. The choice of a matrix-variate prior distribution is severely limited by
the desideratum that conditioning on linear observations y; = As; must be tractable. This reduces
the choice to stable distributions [16] and thus excludes candidates such as the Wishart, which has
measure zero outside the cone of symmetric positive semi-definite matrices. For symmetric matrices,
this essentially forces use of the symmetric matrix-variate normal distribution, introduced in this
context by Hennig [11]. Given Ay, W4 € Rm", assume a prior distribution

p(A) = N(A; Ag, WS @ W),



Table 1: Desired properties of probabilistic linear solvers. Symbols (X, ~, ") indicate which
properties are encoded in our proposed solver (see Algorithm 1) and to what degree.

No. Property Formulation
(1) distribution over matrices A~ D, pp(A) v’
(2) symmetry A=ATas. v’
(3) positive definiteness Vo #0: vTAv > 0 as.
(4)  positive linear combination in same distribution family Vaj >0: 3, ajA; ~D v’
(5) corresponding priors on the matrix and its inverse p(A) «— p(H) v’
(6) model-based policy si~m7(s|A b A H,Xx) v’
(7)  matrix-vector product in tractable distribution family As ~ D' v’
(8) noisy observations p(Y |A,S)=N(Y;AS,A) X
(9) tractable posterior p(AlY,S)orpH|Y,S)
(10)  calibrated uncertainty . ~ N(E[x], Cov|x])
(11)  preconditioning (PTTAP H)Px. =P b v
(12)  distributions over non-linear derived quantities of A det(A), o(A), A=1LTL,... X

where & denotes the symmetric Kronecker product [17].! The symmetric matrix-variate Gaussian
induces a Gaussian distribution on linear observations. While it has non-zero measure only for
symmetric matrices, its support is not the positive definite cone. However, positive definiteness can
still be enforced post-hoc (see Proposition 1). We assume noise-free linear observations of the form
y; = As;, leading to a Dirac likelihood

p(Y |A,S) = hﬁ}/\/(y; AS TR I)=456Y — AS).

The posterior distribution follows from the properties of Gaussians [4] and has been investigated in
detail in previous work [18, 11, 13]. It is given by p(A | S,Y) = N(A; Ay, 3}) with

A, =Ag+ ANUT+UA))T—USTARUT

¥ =W, — SUT) @ WM, — SUT)
where A} =Y — AgS and U = WHS(STWHS) 1. We aim to construct a probabilistic model
H for the inverse H = A~! consistent with the model A as well. However, not even in the
scalar case does the inverse of a Gaussian have finite mean. We ask instead what Gaussian model
for H is as consistent as possible with our observational model for A. For a prior of the form
p(H) = N(H; Hy, WH @ WH) and likelihood p(S | H,Y) = §(S — HY'), we analogously to the
A-model obtain a posterior distribution p(H | S,Y) = N'(H; Hy, =H) with

H, = Hy+ AT +utath)T —vHyTall oM
= =W, - Y (U™ e Wi'(L, - Y (UM)T)

where Al = § — HyY and UM = WHY (YTWHY) L. In Section 3 we will derive a covariance
class, which establishes correspondence between the two Gaussian viewpoints for the linear operator
and its inverse and is consistent with our desiderata.

2.2 Algorithm

The above inference procedure leads to Algorithm 1. The degree to which the desiderata are encoded
in our formulation of a PLS can be found in Table 1. We will now go into more detail about the
policy, the choice of step size, stopping criteria and the implementation.

Policy and Step Size In each iteration our solver collects information about the linear operator A
via actions s; determined by the policy 7(s | A,H,x, A, b). The next action s, = —E[H]r;_1 is

!See Sections S2 and S3 of the supplementary material for more detail on Kronecker-type products and
matrix-variate normal distributions.



Algorithm 1: Probabilistic Linear Solver with Uncertainty Calibration

1 procedure PROBLINSOLVE(A(+), b, A, H) # prior for A or H
2 xo + E[H]b # initial guess
3 To < A(Bo —-b

4 while min(/tr(Cov(x]), [|7i||,) > max(duo||bll5; daor) do # stopping criteria
5 s; + —E[H]r;_, # compute action via policy
6 y; < As; # make observation
7 a;  —sIri_1(sTy;) ™! # optimal step size
8 xT; — T+ o;S; # update solution estimate
9 T 11+ oYy # update residual
10 A < INFER(A, s5;,¥;) # infer posterior distributions
1 H < INFER(H, s;,¥;) # (see Section 2.1)
12 ®, ¥ < CALIBRATE(S,Y) # calibrate uncertainty
13 x + N (zy, Cov[Hb]) # belief over solution
14 return (x, A, H)

chosen based on the current belief about the inverse. If E[H] = A~!, i.e. if the solver’s estimate for

the inverse equals the true inverse, then Algorithm 1 converges in a single step since
Ti1+ S =x;—1— ]E[H]’I“Z',l =XT;—1 — A_l(AQ:i,l — b) = A_lb = Ty.

The step size minimizing the quadratic ¢(xz; + as;) = 3 (x; + as;)TA(z; + as;) — bT(z; + as;)
along the action s; is given by o; = argmin,, g¢(z; + as;) = s] (b — Az;)(s] As;) L.

Stopping Criteria Classic linear solvers typically use stopping criteria based on the current residual
of the form ||Ax; — b||, < max(dro||bs, dawr) for relative and absolute tolerances Oyl and dyor-
However, this residual may oscillate or even increase in all but the last step even if the error
||z« — ||, is monotonically decreasing [19, 20]. From a probabilistic point of view, we should stop
if our posterior uncertainty is sufficiently small. Assuming the posterior covariance is calibrated, it
holds that (E,, [[|z. — E[x]||,])? < Eg. [||@. — E[x]||g] = tr(Cov[x]). Hence given calibration, we
can bound the expected (relative) error between our estimate and the true solution by terminating when

tr(Cov[x]) < max(drot||b||5, daro1)- A probabilistic criterion is also necessary for an extension to
the noisy setting, where classic convergence criteria become stochastic. However, probabilistic linear
solvers typically suffer from miscalibration [21], an issue we will address in Section 3.

Implementation We provide an open-source implementation of Algorithm 1 as part of PROBNUM,
a Python package implementing probabilistic numerical methods, in an online code repository:

f (/\) https://github.com/probabilistic-numerics/probnum

The mean and covariance up- and downdates in Section 2.1 when performed iteratively are of low
rank. In order to maintain numerical stability these updates can instead be performed for their
respective Cholesky factors [22]. This also enables computationally efficient sampling or evaluation
of probability density functions downstream.

2.3 Theoretical Properties

This section details some theoretical properties of our method such as its convergence behavior and
computational complexity. In particular we demonstrate that for a specific prior choice Algorithm 1
recovers the method of conjugate gradients as its solution estimate. All proofs of results in this
section and the next can be found in the supplementary material. We begin by establishing that our
solver is a conjugate directions method and therefore converges in at most n steps in exact arithmetic.

Theorem 1 (Conjugate Directions Method)
Given a prior p(H) = N (H; Hy, WH @ W) such that Hy, WH € R positive definite, then

m

actions s; of Algorithm I are A-conjugate, i.e. for 0 < i,j < k with i # j it holds that sT As; = 0.


https://github.com/probabilistic-numerics/probnum

We can obtain a better convergence rate by placing stronger conditions on the prior covariance class as
outlined in Section 3. Given these assumptions, Algorithm 1 recovers the iterates of (preconditioned)
CG and thus inherits its favorable convergence behavior (overviews in [23, 10]).

Theorem 2 (Connection to the Conjugate Gradient Method)
Given a scalar prior mean Ay = Hy L= oI with a > 0, assume (1) and (2) hold, then the iterates
x; of Algorithm I are identical to the ones produced by the conjugate gradient method.

A common phenomenon observed when implementing conjugate gradient methods is that due to
cancellation in the computation of the residuals, the search directions s; lose A-conjugacy [24, 25, 3].
In fact, they can become independent up to working precision for ¢ large enough [25]. One way to
combat this is to perform complete reorthogonalization of the search directions in each iteration as
originally suggested by Lanczos [26]. Algorithm 1 does this implicitly via its choice of policy which
depends on all previous search directions as opposed to just s;_; for (naive) CG.

Computational Complexity The solver has time complexity O(kn?) for k iterations without
uncertainty calibration. Compared to CG, inferring the posteriors in Section 2.1 adds an overhead
of four outer products and four matrix-vector products per iteration, given (1) and (2). Uncertainty
calibration outlined in Section 3 adds between O(1) and O(k?) per iteration depending on the
sophistication of the scheme. Already for moderate n this is dominated by the iteration cost. In
practice, means and covariances do not need to be formed in memory. Instead they can be evaluated
lazily as linear operators v — Lv, if S and Y are stored. This results in space complexity O(kn).

2.4 Related Work

Numerical methods for the solution of linear systems have been studied in great detail since the
last century. Standard texts [1, 2, 10, 3] give an in-depth overview. The conjugate gradient method
recovered by our algorithm for a specific choice of prior was introduced by Hestenes and Stiefel [19].
Recently, randomization has been exploited to develop improved algorithms for large-scale problems
arising from machine learning [27, 28]. The key difference to our approach is that we do not rely
on sampling to approximate large-scale matrices, but instead perform probabilistic inference. Our
approach is based on the framework of probabilistic numerics [14, 15] and is a natural continuation of
previous work on probabilistic linear solvers. In historical order, Hennig and Kiefel [18] provided a
probabilistic interpretation of Quasi-Newton methods, which was expanded upon in [11]. This work
also relied on the symmetric matrix-variate Gaussian as used in our paper. Bartels and Hennig [29]
estimate numerical error in approximate least-squares solutions by using a probabilistic model. More
recently, Cockayne et al. [21] proposed a Bayesian conjugate gradient method performing inference
on the solution of the system. This was connected to the matrix-based view by Bartels et al. [13].

3 Prior Covariance Class

Having outlined the proposed algorithm, this section derives a prior covariance class which satisfies
nearly all desiderata, connects the two modes of prior information and allows for calibration of
uncertainty by appropriately choosing remaining degrees of freedom in the covariance. The third
desideratum posited that A and H should be almost surely positive definite. This evidently does not
hold for the matrix-variate Gaussian. However, we can restrict the choice of admissable W to act
like A on span(S). This in turn induces a positive definite posterior mean.

Proposition 1 (Hereditary Positive Definiteness [30, 18])
Let Ay € RX" be positive definite. Assume the actions S are A-conjugate and WS =Y, then

sym

forie€{0,...,k—1} it holds that A; 1 is symmetric positive definite.

Prior information about the linear system usually concerns the matrix A itself and not its inverse, but
the inverse is needed to infer the solution x, of the linear problem. So a way to translate between a
Gaussian distribution on A and H is crucial. Previous works generally committed to either one view
or the other, potentially discarding available information. Below, we show that the two correspond, if
we allow ourselves to constrain the space of possible models. We impose the following condition.
Definition 1

Let A; and H; be the means of A and H at step . We say a prior induces posterior correspondence
if Ai_1 = H; forall 0 < i < k. If only Ai_lY = H,Y , weak posterior correspondence holds.



The following theorem establishes a sufficient condition for weak posterior correspondence. For an
asymmetric prior model one can establish the stronger notion of posterior correspondence. A proof is
included in the supplements.

Theorem 3 (Weak Posterior Correspondence)
Let WH ¢ RGm" be positive definite. Assume Hy = Ay v and that W, Ao, WH satisfy
WiS=Y, (D
STWPA; — AW = o, 2)
then weak posterior correspondence holds for the symmetric Kronecker covariance.

Given the above, let Ay be a symmetric positive definite prior mean and Hy = A ! Define the or-
thogonal projection matrices Pg. = I—-S(STS)™'ST e R <" and Pyr = I-Y (YY) 'Y T €
R " mapping to the spaces span(.S )% and span(Y'). We propose the following prior covariance
class given by the prior covariance factors of the A and H view

W3 = AS(STAS) !STA + Pg. ®Pg.,

H -1 —1y\—1 —1 3)

Wy =A YYTA,'Y) " YTA; + Py WPy,
where ® € R"*™ and ¥ € R"*"™ are degrees of freedom. This choice of covariance class satisfies
Theorem 1, Proposition 1, Theorem 3 and for a scalar mean also Theorem 2. Therefore, it produces
symmetric realizations, has symmetric positive semi-definite means, it links the matrix and the inverse
view and at any given time only needs access to v — Awv not A itself. It is also compatible with a
preconditioner by simply transforming the given linear problem.

This class can be interpreted as follows. The derived covariance factor W* acts like A on the space
span(S) explored by the algorithm. On the remaining space its uncertainty is determined by the
degrees of freedom in ®. Likewise, our best guess for A=1 is A ! on the space spanned by Y. On
the orthogonal space span(Y )" the uncertainty is determined by ¥. Note that the prior depends on
actions and observations collected during a run of Algorithm 1, hence one might call this an empirical
Bayesian approach. This begs the question how the algorithm is realizable for the proposed prior
(3) given its dependence on future data. Notice that the posterior mean in Section 2.1 only depends
on WOAS =Y not on WOA alone. Using eq. (3), at iteration ¢ we have W&SM =Y., ie. the
observations made up to this point. Similar reasoning applies for the inverse. Now, the posterior
covariances do depend on W, respectively W alone, but prior to convergence we only require
tr(Cov[x]) for the stopping criterion. We show in Section S4.3 under the assumptions of Theorem 2
how to compute this at any iteration ¢ independent of future actions and observations.

Uncertainty Calibration Generally the actions of Algorithm 1 identify eigenpairs (\;, v;) in
descending order of \;v] r( which is a well-known behavior of CG (see eqn. 5.29 in [10]). In part,
since this dynamic of the underlying Krylov subspace method is not encoded in the prior, the solver
in its current form is typically miscalibrated (see also [21]). While this non-linear information is
challenging to include in the Gaussian framework, we can choose ® and W in (3) to empirically
calibrate uncertainty. This can be interpreted as a form of hyperparameter optimization similar to
optimization of kernel parameters in GP regression.

We would like to encode prior knowledge about the way A and H act in the respective orthogonal
spaces span(S)L and span(Y)L. For the Rayleigh quotient R(A,v) = (vT Av)(vTv) ! it holds
that Apin(A) < R(A,v) < Amax(A). Hence for vectors v lying in the respective null spaces of S
and Y our uncertainty should be determined by the not yet explored eigenvalues A1, ..., A, of
A and H. Without prior information about the eigenspaces, we choose ® = ¢I and ¥ = ¢ I. If a
priori we know the respective spectra, a straightforward choice is

1 n
-1
o=vTh == D N(A).
1=k-+1
In the absence of prior spectral information we can make use of already collected quantities during
a run of Algorithm 1. We build a one-dimensional regression model p(In R; | Y, .S) for the In-
Rayleigh quotient In R(A, s;) given actions s;. Such a model can then encode the well studied
behaviour of CG, whose Rayleigh coefficients rapidly decay at first, followed by a slower continuous



0 Dron(A), Ame(A)] Table 2: Uncertainty calibration for kernel matrices.
b —— GP posterior p(n %, | ¥.5) | Monte Carlo estimate w =~ E,,_ [w(«.)] measuring cal-

< Rayleigh quotient R(A, s;) . . . 5 .

100 e —e— Uncertainty scale ¢ — ¢~ ibration given 10°/n sampled linear problems of the

", form (K + &2I)x, = b for each kernel and calibration

method. For w = 0 the solver is well calibrated, for

1072 “"‘*"-\/'—
e——— w > 0 underconfident and for w < 0 overconfident.
0 20 40 60 80 100 120 . -
fteration § Kernel n none  Rayleigh g2 Ak+1in

Figure 2: Rayleigh regression. Uncer- Matém32 10° —599  —0.24 0.32 0.09
tainty calibration via GP regression on ~Matém32 10° —1.93 7.53 4.26 4.19
{ln }%(147 Si)}§:1 after & = 91 iterations Matérn32  10* 3.87 17.16 8.48 8.47
of Algorithm 1 on an n = 1000 dimen- Matérn52 102 —7.84 —1.01 —0.76 —0.80
sional Matern32 kernel matrix inversion ~Matém52 10° —4.63 143 —-0.80 —0.81

problem. The degrees of freedom ¢ = Matém52 10‘21 —4.34  10.81 0.80  0.80
¥p~1 > 0 are set based on the average pre- RBF 103 =753  —0.70  -0.84 —0.87
dicted Rayleigh quotient for the remaining ~ RBF 10%  —4.94 6.60 077 0.77

RBF 10? 0.14 21.32 2.92 2.92

n — k = 909 dimensions.

decay [10]. Figure 2 illustrates this approach using a GP regression model. At convergence, we use
the prediction of the Rayleigh quotient for the remaining n — k dimensions by choosing

b=y :exp<nlk > ElnR; | A,S}),

i=k+1

i.e. uncertainty about actions in span(S)= is calibrated to be the average Rayleigh quotient as an
approximation to the spectrum. Depending on the application a simple or more complex model
may be useful. For large problems, where generally £ < n, more sophisticated schemes become
computationally feasible. However, these do not necessarily need to be computationally demanding
due to the simple nature of this one-dimensional regression problem with few data. For example,
approximate [31] or even exact GP regression [32] is possible in O(k) using a Kalman filter.

4 Experiments

This section demonstrates the functionality of Algorithm 1. We choose some — deliberately simple —
example problems from machine learning and scientific computation, where the solver can be used to
quantify uncertainty induced by finite computation, solve multiple consecutive linear systems, and
propagate information between problems.

Gaussian Process Regression GP regression [7] infers a latent function f : RV — R from data
D = (X,y), where X € R"*¥" and y € R". Given a prior p(f) = GP(f;0, k) with kernel k for
the unknown function f, the posterior mean and marginal variance at m new inputs & € RV <™ are
E[f] = kT(K 4+2I1) 'y and V[f] = k(&, &) — kT (K +£2I) 'k, where K = k(X , X) € R"*"
is the Gram matrix of the kernel and k = k(X ,Z) € R™*™. The bulk of computation during
prediction arises from solving the linear system (K + £2I)z = b for some right-hand side b € R"
repeatedly. When using a probabilistic linear solver for this task, we can quantify the uncertainty
arising from finite computation as well as the belief of the solver about the shape of the GP at a set of
not yet computed inputs. Figure 3 illustrates this. In fact, we can estimate the marginal variance of the
GP without solving the linear system again by multiplying k with the estimated inverse of K + £21.
In large-scale applications, we can trade off computational expense for increased uncertainty arising
from the numerical approximation and quantified by the probabilistic linear solver. By assessing
the numerical uncertainty arising from not exploring the full space, we can judge the quality of the
estimated GP mean and marginal variance.

Kernel Gram Matrix Inversion Consider a linear problem Kx, = b, where K is generated by
a Mercer kernel. For a v-times continuously differentiable kernel the eigenvalues A\, (K) decay

approximately as |\,| € O(n*"’%) [33]. We can make use of this generative prior information
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Figure 3: Numerical uncertainty in GP inference. Computing posterior mean and covariance of a
GP regression using a PLS. Top: GP mean for a toy data set (n = 16) computed with increasing
number of iterations k of Algorithm 1. The numerical estimate of the GP mean approaches the true
mean. Note that the numerical variance is different from the marginal variance of the GP. Bottom:
GP variance and estimate of GP variance with numerical uncertainty. The GP variance estimate is

computed using the estimated inverse from computing E[f] without any additional solver iterations.

by specifying a parametrized prior mean p(n) = In(6jn=) = 6y — 6; In(n) for the In-Rayleigh
quotient model. Typically, such Gram matrices are ill-conditioned and therefore K’ = K + £21 is
used instead, implying A\(K”’); > 2. In order to assess calibration we apply various differentiable
kernels to the airline delay dataset from January 2020 [34]. We compute the In-ratio statistic
w(x,) = 5 In(tr(Cov([x])) — In(||lz. — E[x]|,) for no calibration, calibration via Rayleigh quotient
GP regression using y(n) as a prior mean, calibration by setting ¢ = €2 and calibration using the
average spectrum ¢ = A 1.,. The average w for 10° /n randomly sampled test problems is shown
in Table 2.2 Without any calibration the solver is generally overconfident. All tested calibration
procedures reverse this, resulting in more cautious uncertainty estimates. We observe that Rayleigh
quotient regression overcorrects for larger problems. This is due to the fact that its model correctly
predicts K to be numerically singular from the dominant Rayleigh quotients, however it misses the
information that the spectrum of K" is bounded from below by £2. If we know the (average) of the
remaining spectrum, significantly better calibration can be achieved, but often this information is
not available. Nonetheless, since in this setting the majority of eigenvalues satisfy A\(K'); ~ &2 by
choosing ¢ = ¥~! = 2, we can get to the same degree of calibration. Therefore, we can improve
the solver’s uncertainty calibration at constant cost O(1) per iteration. For more general problems
involving Gram matrices without damping we may want to rely on Rayleigh regression instead.

Galerkin’s Method for PDEs In the spirit of applying machine learning approaches to problems
in the physical sciences and vice versa [35], we use Algorithm 1 for the approximate solution of a
PDE via Galerkin’s method [9]. Consider the Dirichlet problem for the Poisson equation given by

{_Au(x7y) = f(x,y) (:L"y) € int
u(z,y) =usa(z,y) (x,y) € 0N

where () is a connected open region with sufficiently regular boundary and ugg, : 02 — R defines
the boundary conditions. One obtains an approximate solution by projecting the weak formulation
of the PDE to a finite dimensional subspace. This results in the Galerkin equation Au = f, i.e.
a linear system where A is the Gram matrix of the associated bilinear form. Figure 4 shows the
induced uncertainty on the solution of the Dirichlet problem for f(x,y) = 15 and upq(z,y) =
(2 — 2y)?(1 + sin(27x)). The mesh and corresponding Gram matrix were computed using FENICS
[36]. We can exploit two properties of Algorithm 1 in this setting. First, if we need to solve multiple
related problems (A;, f;);, by solving a single problem we obtain an estimate of the solution to
all other problems. We can successively use the posterior over the inverse as a prior for the next
problem. This approach is closely related to subspace recycling in numerical linear algebra [37, 38].
Second, suppose we first compute a solution in a low-dimensional subspace corresponding to a coarse

>We decrease the number of samples with the dimension because forming dense kernel matrices in memory
and computing their eigenvalues becomes computationally prohibitive — not because of the cost of our solver.
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Figure 4: Solving the Dirichlet problem with a probabilistic linear solver. Figures 4a and 4b show
the ground truth and mean of the solution computed with Algorithm 1 after £ = 23 iterations along
with samples from the posterior. The posterior on the coarse mesh can be used to assess uncertainty
about the solution on a finer mesh. The signed error computed on the coarse mesh in Figure 4c shows
that the approximation is better near the top boundary of ). Given perfect uncertainty calibration,
Figure 4d represents a sample from A/(0, I). The apparent structure in the plot and smaller than
expected deviations in the upper part of € indicate the conservative confidence estimate of the solver.

discretization for computational efficiency. We can then leverage the estimated solution to extrapolate
to an (adaptively) refined discretization based on the posterior uncertainty. In machine learning lingo
these two approaches can be viewed as forms of transfer learning.

5 Conclusion

In this work, we condensed a line of previous research on probabilistic linear algebra into a self-
contained algorithm for the solution of linear problems in machine learning. We proposed first
principles to constrain the space of possible generative models and derived a suitable covariance
class. In particular, our proposed framework incorporates prior knowledge on the system matrix or its
inverse and performs inference for both in a consistent fashion. Within our framework we identified
parameter choices that recover the iterates of conjugate gradients in the mean, but add calibrated
uncertainty around them in a computationally lightweight manner. To our knowledge our solver,
available as part of the PROBNUM package, is the first practical implementation of this kind. In the
final parts of this paper we showcased applications like kernel matrix inversion, where prior spectral
information can be used for uncertainty calibration and outlined example use-cases for propagation of
numerical uncertainty through computations. Naturally, there are also limitations remaining. While
our theoretical framework can incorporate noisy matrix-vector product evaluations into its inference
procedure via a Gaussian likelihood, practically tractable inference in the inverse model is more
challenging. Our solver also opens up new research directions. In particular, our outlined regression
model on the Rayleigh quotient may lead to a probabilistic model of the eigenspectrum. Finally, the
matrix-based view of probabilistic linear solvers could inform probabilistic approaches to matrix
decompositions, analogous to the way Lanczos methods are used in the classical setting.

Broader Impact

Our research on probabilistic linear solvers is primarily aimed at members of the machine learning
field working on uncertainty estimation which use linear solvers as part of their toolkit. We are
convinced that numerical uncertainty induced by finite computational resources is a key missing
component to be quantified in machine learning settings. By making numerical uncertainty explicit
like our solver does, holistic probabilistic models incorporating all sources of uncertainty become
possible. In fact, we hope that this line of work stimulates further research into numerical linear
algebra for machine learning, a topic that has been largely considered solved by the community.

This is first and foremost a methods paper aiming to improve the quantification of numerical uncer-
tainty in linear problems. While methodological papers may seem far removed from application and
questions of ethical and societal impact, this is not the case. Precisely due to the general nature of the
problem setting, the linear solver presented in this work is applicable to a broad range of applications,
from regression on flight data, to optimization in robotics, to the solution of PDEs in meteorology.


https://github.com/probabilistic-numerics/probnum

The flip-side of this potential impact is that arguably, down the line, methodological research suffers
from dual use more than any specialized field. While we cannot control the use of a probabilistic
linear solver due to its general applicability, we have tried, to the best of our ability, to ensure it
performs as intended.

We are hopeful that no specific population group is put at a disadvantage through this research. We
are providing an open-source implementation of our method and of all experiments contained in this
work. Therefore anybody with access to the internet is able to retrieve and reproduce our findings. In
this manner we hope to adress the important issues of accessibility and reproducibility.
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This supplement complements the paper Probabilistic Linear Solvers for Machine Learning and
is structured as follows. Section S1 explains the approach of probabilistic numerics to model
(deterministic) numerical problems probabilistically in more depth. Section S2 introduces different
variants of Kronecker products used to define matrix-variate normal distributions in Section S3.
Section S4 details the matrix-based inference procedure of probabilistic linear solvers based on matrix-
vector product observations. It also contains some more explanation regarding prior construction and
stopping criteria. Section S5 and Section S6 outline theoretical results from the paper and properties
of the proposed covariance class, in particular detailed proofs. Finally, Section S7 provides some
background for the application of probabilistic linear solvers to the solution of discretized partial
differential equations. To provide a clear exposition to the reader in some sections we restate results
from the literature. References referring to sections, equations or theorem-type environments within
this document are tagged with ‘S’, while references to, or results from the main paper are stated as is.

Preliminaries and Notation We consider the linear system Ax, = b, where A € Rfyﬁln is

symmetric positive definite. The random variables A, H and x model the linear operator A, its inverse
H = A~! and the solution x,.. Algorithm 1 chooses actions S = [s1, ..., s;] € R"*¥ given by its
policy 7(s | A,H, x, A, b) and computes observations Y = [y, ..., yx] € R"*¥ given by a linear

projection y; = As; in each iteration 0 < ¢ < k.

S1 Probabilistic Modelling of Deterministic Problems

At first glance it might seem counterintuitive to frame a numerical problem in the language of
probability theory. After all, when considering the exact problem Az, = b all quantities involved
A, x,, and b are deterministic. However, the distribution of the random variables A,H and x
represents epistemic uncertainty arising from finite computational resources. With a finite budget
only a limited amount of information can be obtained about A (e.g. via matrix-vector products). In
particular, for a sufficiently large problem a priori the inverse H = A~! and the solution x.., while
deterministic and computable in finite time, are not known. This uncertainty about the inverse is
captured by the prior distribution of H. In the Bayesian framework the belief about the inverse H is
then iteratively updated given new observations y; = As;.

The motivation for also estimating A becomes clear if one considers the following. Usually in large-
scale applications, the matrix A is never actually formed in memory due to computational constraints.
Instead only the matrix-vector product v — Aw is available. Therefore without further computation,
the value of any given matrix entry A;; is in fact uncertain. Further, generally other properties of
the matrix A such as its eigenspectrum are also not readily available. The probabilistic framework
provides a principled way of incorporating prior knowledge about A and makes assumptions about
the problem explicit. Relating the prior model A and H is important here to allow Algorithm 1 to
take such prior information into account in its policy. Finally, the strongest argument for a model
A may yet be the incorporation of noise. Suppose we only have access to y; = (A + E;)s; with
additive noise E;. This is a common occurrence in application, where the linear system to be
solved arises from an approximation itself or if A is constructed from data. Concrete examples are
batched empirical risk minimization problems or stochastic quadratic optimization. In this setting the
probabilistic linear solver must estimate the true A via its observations.

The application of probabilistic inference to numerical problems goes back well into the last century
[39-41] and has recently seen a resurgence in research interest in the form of probabilistic numerics.
Overviews discussing motivations and historical perspectives can be found in Hennig et al. [14] and
Oates and Sullivan [15]. Hennig [11] gives additional insight into the statistical interpretation of
linear systems.

S2 The Kronecker Product and its Variants

We will now introduce different types of Kronecker products needed for constructing covariances for
matrix-variate distributions. In order to transfer results from probabilistic modelling of vector-variate
random variables to the matrix-variate case, we need two types of vectorization operations, i.e.
bijections between spaces of matrices and vector spaces.
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Let vec : R™*"™ — R™"_ denote the column-wise stacking operator [42], defined as
VGC(X) = ()(117)(217 e 7Xm17X127 .o ,an)T € R™™,
lljurther, define svec : R?yfn" — R2HD) the column-wise symmetric stacking operator [43] given
y
svec(X) = (X11,V2Xo1, ..., V2Xn1, X029, V2X32, ..., V2X 02, ..., X)) T € R

To translate between the two representations following Schicke [44] we also define the matrix
Q € Re™(n+1)xn* guch that for all symmetric matrices X € Rm"s we have Q vec(X) = svec(X)
and vec(X) = QT svec(X). Note, that @ has orthonormal rows, i.e. QQT = I. For convenience
we also name the inverse operations mat := vec ™! and smat := svec’l.

S2.1 Kironecker Product

We make extensive use of Kronecker-type structures for covariance matrices of matrix-variate
distributions in this paper. The Kronecker product A ® B [17] of two matrices A € R™1*" and
B € R™2*"2 ig given by

A]_lB . AlnlB
A® B = : . : c R(mlmz)x(nlnz)
A,1B ... Ann.B
The Kronecker product satisfies the characteristic property
(A ® B)vec(X) = vec(BX AT), (S4)

for X € R"2*™ Characteristic properties of Kronecker-type products are useful to turn matrix
equations into vector equations. We state a set of properties of the Kronecker product next without
proof. More detail on Kronecker products can be found in Van Loan [17].

Proposition S2 (Properties of the Kronecker Product [17])

The Kronecker product satisfies the following identities:

JAB:A®B+#B®A (S5)
(A® B)T= AT ® BT (S6)

(A B) '=A"1'® B! (87

(A+B)@ C=A®C+B®C (S8)

(A® B)(C ® D) = (AC) ® (BD) (S9)

tr(A ® B) = tr(A) tr(B) (S10)

ARG B e R = A® B Ry (S11)
A®B=(LaL})® (LpLg)=(La® Lp)(L} ® Lg) (S12)

AQ®B= (UAAAUL) Y (UBABU;) =(Ua®Up)(Aa ® AB)(UL & U};) (S13)

S2.2 Box Product

The box product AR B € R(mm2)x(n1n2) can be defined via its characteristic property
(AX B)vec(Y) = vec(BYTAT) (S14)
forY € R™>*"2 See also Olsen et al. [45] for details.

Proposition S3 (Properties of the Box Product [45])
The box product satisfies the following identities:

JA,B:AXB#BKA (S15)
(AXB)T =BT AT (S16)
(AXB)'=B'xA™! (S17)

(A+ B)XC=AXRC+BXC (S18)
(AR B)(CX D)= (AD) ® (BC) (S19)
(AR B)(C ® D) = (AD)X (BC) (S20)
(A® B)(CX D)= (AC)X (BD) (S21)
tr(AX B) = tr(AB) (S22)
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S2.3 Symmetric Kronecker Product

The symmetric Kronecker product A ® B of two square matrices A, B € R™*" is defined via its
characteristic property for X € R!*" a

sym
1
(A® B)svec(X) = 3 svec(BX AT+ AXBT) (S23)
or equivalently
1
A®B= §Q(A®B+B®A)QT.

Proposition S4 (Properties of the Symmetric Kronecker Product [43, 44])
The symmetric Kronecker product satisfies the following identities:

AeB-BeA ($24)
(A® B)T = AT@ BT ($25)
(AgA) '=A1gA™! (S526)
(A+B)@C=A8®C+B&C ($27)

1
(A& B)(C& D)= ;(AC @ BD + AD & BC) ($28)
AERBERLT — AgBeRE Tt ($29)
A@A=(LaLYL)® (LaLl) = (La® La)(LY, ®LY,) ($30)

AQA=(UaAaU)) & (UaAaU}) = (Ua®Ua)(Aa®Aa)Ui0UL)  (S3D)

in(n+1) x sn(n + 1) matrix is in

Note, that the symmetric Kronecker product represented as a

general not symmetric.

Further properties can be found in Alizadeh et al. [43] and Schicke [44]. We prove the following
technical results for mixed expressions of Kronecker-type products, which we will make use of later.

Corollary S1 (Mixed Kronecker Product Identities)
Let A € R1X", B,C € R™** and X € R¥*F such that (CX BT)T = C X BT, then it holds that

sym
QT (AR A)Q(B ® C)vec(X) = 5(AB ® AC + AC K AB)vec(X)  (S32)
(BT®CT)QT(A® A)Q = %(BTA ® CTA+ BTARCTA). (S33)

(BT®CT)QT(A® A)Q(B ® C)vec(X) = %(BTAB ® CTAC + BTAC K CTAB) vec(X).
(S34)
Now, assume A to be invertible rank(C) = kand Y € R¥*" such that (Y C)T = Y C, then for

= ® CT)QT(A®A)Q( ®C)
rlght ( (CTAC) 1CT) (CTAC)_l
we have GGrlght vec(Y) = vec(Y), ie. Gnght is the right inverse of G. Finally, for D, E € R"*"

and Z € RX™ such that ( EAZADT)T = EAZADT, we have

sym

(AT® ATQ(D ® E)QT(A® A)svec(Z) = (ATDA) ® (ATEA) svec(Z). (S35)

Proof. Let X € R**F such that (CX BT)T = CX BT, then
QTA®A)Q(B®C)vec(X)=QT(A® A)Q vec(CXBT)
=Q7(A® A)svec(CXBT)
= Q" svec(ACXBTA)

= % vec(ACXBTA + ABXTCTA)

1
= 5(AB® AC + ACR AB),
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further it holds for W € R?x"

sym
(BTCTQT(A® A)Qvec(W) = (BT ® CT)QT svec(AW A)
= vec(CTAW AB)

1
= 5(CTAWAB + CTATWTATB)

1
= §(BTA ®CTA+BTAXCTA),
and using the properties of the Kronecker and the Box product we obtain

(BTCTRQT(A® A)Q(B ® C)vec(X) = (BT ® CT)%(BTA ®CTA+ BTAXCTA)vec(X)

= %(BTA ® CTA+ BTAK CTA)vee(X).

Now let A be invertible, let C have full rank and choose Y € R¥*™ arbitrarily such that (Y C)T =
Y C. Then using Proposition S2 and Proposition S3 we obtain

(I,  CTQT(A® A)Q(I, ® C)(2A™' — C(CTAC)™'CT) ® (CTAC) ! vec(Y)

1
5(A ® CTAC + ACKRCTA)2A™ ' —C(CTAC)'CT) ® (CTAC) ) vec(Y)
1 1
=T, I — §AC(CTAC)*1CT ® I+ AC(CTAC) 'K CT — §AC(CTAC)*1 X CT)vec(Y)
1 1
= (I, @I — §AC(CTAC)’1CT ® I + 5AC(CTAC)* X CT)vec(Y)

=vec(Y) —
= vec(Y)
Lastly, by assumption it holds that
(AT ATQ(D Q E)QT(A® A)svec(Z) = (A® A)Qvec(EAZADT)
=svec(AEAZADTA)

(YC(CTAC) 'CTA - CTYT(CTAC) !CT A)

N |

1
= J(AEAZAD'A + ADAZAE'A)

=(ADA® AEA)svec(Z).
This concludes the proof. O

S3 The Matrix-variate Normal Distribution

In order for our probabilistic linear solvers to infer the true latent A or its inverse H = AL
we need a distribution expressing the belief of the solver over those latent quantities at any given
point. A Gaussian distribution over matrices will play this role, motivated by the linear nature of the
observations. This section closely follows Gupta and Nagar [46].

Definition S2 (Matrix-variate Normal Distribution [46])
Let Xo € R™*™ and let V € R, and W € RE" be positive-definite. We say a random matrix X
has a matrix-variate normal distribution with mean X and covariance V ® W, iff

vec(XT) ~ N (vee(X{]), V @ W).
We write as a shorthand X ~ NV (X, V @ W).

Note, that the matrices V' and W represent the covariance between rows and columns of X, respec-
tively. Since we model symmetric matrices in this work, we also introduce a Gaussian distribution

over RE"™.
Definition S3 (Symmetric Matrix-variate Normal Distribution [46])
Let Xo, W € R{" such that W is positive-definite, then the random matrix X has a symmetric

matrix-variate normal distribution, iff
svec(X) ~ Ny (ny1)(svec(Xo), W @ W).
We write X ~ N(Xo, W @ W).
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It follows immediately from the definition that realizations of a symmetric matrix-variate normal
distribution are symmetric matrices. This distribution also emerges naturally by conditioning a
matrix-variate normal distribution on the linear constraint X = XT.

S4 Probabilistic Linear Solvers

Probabilistic linear solvers (PLS) [11, 21, 13] infer posterior beliefs over the matrix A, its inverse
H or the solution &, = Hb of a linear system via linear observations Y = AS. We consider
matrix-based inference [13] in this work. Assuming a prior p(A) or p(H), actions S and linear
observations Y such methods return posterior distributions p(A | S,Y)orp(H | S,Y).

S4.1 Matrix-based Inference

The generic matrix-based inference procedure of probabilistic linear solvers is a consequence of
the matrix-variate version of the following standard result for Gaussian inference under linear
observations.

Theorem S4 (Linear Gaussian Inference [4])
Let v ~ N(u,X), where p € R" and ¥ € R§m" positive-definite, and assume we are given
observations of the form

Bv+b=yeR™,
where B € R™*™ and b € R™. Assuming a Gaussian likelihood

p(y | B,v,b) =N(y; Bv+b,A),
for A € Ry, positive definite, results in the posterior distribution
p(v |y, B,b) =N (v;u+EBT(BEBT +A)"'(y — Bu —b),

¥ - XBT(BXBT + A)"'BY).

Further, the marginal distribution of y is given by
p(y) = N(y; Bu+b, BEBT + A).

S4.1.1 Asymmetric Model

Corollary S2 (Asymmetric matrix-based Gaussian Inference [18, 11, 13])
Assume a prior p(A) = N(A; Ay, Vo @ Wy) and exact observations of the form'Y = AS,
corresponding to a Dirac likelihood p(Y | A, S) = 6(Y — AS), then the posterior p(A | S,Y) =
N(A; Ay, 3y) is given by

A=Ay + AUT

3 = Vo ® Wo(I,, — SUT)

where Ag =Y — AgS and U = Wy S(STW,S)~L.

Proof. In vectorized form the likelihood is given by

p(vec(Y'T) | vec(AT),vec(ST)) = d(vec(Y'T) —vec(STAT)) = 6(vec(YT)— (I ® ST)vec(AT))
Using the Definition S2 of the matrix-variate normal distribution, applying Theorem S4 and using
property (S9) of the Kronecker product in Proposition S2 leads to

vec(A]) = vec(A]) + (Vo @ Wo)(I @ S)(I ® ST)(Vo ® Wo)(I ® S)) ' (vec(YT) — (I ® ST)vec(A}))
= vec(Af) + (Vo @ WS)(Vp ® STWS) ™ vec(A[)
= vec(A]) + (I, ® WyS(STW,S8) 1) vec(A])
= vec(AJ + UA])
and further analogously, additionally using bilinearity of the Kronecker product, we obtain
S, =Vo@Wy— (Vo @Wy)(I®S)(IeST)(VoeWy)(I®S) H(IeST)(V,® W)
=Vp @ Wy — (Vo ® W) (Vo ® STW,S) (Vo ® STW))
=Vo®@ Wy — Vo ® (WyS(STW,8) 1 STW,)
=Vo @ Wy(I — SUT).
This concludes the proof. O
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S4.1.2 Symmetric Model

Corollary S3 (Symmetric Matrix-based Gaussian Inference [18, 11, 13])

Assume a symmetric prior p(A) = N(A; Ag, Wy @ Wy) and exact observations of the form
Y = AS, corresponding to a Dirac likelihood p(Y | A, S) = 6(Y — AS), then the posterior
p(A|S,Y)=N(A; Ay, ) is given by

A, =Ao+ AUT+UA] -USTAUT = A+ UVT+VUT
Xy =Wo, —SUT) @ Wy(I,, — SUT)
where Ag =Y — AgS, U = W S(STWyS) L and V = (I,, — %UST)AO.
Proof. A proof can be found in the appendix of Hennig [11]. We rederive it here in our notation. By
assumption the likelihood takes the vectorized form
p(vec(Y'T) | svec(A), vec(ST)) = d(vec(Y T)—vec(STAT)) = 6(vec(YT)—(I ® ST)QT svec(A))
Applying Theorem S4 gives
svec(Ay) = svec(Ag) + (W @ Wo)Q(I,, ® S)G (vec(YT) — (I ® ST)QT svec(Ay))
= svec(Ap) + (Wo @ Wo)Q(I,, ® S)G ' vec(A])
S =Woe Wy — (Wo e Wo)Q(I, ® S)G™H (I, ® ST)QT(W, & Wy),
where Ag =Y — A(S and the Gram matrix is given by
G=(I,® ST)QT(W, & Wy)Q(I,, ® S) € R "*,
Now since (A[S)T = A[S, we have by Corollary S1 that the right inverse of G is given by
G =W, - S(STW,S)7'ST) ® (STW,S) !

right =
and therefore using (S9) and (S32) we obtain
svec(Ay) = svec(Ag) + (Wo @ Wy)Q(I, ® S)Ggg%n vec(A])
= svec(Ag) + QQT(W, @ Wp)Q(2W, ' — S(STW,S)'ST) ® S(STW,S) ™! vec(A])
= svec(Ag) + Q%((2I —UST) QU + UK (2I —UST)) vec(A])

= svec(Ag) + svec(UAJ(I — %UST)T +(I - %UST)AOUT)
=svec(Ag+ AgUT +UA] —USTAUT).
Further by definition it holds that
UVvT+VvUT=UAlI, — %SUT) + (I, — %UST)AOUT =AUT+UA]-USTAUT.
For the covariance we obtain using the right inverse of the Gram matrix and (S35) that
Sr=Wo@ Wy — (W@ Wo)Q(I, ® S)G™ (I, ® ST)QT(W, & Wy)
=Wy Wy — (2Wy — W S(STW,S) 1 STW,) @ (W, S(STW,S) L STW,)

= (WO — WoS(STWOS)_lsTWO) ® (WO — WoS(STWOS)_lsTWQ)
— Wo(I, — SUT) @ Wy (I, — SUT).

S4.2 Matrix-variate Prior Construction

From a practical point of view it is important to be able to construct a prior for A and H from an initial
guess x for the solution. This reduces down to finding Ay and Hy symmetric positive definite,
such that Ag = H; L and xo = Hyb for the covariance class derived in Section 3. We provide a
computationally efficient construction of such a prior here.
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Proposition S5

Let xy € R" and b € R \ {0}. Assume x{b > 0, then for a < b;‘"’%o,

1
Hy=ol+———(xg—ab —ab)T
o=oal+ (mo—ab)Tb(wO ab)(zo — ab)
is symmetric positive definite and Hob = xo. Further it holds that
-1

(07

Ag=H;'=a'T - (xo — ab)(xy — ab)T.

(.’130 - Oéb)TQIO
Ifxlb < 020r xlb =0, then forx1 = —xorx; = %b respectively, it holds that ||z, — :B*Hi1 <
lco — x«||4, L. @1 is a strictly better initialization than x.

Proof. Let Hj as above. Then Hyb = ab + xg — ab = x(. The second term of the sum in the form
of Hj is of rank 1. Its non-zero eigenvalue is given by

1 1

= — — T — - -
A= o —apyrp B0~ oW @o —ab) = ooy

since by assumption b > 0 and a < bbTT—wa. Now by Weyl’s theorem it holds that Ay, (A) +

Amin(E) < Amin(A + E) and therefore Hy is positive definite. By the matrix inversion lemma we
that

o — ab|3 > 0

-1
have for v = (mﬁm

Ag=H'=a Y(I— 7 (zo — ab)(zo — ab)T)
" 1+ 7]|@o — ablf;
—2

—aolr— « - B .
) (zo — ab)Th + a~!|zo — ab|3 (zo — ab)(wy — ab)
—1
—ai - . (w0 — ab)(wo — ab)T.

(xo — ab)Tx
Finally, we obtain

2o — 2| = (0 — A7'B)TA(2g — A™1b) = 2] Axo + bTA™1b — 2bT .

Therefore if either a:(T) b<Oor mgb =0,thenx; = —xgorx; = %b, respectively are closer to
x, in A norm by positive definiteness of A. This concludes the proof. O

S4.3 Stopping Criteria

In addition to the classic stopping criteria || Az — b||, < max(droi||bl|,, dawor) it is natural from a
probabilistic viewpoint to use the induced posterior covariance of x. Let M € R;Lyﬁn" be a positive-
definite matrix, then by linearity and the cyclic property of the trace it holds that
Ex, (2. — EX[3] = Eo. [(@+ — EX])T M (2. — E[x])]

= tr(Eq, [(2. — E[x])TM (2. — E[x])])
= B, [tr((z. — E[x])TM (2. — E[x]))]
= Eq, [M tr((z. — E[x])(@. — E[x])T)]
= tr(MEq, [(z. — E[x])(. — E[x])T])
= tr(M(Covlz. — E[x]] + (Be. [2.] — E[x])T (B, [2.] — E[X])))
= tr(M Covlz.]) + |Eq. [x.] — E[x]|[3-
Assuming calibration holds, i.e. x. ~ AN(E[x], Cov[x]), we can bound the (relative) error by

terminating when tr(M Cov[x]) < max(dro1]|b||, dator) either in lz-norm for M = I or in A-norm
for M = A.

We can efficiently evaluate the required tr(M Cov|x]) without ever forming Cov|[x] in memory from
already computed quantities. At iteration k we have Cov[x] = Cov[Hb] = Z(WH(bTWHb) +
(WHb)(WHb)T) and therefore

tr(M Cov[x]) = %((bTWkHb) tr(MW) + (Wib)TM(W'b)).
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Given the update for the covariance of the inverse view, we obtain the following recursion for its trace
H H H H
tr(MW]) = tr (MW ) — T H tr (Wil ye) TM (W y)).
Y Wi 1Yk
Computing the trace in this iterative fashion adds at most three matrix-vector products and three inner
products for arbitrary M all other quantities are computed for the covariance update anyhow.

For our proposed covariance class (3) we obtain for M = I and ¥ = 1 that

tr(W§) = tr(Ay 'Y (YTAF'Y) 'YTA ' + (T -Y (YY) 'Y)¥(I - Y (YY) 'YT))
=tr(YTA;'Y) 'YTAJ'AJ'Y) + 9 tr(I - Y (YY) 'Y I -Y(YTY)'YT))
=tr((YTAF'Y) 'YTAG'AJ'Y) + o tr(I - Y(YTY) " 'YT)
=tr((YTA'Y) 'YTAS ' AG'Y) +4b(n — k),

which for a scalar prior mean Ay = o reduces to tr(WH) = a7k + ¢(n — k).

S4.4 Implementation

In order to maintain numerical stability when performing low rank updates to symmetric positive def-
inite matrices, as is the case in Algorithm 1 for the mean and covariance estimates, it is advantageous
use a representation based on the Cholesky decomposition. One can perform the rank-2 update for
the mean estimate and the rank-1 downdate for the covariance in Corollary S3 in each iteration of the
algorithm for their respective Cholesky factors instead (see also Seeger [22]). The rank-2 update can
be seen as a combination of a rank-1 up- and downdate by recognizing that

uvT +ou’ = %((u +v)(u+v)T — (u—v)(u—o)7").

Similar updates arise in Quasi-Newton methods for the approximate (inverse) Hessian [10]. Having
Cholesky factors of the mean and covariance available has the additional advantage that downstream
sampling or the evaluation of the probability density function is computationally cheap.

S5 Theoretical Properties: Proofs for Section 2.3

In this section we provide detailed proofs for the theoretical results on convergence and the connection
of Algorithm 1 to the method of conjugate gradients. We restate each theorem here as a reference to
the reader. We begin by proving an intermediate result giving an interpretation to the posterior mean
of A and H at each step of the method.

Proposition S6 (Subspace Equivalency)
Let Ay and Hj, be the posterior means defined as in Section 2.1 and assume Ay and Hy are
symmetric. Then for 1 < k < n it holds that

AkS =Y and HkY = S, (536)

ie. Ay and Hy, act like A and A~ on the spaces spanned by the actions S, respectively the
observations 'Y .

Proof. Since A and H| are symmetric so are the expressions AaS and A[[Y". We have that
ArS = (Ag + AaUJ + UpA] — UaSTANUR)S
= AoS + Apl + UpALS — UaSTAAI
=ApS+Y — AyS
=Y.
In the case of the inverse model we obtain
H.Y = (Hy + AnU] + UsA], — UnYTARU))Y
= H)Y + Apl + UyAL)Y —UnYTAuI
=Hy)Y +S - HyY
=5
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S5.1 Conjugate Directions Method

Theorem 1 (Conjugate Directions Method)
Given a prior p(H) = N (H; Hy, WH @ W) such that Hy, WH € RIX" positive definite, then

sym

actions s; of Algorithm 1 are A-conjugate, i.e. for 0 <'i,j < k with i # j it holds that s As; = 0.

Proof. Since Hj is assumed to be symmetric, the form of the posterior mean in Section 2.1 implies
that H}, is symmetric for all 1 < k£ < n. Now conjugacy is shown by induction. To that end, first
consider the base case k = 2. We have
sTrg

% yI H |y
$1Y1

s1Asy = —r]HAs; = —(r] + aqy] ) H1Asy = — (rng —
=-—rlsi+s{rg=0

where we used (S36) and the definition of a; in Algorithm 1. Now for the induction step, assume that
siTAsj =0 forall i # j such that 1 < 4,5 < k. We obtain for 1 < j < k that

T
T T _ _ T T
Spy1Asj = -—r H As; = —< g ay; + r0> Hpy; = — E oY) 8; — 1S

1<i<k 1<i<k

_ T Te — oT Te — o T

=~ Y;8j —T(Sj = 8;Tj_1 —T5S; = sj< E a1y -‘r’f‘o) — 7385
1<I<y

— T Te. —

=sjrg—158; =0

where we used the update equation of the residual r; in Algorithm 1, the definition of «;, the induction
hypothesis and (S36). This proves the statement. O

S5.2  Relationship to the Conjugate Gradient Method

Theorem 2 (Connection to the Conjugate Gradient Method)
Given a scalar prior mean Ay = H L — oI with a > 0, assume (1) and (2) hold, then the iterates
x; of Algorithm I are identical to the ones produced by the conjugate gradient method.

Proof. The proof outlined here is closely related to the proofs connecting Quasi-Newton methods to
the conjugate gradient method [47, 11], but makes different assumptions on the prior distribution.

We begin by recognizing that the choice of step length «; in Algorithm 1 is identical to the one
in the conjugate gradient method [10]. Hence, it suffices to show that s; o< s¢9. Theorem 1
established that Algorithm 1 is a conjugate directions method. Now by assumption Ay = oI and
H, = A; ! therefore s1 = —alry x —rg = s§0. It suffices show that s; lies in the Krylov
space K; (A, rg) = {ro, Arg, ..., A" 1ry} for all 0 < i < n. This completes the argument, since
KCi(A, 7o) is an i-dimensional subspace of R™ and thus A-conjugacy uniquely determines the search
directions up to scaling, as A is positive definite.

To complete the proof we proceed as follows. The posterior mean of the inverse model H;_; at
step @ — 1 maps an arbitrary vector v € R" to span(Hov, HoY1.;_1,S1.;—1, WiY1.;_1). This
follows directly from its form in given in Section 2.1. By assumption Hy = A b= o7lI,
therefore using (1) and (2) we have span(W{Y;.;_1) = span(Y7.;_1). This implies H;_; maps
to span(v, S1.;—1,Y1.;—1) and thus s; € span(r;_1,S7.i—1, Y1.,—1). We will now show that
span(r;_1,S1.i-1, Y1.i-1) C K;(A, 7o) by induction, completing the argument.

We begin with the base case. Since Hj is assumed to be scalar, we have s1 & 19 € Ko(A, o)
and therefore y; = As; and 71 = 79 + ayy; are in K1 (A, rp). For the induction step assume
span(r;_1,S1.i—1, Y1.i-1) C K;(A, o). The definition of the policy of Algorithm 1 gives

s; = —E[H]r;_1 o H;_17;,—1 € span(r;_1, S1.i—1, Y1:i—1) C K (A, 19),

where we used the induction hypothesis. This implies that y; = As; € K;+1(A,10) and r; =
ri—1+ a;y; € Kiy1(A, o) by the definition of the Krylov space. Therefore, span(r;, S1.;, Y1.;) C
Ki+1(A, rp). This completes the proof. O
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S6 Prior Covariance Class: Proofs for Section 3

S6.1 Hereditary Positive-Definiteness

Proposition 1 (Hereditary Positive Definiteness [30, 18])
Let Ay € RX" be positive definite. Assume the actions S are A-conjugate and WS =Y, then

sym

Sfori € {0,...,k— 1} it holds that A; 1 is symmetric positive definite.

Proof. This is shown in Hennig and Kiefel [18]. We give an identical proof in our notation as a
reference to the reader. By Theorem 7.5 in Dennis and Moré [30] it holds that if A; is positive
definite and s] +1WiASi+1 # 0, then A, is positive definite if and only if det(A;41) > 0. By the
matrix determinant lemma and the recursive formulation of the posterior we have

1 _
B ((yiT+1Ai IWiASiJrl)Q

det(A;y1) = det(A; (
Ais) = At (ot s

- (y;,'rJrlAi_lyi-‘rl)(SLeriAAi_lWiAsi-i'l) + (Sz'THWiAAi_lWiASiH)(yiT+1Si+1))>

Hence it suffices to show that
0< (Yl A7 Whsinn)® = (yl A i) (sT WA W s 1)
+ (s WA WS 1)(y] 1 8i41),
which simplifies to
(y;rJrlAi_lWiASi-&-l)Q
SiT+1VV¢AAi_1W/¢A3i+1

T -1 T
YAy Yiv1 — <Yit1Si+1

Now by WS =Y, we have WAs; 1 = Wlts; 11 = y; 11 and the above reduces to

0< S;r+1ASi+1,
which is fulfilled by the assumption that A is positive definite. Thus A;;1 is positive definite.
Symmetry follows immediately from the form of the posterior mean. O

S6.2 Posterior Correspondence

Definition 1
Let A; and H; be the means of A and H at step . We say a prior induces posterior correspondence if

A7l = H; (S37)
for all steps 0 < % < k of the solver. If only
A7'Y = H)Y, (538)

we say that weak posterior correspondence holds.

S6.2.1 Matrix-variate Normal Prior

We begin by establishing posterior correspondence in the case of general matrix-variate normal priors,
i.e. the inference setting detailed in Corollary S2. We begin by proving a general non-constructive
condition and close with a sufficient condition for correspondence with limits the possible choices of
covariance factors to a specific class.

Lemma S1 (General Correspondence)
Let1l <k <n, WOA, Wd" symmetric positive-definite and assume Ay L= Hy, then (S37) holds if
and only if

0=(AS - AS) [(STWPAT'AS) 'STWRAS! — (STATWHAS) 'STATW] . (S39)
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Proof. By the matrix inversion lemma we have
0=A;'— Hy
= (Ao + (Y — ApS)(STWAS)'STWA) ™' — Hy — (S — HyY)(YTWY) 'Y TW /!
= A - A Y — ApS)(STWRS + STWR AN (Y — ApS)) 'STW ALY
— Ayt - AN AWS - V) (YTWHY ) T ly T
= A7 (Y — ApS) [(STWRAS'Y) 'STWH A — (YTWIY) 'YW,
where we used the assumption Hy = A;'. Left-multiplying with —Ag and using Y = AS
completes the proof. O

Corollary S4 (Correspondence at Convergence)
Letk =n, Hy = AO_1 and assume S has full rank, i.e. the linear solver has performed n linearly
independent actions, then (S37) holds for any symmetric positive-definite choice of W and WH.

Proof. By assumption, STW} Ay Land STAT WH are invertible. Then by Lemma S1 the corre-
spondence condition (S37) holds. O

Theorem S5 (Sufficient Condition for Correspondence)
Let 1 < k < n arbitrary and assume Hy = AO_I. Assume W64, Ag, WOH satisfy

0=ST(WRrA;' — AW} (S40)

or equivalently let B gy € R"™** be a basis of the orthogonal space (S)* spanned by the actions.
For ® € R"=K)X" arbitrary, if

Wil = ATT(WRAG" — Bigy. @) (S41)
and the commutation relations
[Ag,A] =0 (542)
(W3, Al =0 (543)
[Bis)»®, Al =0 (544)

are fulfilled, then W' is symmetric and (S37) holds.

Proof. By assumption W is symmetric positive-definite and (S40) is equivalent to S TWOAAS -
STAT VVJ*, which implies (S39). Now, assumption (S40) is equivalent to columns of the difference
WHA, ! — ATW{! lying in L, i.e. we can choose a basis Bgsy+ and coefficient matrix ® such that

WA — ATWS = Bg,. ®.
Rearranging the above gives (S41). With the commutation relations and
[A,B]=0 < [A"},B]=0 < [A,B7'|=0 < [A"},B7'|=0
it holds that
(W T=WRAJ'A™ — Big) . @A™ = ATTWS A — A TBg). & = W
hence W is symmetric. Finally, by Lemma S1 posterior mean correspondence (S37) holds. O
If we want to ensure correspondence for all iterations, (S44) is trivially satisfied. The question now

becomes what form can Ay and W} take in order to ensure symmetric W}, This comes down to
finding matrices which commute with A.

Lemma S2 (Commuting Matrices of a Symmetric Matrix)
Letr € N, M € R"™"™ and A € R"*™ symmetric. Assume M has the form

M = pr(A) = ET:CZAZ
=0
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for a set of coefficients c; € R, then M and A commute. If A has n distinct eigenvalues, M is
diagonalizable and [M , A] = 0, then
M = pn—l(A)7

i.e. M is a polynomial in A of degree at most n — 1.

Proof. The first result follows immediately since
WHA=p(A)A=) ;A" = Ap,(A) = AW}
i=0

Assume now that A has n distinct eigenvalues Ag, ..., A\,—1, M is diagonalizable and M and A
commute. Now, if and only if [A, M| = 0, then A and M are simultaneously diagonalizable by
Theorem 5.2 in Conrad [48], i.e. we can find a common basis in which both A and M are represented
by diagonal matrices. Hence, the set of matrices commuting with A forms an n-dimensional subspace
U,, C R™*", Now, by the first part of this proof {I, A, ..., A"~ '} C U,,. It remains to be shown,
that this set forms a basis of U{,,. By isomorphism of finite dimensional vector spaces this is equivalent
to proving that

1 o PV
{bo,b1,...,bp_1} = o : et :
1 An—1 PN
forms a basis of R”. It suffices to show that all b; are independent. Assume the contrary, then

Z?;Ol a;b; = 0 for some ay,...,a,—1 € R, such that not all a; = 0. This implies that the

polynomial Z;:Ol a;x’ has n zeros \g,. .., \,_1. This contradicts the fundamental theorem of
algebra, concluding the proof. O

The above suggests that tractable choices of Ay and W for the non-symmetric matrix-variate prior,
which imply symmetric W, are of polynomial form in A.

Example S1 (Posterior Correspondence Covariance Class)
Tractable choices of the prior parameters in the A view, which satisfy posterior correspondence and
the commutation relations are for example

n—1
Ag =col and WOA = Z A,
i=1
where Hy = A; " with ¢; € R. Motivated by tr(A) = tr(Ap) an initial choice could be ¢y =
n=ttr(A).

Finally, note that in practice we do not actually require W'. We only ever need access to Wi'S.

S6.2.2 Symmetric Matrix-variate Normal Prior

We now turn to the symmetric model, which we assumed throughout the paper, given in Corollary S3.
We prove Theorem 3, the main result of this section demonstrating weak posterior correspondence
for the symmetric Kronecker covariance, by employing the matrix inversion lemma for the posterior
mean Aj. We begin by establishing a set of technical lemmata first, which mainly expand terms
appearing during matrix block inversion.

Lemma S3 (Symmetric Posterior Inverse)
Under the assumptions of Corollary S3, the inverse of the posterior mean is given by

UJA;'Un I+U,IA51VA}1 {Uﬂ A
0

—1 _ 4—-1__ 4-—1
A =4 —Ag [Un VA I+VJA;'Un  VJA;'Va LA

where
Un = W5S(STW3S) ™! e R™F,

1 1 ,
Va = (I - 5UAST)(Y —AS)=(I - 5UAST)AA e R™*k,
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Proof. We rewrite the rank-2 update in Section 2.1 as follows

: : o 1] [U]
AkZAo-i-UAVA +VAUA:A0+[UA VA] I 0 VAT .

Then the statement follows directly from the matrix inversion lemma. O

Next, we expand the terms inside the blocks of the matrix to be inverted in Lemma S3. This leads to
the following lemma.

Lemma S4

Given the assumptions of Corollary S3, let W and Ag be symmetric and assume (2) and (1) hold.
Define

A=STWhS
I =STWRrA; ! Ag,

then A € R™*™ and A + II € R™*™ are symmetric and invertible and we obtain

A+TI=STWL,A'AS = STAA;'AS = STAWHAS (S45)
II=AJA;'AS (S46)
UiA;'Ap=AT'TD (S47)
ALS = STA, (S48)
Up=ASA™! (S49)
UTA;'Up = A" (A+IDA! (S50)
I+UA;' VA=A (A+TII)(I - %A*ISTAA) (S51)
I+VJA;'Up= (I - %AI\&A*)(A+H)A—1 (S52)
ViA;'Va=TI— %((A+H)A—1STAA + ARSAT (A +1D)) (S53)

1
+ ZA,}SA—l(A +ID)A'STAL (S54)

Proof. We begin by proving that A and A + IT are symmetric and invertible. We have by Sylvester’s
rank inequality that A is invertible. For symmetric W, A is symmetric by definition. We have that

A+TI=STWLS + STWRASH(AS — ApS) = STWRA;'AS = STAA;'AS
=STWSA;'AS = STAWS'AS
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Thus, by Sylvester’s rank inequality A + IT is invertible. Given symmetric Ay, it is symmetric.
Further, it holds that

M=A+II-A=STAA;'AS - STAS = AJA,'AS
UTA; AL = (STWES)TISTWR A AL = AT
ALS = (AS — AyS)TS = STAS — STA,S
Up=W3S(STWRS)™! = ASA™!
UTA;'Up = A'STAAG'ASA™ = A" (A +TT)A ™!

I+UA;'VA=T+A'STAA;N (T — %UAST)AA =T +A'STAASNT ~ %ASA*ST)AA
=T+A'STAA;'(AS — AyS) - %A—lsTAAglASA—lsTAA
AN AT — %A‘l(A FIDA'STAL = A"Y(A + TI)(T — %A—lsTAA)
I+ VJAG'Up = (I +UFA7'VA)T = (A"H A+ TI)(T — %A_lsTAA))T
(- %AI\SA—l)(A LA,
where we used that A and A + IT are symmetric. Finally, we have that
VAA;'Va=AKI - %SU;)Agl(I - %UAST)AA
=AL(I - %SA”STA)Agl(I - %ASA*ST)AA
= ARA; (T — %ASA*ST)AA - %A,}SA*STAAO—l(I - %ASA*lsT)AA
= (STAA;' —ST)(I - %ASA*ST)AA - %AI\SA*ISTAAglAA
+ %AI\SAflsTAAglASAflsTAA
= STAA;'Ap— STAp — %STAAglASA‘lsTAA + %STASA*STAA
—~ %AI\SA‘ISTAAglAA - iALSA*STAAglASA‘ISTAA
= STAA;'AS — STAS — STAp — %(A + DA ISTAN + %STAA
— %A,}SA—lsTAAglAA + iA,TASA”STAAglASA*STAA

- lSTAA - %(A FIDALSTAp — %AI\SA*STAAO*(AS — AoS)

2
1
+ ZA,}SA—lSTAAg1ASA—1STAA
1 1 1 1
=T ;5TAx— (A + A 'STAx — 5AI\Szrl(A +1I0I) + 5AI\SA*A

+ EAI\SA”STAA(TASA”STAA

=11 - %((A +INAT'STAN + ARSATH (A +1D)) + EA;SA*(A +II)A"'STAR,

where we dropped some of the terms temporarily for clarity of exposition. O

We will now use these intermediate results to perform block inversion on the 2k x 2k matrix to be
inverted in Lemma S3.
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Lemma S5
Given the assumptions of Corollary S3, additionally assume (1) and (2) hold. Let

_ [T Tip| _ UiA;'Ua I+UA;'Va !
Ty T I+VJA;'Un  VJA;'Va ’

then the block matrices T;; € R™*™ are given by
1 1
Ty =AA+TI) A — (T~ 5STAAzrl)(I - 5zrlAI\S)
1
Ty, = (I - 5STAAA—l)

1

Ty =T, = (I - 5A*A,}S)
Ty = —AL

Proof. Let

UpAq'Ua  T+URA, 'V
I+ VJA; Ua VNA; VA |’
then the inverse of the Schur complement D = K /(U A;'Ua) is given by
D' = (K — KnK'Ky5) ™!

VIAG'VA — (I + VATA 'Ua)(UFAG'Ua) I+ ULA; ' Wa))

K=T""'=

—1

-1

-1

=

= (VyA;'Va— (I - iALSA*I)(A +II)(I - %A’ISTAA))
= (VyA;'Va— (A— 1A,}S)A*(A +IDA YA - %STAA))
=

VIAG'VA— (A+TI) + (A,}SA*(A +II) + (A + I)A1STA,L)

- ZAz\sml(A HIDATISTA,)

=(M—-A-11)!
=A%,
where we used Lemma S4. By block matrix inversion and again with Lemma S4 we obtain
T = (URA; 'Ua) ™" + (UFAG'Ua) " (I + URAg ' Va) D™ (I + VI A5 'Ua) (UR Ag 'Ua) ™
A +I)TAF AT - LATISTAND (1 - LaRsATA

1 1
= AA+ID) A+ (A~ SSTAWD (A~ S ALS)
as well as

Tio = —(UFA,'Ua) " (I +UfA;'Va)D™!
~AA+TD)PAAH A+ TI)(T — %A—lsTAA)D—l
= —(A— %STAA)D‘l
Ty = T7, = —D T(A — %A,}S)

and finally Thy = D1 = —A 1, O

Lemma S6
Given the assumptions of Corollary S3, additionally assume (1) and (2) hold. Let

_ Ty, T Ua
P A [Un Val [T; TZH } Al

27



where T is chosen as in Lemma S5, then if STAS = I, we have

F=A;"AS(I+1)"'STAA,' — SST.

Proof. By expanding the quadratic and using Lemma S5, we obtain the terms

F11 = AalUATllU;Aal
1 1
= Ay 'UaA(A+TI)'AUF A — Ay UA(T - §STAAA—l)(I - 5A—lATN‘s)U,L%l

= A;'AS(A+TI)"'STAAS — AgTASATH(I - %STAAA_l)(I — %A—lA;S)A—lsTAAO*l
— A7 AS(A+TI)'STAA;' — A7 ASA2STAAG!
+ %AglASA*(STAAN1 +ATTALS)ATISTAAL!
- iAglASA*STAAA*QA{\SA*STAAO—1
Fiy = Ay UAT 2V Ap?
= A;'UA(I - %STAAA‘I)VATAgl
= A;"ASATH(I - %STAAA‘l)AL(I - %SU,I)Aal
= AP ASATI(T — %STAAA*)A;(I — %SA—lsTA)Agl
= A7 ASATARAS! - DA ASATN(STAR AL + ARSATSTA) A
+ iAo‘lASA‘lSTAAA‘lA,T\SA*STAAO‘l
Fy = F, = A;Y (I - %ASA*ST)AA(I - %A*lA,T\S)A*SAAgl
= A 'AAATISTAAG! - %Ao_l(AAA*A,T\S + ASAT'STAA)ATISTAAS!
+ %AglASzvlSTAAA*A,T\SA*STAAO—1
Fyy = A 'VaTo Vi AG!
= —AGNI — JUAST)ARA AR — SSUR) A

1 1
= —Ag'(I- JASAT'ST)ARAT AL - SSATISTA) A

~AJ AAATIAR A + %Agl(ASA‘lsTAAA‘lATA + ApATTARSATISTA) AL
- %AalASA‘lSTAAA‘lALSA‘lsTAAgl
Assuming STAS = I, it holds that
Fiy = A;'AS(IT+11) 7 'STAA; — AT ASSTAA! + %AglAS(STAA + ALS)STAA,!
1
— JA;ASSTANALSSTAAG!
1

Fi, = Aj'ASSTAA;' — A;1ASST — 5AglAS(STAAA,} +AJSSTA)A,?
+ iAglASSTAAALSSTAAgl

1
Fy = A;'ASSTAA;' — SSTAA;! — 5Ao—l(AAA,w + ASSTAA)STAA!
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+ %AglASSTAAAI\SSTAAgl
Foy = AG'AAST — Aj'ApSTAA;! + %(ASSTAAAL + ApAARSSTA)AL!

— iAglASSTAAAI\SSTAAgl,
which leads to
Fi+ Fio = Aj'AS(T+ 1) 'STAA; — AP ASST + %AglAS(STAASTA — STAAAR)AL!
Fo; + Foy = Ag ApST + %AglAS(STAAA; — STAASTA)A,!

=A;'ASST - SST + %Ao—lAS(STAAA; — STAASTA)A".
Finally, adding up the individual terms we obtain
F=F, +F+Fy+Fy=A"AS(I +TI)"'STAA;' - SST.

O

Theorem 2 (Weak Posterior Correspondence)
Let WH ¢ ngﬁ" be positive definite. Assume Hy = Aal, and that W, Ao, WH satisfy (1) and
(2), then weak posterior correspondence holds for the symmetric Kronecker covariance.

Proof. First note that without loss of generality STAS = I, i.e. only the direction of the action
matters in Algorithm 1 not its magnitude. This can be seen from the forms of Ay and Hy in
Section 2.1. Any positive factor o > 0 of s cancels in the update expressions. Expanding the right
hand side we have using (S36), that H,Y = S. Then by Lemma S3, Lemma S6 and STAS =1,
the left hand side evaluates to
A'Y = (A, - F)Y

=(Ay' —AJTAS(I +II) "' STAA;' + SST)AS

=A;'AS - A;'AS + S

=5

=H,Y.

This concludes the proof. O

This theorem shows that for a certain choice of symmetric matrix-variate normal prior the estimated
inverse of the matrix Hj, corresponds to the inverse of the estimated matrix A;l. It also shows that

both act like A~! on the space spanned by Y, consistent with the interpretation of the two being the
best guess for the inverse A1,

S7 Galerkin’s Method for PDEs

In the spirit of applying machine learning in the sciences [35], we briefly outlined an application of
Algorithm 1 to the solution of partial differential equations in Section 4. As an example we considered
the Dirichlet problem for the Poisson equation given by

{—Au(w,y) = f(z,y) (z,y) €intQ

u(x, y) = Uasz(% y) (x7 y) S o (SSS)

where €2 is a connected open region with sufficiently regular boundary and ugq : 92 — R defines
the boundary conditions. The corresponding weak solution of (S55) is given by u € V such that for
all test functions v € V'

a(u,v) = /QVU'V’U dr = /vadz =: f(v), (S56)
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where a(-,-) is a bilinear form. Next, one derives the Galerkin equation by choosing a finite-
dimensional subspace V; C V and corresponding basis €7, .. ., el. Then (S56) reduces to finding
u € Vo such that forall i € {1,...,n} itholds that a(u, e;) = 3_7_, uja(ef, ef’) = f(e;’) which
is a linear system Au = f with the entries of the Gram matrix given by A;; = a(e?, e}’) and

Jjori
fi = fle7).
S7.1 Operator View

The operator view provides another motivation for placing a distribution over the matrix A of a linear
system. When approximating the solution to a PDE, as we do here, then solution-based inference
for linear systems [21, 13] can be viewed as placing a Gaussian process prior over the solution
u : 0 = R [49]. The matrix-based approach [11] instead can be interpreted as placing a Gaussian
measure [50] on the infinite-dimensional space of the differential operator instead. This induces
a Gaussian distribution on the Gram matrix A modelling the uncertainty about the actions of the
(discretized) differential operator.

Definition S4 (Infinite-dimensional Gaussian Measures [50])

Let W be a topological vector space with Borel probability measure p, then p is Gaussian, iff for
each continuous linear functional f € W*, the pushforward ;2 o f~1 is a Gaussian measure on R, i.e.
f is a Gaussian random variable on (W, By, p).

This definition and further detail on Gaussian measures in infinite-dimensional spaces can be found
in the book by Bogachev [50]. We now model the differential operator as a random variable on the
space of bounded linear operators and show that this induces a distribution on the Gram matrix arising
from discretization via Galerkin’s method.

Theorem S6 (Gaussian Measures on the Space of Bounded Linear Operators)
Let V be a Hilbert space and let W = B(V, V') be the space of bounded linear operators from V
to V with Borel probability measure u and let A be a Gaussian random variable on (W, By, i1).
Consider the operator equation

Au =f

andleta :V xV — R, (u,v) — (Au,v)y = (f,v)v be its corresponding bilinear form. Let Vq
be an n-dimensional subspace of V, then the resulting Gram matrix A € R"*™ s matrix-variate
Gaussian.

Proof. Since V is Banach, so is W. Define the functional ay : W — R given by aw (A, u,v) =
a(u,v) for fixed u,v € V. The map aw (-, u,v) is linear by linearity of the inner product and
bounded since using the Cauchy-Schwarz inequality, it holds that

law (A, u, )] = [(Au, v)v | < [[Aully [lvlly < AT lullyllolly = CllAly-

Therefore aw (-, u,v) € W* for all u,v € V. By Definition S4 of a Gaussian measure the push
forward 2 0 ay; is a Gaussian measure on R for all u, v € V, in particular also for a basis {v; }7_,
of V. Therefore the Gram matrix A given by A;; = a(v;,vj) = aw (A, v;, v;) is matrix-variate

Gaussian since its components are Gaussian. O

Remark S1

The Laplacian A : H?(Q) — L*(Q) is a bounded linear operator on the Sobolev space H?((2). Note,
that in general differential operators are in fact not bounded. Hence, the simple argument above does
not generalize to arbitrary differential operators.

Remark S2

If the bilinear form « in addition to being continuous is also weakly coercive, then by the Lax-Milgram
theorem the operator equation has a unique solution. A symmetric and weakly coercive operator
implies a symmetric positive-definite Gram matrix.

S7.2 Discretization Refinement
The linear system Au = f arises from discretizing (S55) using Galerkin’s method on a given mesh O

defined via a finite-dimensional subspace V7 C V such that u € V. By solving this problem using
a probabilistic linear solver we obtain a posterior distribution over the inverse H of the discretized
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differential operator A. Our goal is to leverage the obtained information about the solution on the
coarse mesh to extrapolate to a refined discretization, similar in spirit to multi-grid methods [51]. This
approach can be seen as an instance of transfer learning and could be used for adaptive probabilistic
mesh refinement strategies based on the uncertainty about the solution in a certain region of the mesh.

Consider a fine mesh & given by Vi, where ng = dim(Vg) > dim(Vg) = ng such that Vo C Vg C
V. We would like to transfer information from solving the problem on the coarse mesh V to the
solution of the discretized PDE on the fine mesh Vg. To do so we compute the predictive distribution
on the fine mesh, given the belief over the inverse differential operator on the coarse mesh, i.e.

p(Hs) = / p(Hs | Ho)p(Ho) dHo,

Define the prolongation operator P : R"2 — R"2 given by P;; = (e, e7) satisfying PTP = I ¢
R™0*"0 implying it is injective. The distribution over the inverse operator on the fine mesh given
the inverse operator on the coarse mesh is given by

where A € Rfyﬁ%x"m positive definite models the numerical uncertainty induced by the coarser
discretization. This corresponds to the assumption that solving the problem on a coarser grid
approximates the solution on a fine grid projected to the coarse grid.

Now assume we have a posterior distribution over the inverse differential operator on the coarse grid
from a solve of the coarse problem using Algorithm 1, given by

p(Hp) = N(Hg; HE, Wk @ Wik).

The projection in (S57) is a linear map, since by the characteristic property of the Kronecker product
(84) we have
svec(PHoPT) = Q(P ® P)QT svec(Hp).

Therefore by Theorem S4 the predictive distribution is also closed-form and Gaussian.

Proposition S7 (Predictive Distribution on Fine Mesh)
Let p(Hp) = N (Ho; HE, WE @ WE) be a prior on Hy and assume a likelihood of the form (S57).
Then the predictive distribution is given by p(Hg) = N (Hg; H, X2), where

HY = PH:PT,
) = PWiPT@ PWEPT LA,
Proof. By Theorem S4 we obtain for the mean and covariance of the predictive distribution
HY = PHEPT
3% = Q(P ® P)Q"(WS @ WE)Q(PT @ PT)QT + A
1
= 5Q(ngpT ® PWEPT + PWEPTR PWEPTQT + A
= PWEPT@ PWEPT 4 A

where we used (S34) and the symmetry of Wk, O
For general A the covariance of the predictive distribution does not have symmetric Kronecker form,
making its use as a prior for a new solve on the fine mesh challenging. We aim to exploit structural

assumptions on A and results on nearest Kronecker products to a sum of Kronecker products to
remedy this shortcoming in the future.
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