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Abstract 

Despite recent successes in control theoretical programs for 
limb control, behavior-based cognitive approaches for control 
are somewhat lacking behind. Insights in psychology and 
neuroscience suggest that the most important ingredients for a 
successful developmental approach to control are anticipatory 
mechanisms and hierarchical structures. Anticipatory 
mechanisms are beneficial in handling noisy sensors, bridging 
sensory delays, and directing attention and action processing 
capacities. Moreover, action selection may be immediate 
using inverse modeling techniques. Hierarchies enable 
anticipatory influences on multiple levels of abstraction in 
time and space. This paper provides an overview over recent 
insights in anticipatory, hierarchical, cognitive behavioral 
mechanisms, reviews previous modeling approaches, and 
introduces a novel model well-suited to study hierarchical 
anticipatory behavioral control in simulated as well as real 
robotic control scenarios. 

Introduction 
The autonomous control of the own body is an essential 
challenge for any cognitive system. Although established 
behavioral control in animals and humans seems effortless 
in every day life, many challenges arise. Due to the 
complex, dynamic, time lagged, noisy, and often nonlinear 
interactions between body and environment, effective body 
control in real environments is hard. Movements of different 
body parts influence each other, actions have different 
outcomes in different situations, muscle forces are state-
dependent, etc. Furthermore, sensory information may be 
unavailable, as for example in darkness, or may be available 
to the brain only after a significant time delay. The brain has 
to learn these complex, often context-dependent, 
interactions to be able to induce effective adaptive body 
control. 

The notion that most actions are goal directed and that 
the goal state is represented before the action is performed is 
labeled the ideomotor principle and can be traced back to 
the 19th century (Herbart, 1825; James, 1890).  Although 
behaviorists later questioned this view, it is now widely 
accepted that behavior is in most cases goal oriented. 
Hoffmann (1993) emphasized this insight in his theory of 
anticipatory behavior control, which theorizes that actions 
are usually preceded by an anticipatory image of the sensory 
effects. The image triggers that action(s) that is (are) 
expected to yield the anticipated effects, considering the 
current environmental circumstances. Different sensory 
modalities and sensory aspects can influence action 

triggering, for example, an external effect, like a tone, or 
also a proprioceptive effect, like the feeling of bending the 
fingers or of pressure against the fingertips. To control more 
complex behavior, actions may be divided into simpler 
parts. For example, if a piano player wishes to play a tone, 
the anticipation of the tone causes the anticipation of the 
feeling of the correct hand position and then the finger 
pressing the key. Thus, to achieve an overall goal, several 
successive sub-goals may trigger successive actions. 

To be able to generate such complex behavior 
effectively, hierarchical processes are necessary that 
generate goals and partition far-reaching goals into suitable 
sub-goals. However, even if neuroscience shows that brain 
functions are structured hierarchically (e.g. Poggio & Bizzi, 
2004), only few computational arguments exist, why such 
structures are advantageous. 

This paper reviews evidence for anticipatory guided 
human processing and derives design suggestions for 
cognitive behavior systems. Similarly, we assess evidence 
for hierarchically structured mechanisms. The gained 
insights lead us to the development of a simple learning 
system for studying the potential benefits of hierarchical 
anticipatory control structures. We introduce the base model 
and confirm successful behavioral control of a simple arm. 
In sum, this paper studies anticipatory hierarchically 
controlled systems that learn effective control structures to 
guide complex adaptive behavioral patterns.  

The remainder of this work is structured as follows. 
First, we review anticipatory and hierarchical cognitive 
structures. Next, existing cognitive control models are 
compared. Finally, we introduce our model revealing its 
current capabilities, limitations, and potentials. A short 
discussion concludes the paper. 

Anticipatory Hierarchical Structures 
In this section, we gather evidence for and benefits of 
anticipatory and hierarchical structures in learning, 
behavioral control, and cognition in the broader sense. 

Anticipatory Behavior Control 
Anticipatory behavior refers to behavior in which currently 
desired goals precede and trigger the action that usually 
results in the desired goals. Psychological experiments 
underline the concept of anticipatory behavior. 

A simple experiment confirms the presence of effect 
representations before action execution. Kunde (2001) 
paired actions with compatible or incompatible effects, such 



as the presentation of a bar on the left or on the right 
compatible or incompatible to a left or right key press. 
Although the effects were presented only after the key press, 
reaction times were significantly faster, when the location of 
target button and visual effect corresponded. Similar effects 
were found for the modalities of intensity and duration 
(Kunde, Koch & Hoffmann, 2004). Additionally, (task-
irrelevant) stimuli that are incompatible to the expected 
effects of an action interfere with the selection and initiation 
of the action (Elsner & Hommel, 2001). 

In all cases, it is concluded that anticipatory effect 
representations interfere with an action code or also with an 
external stimulus. Thus, goal aspects are represented before 
action execution in terms of at least some of the sensory 
effects. Interestingly, it has also been shown that humans 
acquire such action-effect associations much easier than 
situation-action relations (Stock & Hoffmann, 2002). 

However, the advantages of such anticipatory behavior 
remain somewhat obscured. What are the benefits of 
representing effects before or actually for action execution? 
Other disciplines provide interesting insights in this respect. 
Artificial intelligence shows that anticipatory represen-
tations enable higher flexibility in learning and decision-
making. In reinforcement learning (Sutton & Barto, 1998), 
the DYNA architecture (Sutton, 1990) showed that model-
based reinforcement learning mechanisms increase 
flexibility when goals vary or when the environment is 
partially dynamic. More recent investigations in relational 
reinforcement learning have shown similar advantages when 
the flexible propagation of reinforcement learning is 
required (Kersting, Van Otterlo & De Raeth, 2004).  

In control theory, structures capable of predicting future 
states yield more powerful controllers. Forward models that 
predict the effects of action compensate for delayed or noisy 
feedback (Barlow, 2002; Haykin, 2002; Kalman, 1960; 
Miall, Weir, Wolpert & Stein, 1993). Additionally, inverse 
models (IMs) that directly determine the action necessary to 
obtain a desired goal are key components in efficient 
adaptive controllers (Kawato, Furukawa & Suzuki, 1987).  

Thus, cognitive psychology and neuroscience suggest 
that anticipations are important for effective adaptive 
learning systems. Artificial intelligence and control theory 
have shown that anticipatory structures improve learning 
speed and reliability, behavioral flexibility and execution, 
and sensory robustness, resulting in effective goal-directed 
systems. 

Hierarchies for Learning and Control 
Besides the anticipatory indicators, studies and models 
suggest that cognitive information is processed 
hierarchically. Powers (1973) already stressed the 
importance of hierarchies in behavioral control and 
consequent computational models of cognitive systems. Just 
recently, Poggio and Bizzi (2004) pointed out that 
hierarchical structures are very likely the key to not only 
sensory processing but also motor control. Available 
hierarchical models in vision (Giese & Poggio, 2003; 

Riesenhuber & Poggio, 1999) are suggested to be extended 
to motor control. Hierarchical top-down influences showed 
to have advantageous structuring effects (Rao & Ballard, 
1999). 

Kawato, Furukawa and Suzuki (1987), applied a 
hierarchical controller to a robot arm. The lowest level 
contains a simple PD-controller that can in principle handle 
any task. The controller is not very efficient, because the 
delayed feedback results in a slow control process. A second 
layer improves performance. As soon as a forward model of 
the plant is learned, it updates the control signal using the 
expected feedback, which is available much faster. 
However, it is still necessary to adjust the signal iteratively. 
A third level consists of an inverse model (IM) that 
calculates a control signal for any given goal. When the IM 
is accurate, the controller selects a feasible control signal 
instantly. In case of a failure, the lower levels induce the 
(slower and less effective) control. The more accurate the 
models in the higher levels, the more they influence the 
control signals. 

Despite the ubiquitous hints on the importance of 
hierarchical processing and the first model from Kawato and 
colleagues, it remains somewhat unclear why hierarchies are 
advantageous. One advantage may be the general 
decomposability of our environment due to time and space 
constrains (Simon, 1969; Gibson, 1979). Computational 
advantages can be found in artificial intelligence studies.  

Re-considering reinforcement learning, it has become 
clear that hierarchical processing mechanisms are 
mandatory for effective reward propagation and flexible 
learning (Barto & Mahadevan, 2003). Hierarchical 
structures are formed that can trigger abstract action 
representations including goals. Most recent publications 
have shown that such hierarchical representations may be 
learned by using simple statistics of the environment 
searching for decomposable sub-structures (Butz, Swarup & 
Goldberg, 2004; Simsek & Barto, 2004).  

Thus, hierarchical control enables the discovery and 
representation of more distant and abstract dependencies as 
well as increases flexibility in behavioral learning and 
decision making, as well as in sensory processing at 
different levels of abstraction in time and space. 

Merging Both 
As we have seen, cognitive processing is guided by 
anticipations that improve sensory processing and 
behavioral control. Hierarchies yield more flexible 
representations for anticipatory learning and behavior. Thus 
the combination of anticipatory and hierarchical structures 
may be a promising approach to understand and model 
human motor learning and control. 

The review suggests several requirements for a cognitive 
controller. First, the controller must represent a goal in 
terms of desired sensory inputs. Partial, underspecified, and 
even contradicting goals may be represented in different 
sensory modalities. Second, goal representations should not 
only be modular but also hierarchical. Higher level goal 



representations are usually more abstract in time and space 
and trigger lower level, more concrete, sensory dependent 
goal representations. Third, the representations should be 
learned by interacting with the environment. Learning 
architecture and learning biases, however, are provided in 
advance.  

Before we introduce our model, which can satisfy these 
constraints, we review other related systems.   

Cognitive Movement Controllers 
Numerous computational models for motor learning and 
control have been proposed. Most of them address specific 
stages of movement generation, for example trajectory 
formation (Cruse, Steinkühler & Burkamp, 1998; Hirayama, 
Kawato & Jordan, 1993) or coordinate transformation 
(Salinas & Abbott, 1995). Others are tracking reference 
signals, relying on IMs and feedback controllers (Kalveram, 
2004; Kawato, Furukawa & Suzuki, 1987), which might be 
combined in a single control structure (Stroeve, 1997). 
Some approaches gate a number of single control structures 
to be able to quickly adapt to changing limb properties 
(Wolpert & Kawato, 1998; Haruno,  Wolpert & Kawato, 
2001). 

While each model has interesting properties on its own, 
none match all the suggested cognitive systems 

requirements. The described hierarchical model of Kawato, 
Furukawa and Suzuki (1987) contains three different levels 
but does not accept goals in arbitrary modalities. Other 
controllers (e.g. Cruse, Steinkühler & Burkamp, 1998) 
accept underspecified goals but do not include hierarchical 
layers. Many models contain neural networks that learn by 
cognitively implausible mechanisms like back-propagation. 
Our model intends to bridge the respective drawbacks 
effectively creating a hierarchical, anticipatory cognitive 
model that is suitable to process any goal representation 
flexibly and hierarchically. 

A Hierarchically Anticipatory Model of  
Motor Control 

We devise a new computational model for motor learning 
and control (Figure 1). To account for anticipatory control, a 
central controller responds to many different goal 
modalities. IMs are used to store action-effect relationships. 
The controller does not directly address the musculoskeletal 
system but the interneurons of the spinal cord that interact 
with each other, for example by inhibiting antagonistic 
motoneurons. The interneurons activate alpha and gamma 
motoneurons that innervate certain muscles attached to a 
mechanical arm model. This causes sensors for muscle 
length, velocity and tension to change their output. These 
proprioceptions are linked to spinal interneurons and to the 
central controller and are available after a short time delay 
or after some more processing. For example, length of 
several muscles that embrace a joint can be used to 
represent the joint angle. As the state of the limb can be 
perceived visually, too, information like the hand position in 
external space is also available to the controller.  

The Controller 
The task of the inverse controller is to reach or maintain a 
certain state. A set of desired sensory goals is provided to 
the controller and must be transformed in descending 
signals that innervate the spinal cord. 

The general controller consists of a set of IMs. Given a 
desired goal, each IM calculates an action dependent on the 
current situation. An action can either be an actual control 
signal sent to the spinal cord or a goal input signal for other 
IMs. Thus, a single IM connects with three sets of signals. 
The first set describes the desired state or goal. The second 
one codes relevant sensory signals consisting of direct 
proprioceptions, exteroceptions, and/or pre-processed, 
internal state signals. The third set sends information to 
subsequent IMs or to the spinal cord. For example, to press 
a key, visual signals may provide a desired fingertip 
position in external space. The signal then may be 
transformed to appropriate joint angles, which are then 
transformed to signals that descend to the spinal cord. 
Several signals may be merged using weighting mechanisms 
according to estimated importance. 

 
 
Figure 1: The left side of the chart shows how the desired 
effects are transformed into motor signals using a 
hierarchy of inverse models (IM). The motor signals 
cause changes in the arm. The changes are fed back to the 
controller (right side). Perceptions can be used directly or 
after processing. 
 



Each IM learns by observing which effects arbitrary 
random actions have dependent on the current sensory state. 
Thus those situation-action-effect relations are stored, which 
occur during the application of initially random motor 
signals. The mechanism is sometimes referred to as direct 
inverse modeling (Jordan & Rumelhart, 1992) or 
autoimitation (Kalveram, 2004). Initial random commands 
must be sufficient to learn coarse IMs. Once the controller is 
sufficiently accurate, control signals can be used to 
systematically explore and improve relevant movements. 
Note that the time interval may vary between a situation, an 
action and the effect that is linked to it. Thus, some IMs can 
be used to represent what will happen shortly after a 
command signal is changed while others store longer term 
dependencies. IMs that bridge longer term intervals can 
produce control signals for subsequent shorter term IMs. 

The IMs are realized by associative networks using 
Hebbian learning (Hebb, 1949). The real-valued sensory 
inputs are split up using radial basis function (RBF) input 
neurons, which restrict the receptive field of each neuron. A 
neuron is activated if the actual signal values are close to a 
preferred combination of values. Hebbian learning 
strengthens connections between situations, actions and 
coincidental sensory effects. If later a goal is chosen, only 
the desired effect has to be fed into the network 
consequently activating the appropriate action. 

Model Evaluation 
To consider the feasibility of our approach, we evaluate the 
performance of a single IM on a simple 1-dof-arm model. 
The arm is dampened and a nonlinear restoring force pulls it 
to its initial position. To move the arm, a motor signal is 
proportionally transformed into a torque that is applied to 
the joint. Thus, applying a constant torque signal moves the 
arm to a certain equilibrium position after some oscillations. 
Two different types of IMs were tested. The first type 
converts desired joint angles and velocities into a torque 
considering current joint angle and torque. Receptive fields 
of sensory states (desired or actual) are distant 10° of joint 
angle from each other and 5°/time-unit of joint velocity. 
Standard deviations are set to half the distance. The 
receptive fields of the torque signal are .1 apart (a torque 

change of .1 causes a change in joint angle of about 7°-13° 
depending on the arm position). To convert the activation of 
RBF-neurons into a torque signal, a modified winner-takes-
all mechanism is used that takes the activation of the 
winner-neighboring RBF-neurons into account. 

Each learning example consisted of a torque signal, the 
current sensory state and the subsequent sensory state. 
Learning examples were generated by setting new random 
torque signals that were evenly distributed between -1 and 1 
(allowing an arm range from about -80° to 80°). Every four 
time-units the signal changed. After five changes the arm 
was set back to its initial position. To test the IM, it had to 
reach different joint angles between -60° and 60°. The data 
shows that after a few examples, the IM is able to reach the 
vicinity of a desired goal very fast but its endpoint position 
is not very accurate (Figure 2a, c). 

Another type of IM learns how signal changes were 
related to joint angle changes. The difference between actual 
and desired state (error) were provided as goals, the current 
absolute joint angle and torque signal were used as sensory 
input and the control signal was used to change the torque 
signal (receptive fields covering 10° for the error, 20° for 
absolute joint angle, .4 for absolute torque signal, .2 for the 
torque change). The same learning and testing procedures 
were used as for the first type. The data shows, that this type 
of IM is capable of reaching a goal very precisely, despite 
the widths of the receptive fields (Figure 2b, c). 

Model Capabilities, Potentials, and Challenges 
The results show that the two investigated connectivities 
have two interesting properties that may be combined. 
While the first controller was able to generate very fast 
goal-directed movements, the second was able to induce 
very accurate, albeit slower movements. The combination of 
both may yield an effective two-staged controller that 
approaches the target location quickly and then stops 
accurately at the exact target position (Hirayama, Kawato & 
Jordan, 1993). The integration of the combined model into 
the more sophisticated musculoskeletal system and the 
spinal cord model outlined above promises additional 
stabilizing effects. 
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Figure 2: a) Inverse models that compute position and speed can reach a specific angle (in this example: 70°) fast 
improving the approximation with learning (white triangles: naïve; black circles: after 100 examples; white circles: 600 
examples). b) Inverse models that process error signals approximate a target slower but more precise (same learning steps). 
c) On average (n=10, error bars indicate standard deviations), the error-based model (dotted line, setting as in (b)) is more 
accurate than the model that generates fast movements (straight line, setting as in (a)). 



A major point of critique on the current model may be 
the method used for learning the IM. Since the method is 
not goal-directed, the mapping is nowhere guaranteed to 
converge to the optimum (Jordan & Rumelhart, 1992). 
However, we believe that it is not necessary to obtain an 
optimally accurate mapping between action and effects in 
the general sense. Action execution is usually noisy and 
easily perturbed so that sensory feedback control is expected 
to be generally necessary to reach a precise goal. 
Additionally, trained movements become progressively 
more optimal, which is the case in our model.  

Another concern is that the chosen RBF encoding is not 
very suitable for generalization. Using different layers of 
RBFs with a combination of larger and smaller receptive 
fields may solve this problem. However, the encoding also 
has advantages. The representation facilitates dealing with 
uncertainty (Knill & Pouget, 2004) and allows very flexible 
goal representations. A goal does not need to be exactly 
specified but a range of acceptable goal states or goal 
features can be presented to the network. This feature 
increases flexibility, which is advantageous for control 
(Todorov & Jordan, 2002). Additionally, the representation 
allows the encoding of many-to-many relationships. A final 
RBF-related concern may be the curse of dimensionality 
and the consequently exploding number of RBF neurons. 
However, an adaptive distribution of the RBF neurons and 
separating comparatively independent parts of the sensory 
space in different networks can reduce the amount of 
required neurons (Urban, 1998). 

A big challenge arises considering the need to learn and 
execute motor programs. Currently the system state only 
changes, if the desired effects or sensory inputs change. 
Thus, very fast or complex movements are not possible. 
Two ways exist to integrate motor programs. First, it has 
been shown that neural circuits exist in the spinal cord of 
animals that generate specific motor signals to coordinate 
simple rhythmic behavior, like walking or swimming (Dietz, 
2003). Thus, the model of the spinal cord could be extended 
to include such rhythmic pattern generators. Additional 
representations would be necessary to code the behavior 
caused by the pattern generators, such as representations of 
walking or moving forward, to be able to address the 
behavior with anticipations. A second way to include motor 
programs would be to delegate this task to higher structures 
that send continuously changing desired effects to the 
controller. The combination of both features may be able to 
learn rhythmic behavior combined with consecutive 
behavioral pattern changes, as appropriate. 

In this paper we only presented results for one single 
controller. Experiments are in progress combining multiple 
controllers as outlined above. Two approaches need to be 
distinguished: parallel, modular combinations and 
hierarchical, abstracting combinations. Shadmehr and 
Brashers-Krug (1997) showed that human subjects are able 
to store many different controllers for different situations. 
For example, one controller could be trained for moving 
light objects and another for heavy objects. The weighted 

combination of both controllers then enables fast adaptation 
to movements with different weights. This feature can be 
added by using an array of controllers that are experts for a 
specific situation and are weighted accordingly (Haruno, 
Wolpert & Kawato, 2001). Hierarchically connected IMs 
might prove advantageous when different objects need to be 
moved. Although different weighting of lower level IMs is 
necessary to calculate descending commands from the 
desired joint angles, the relationship between external 
coordinates and joint angles stay constant. Thus, only parts 
need to be adapted to the current situation. Additionally, 
longer time delays in higher layers may be compensated for 
by lower level control structures. On the other hand, the 
different times integrated by different models may be used 
to facilitate more complex, longer term movements. 

Besides the combination and extension of IMs, strongly 
noisy signals will require more elaborate processes. Forward 
models can be included in the processing of the sensory 
inputs to bridge temporary misperceptions, sensory failure, 
or noisy sensory inputs akin to Kalman filtering. 

Summary and Conclusion 
This paper has reviewed indications and benefits of 
anticipatory mechanisms and hierarchical structures in 
control processes. Both mechanisms are involved in human 
motor learning and control. While anticipatory mechanisms 
lead to direct action selections in inverse models and 
effective filtering mechanisms in forward models, the 
modular and hierarchical combination of such models 
promises to yield a more effective environmental 
representation increasing behavioral flexibility, adaptivity, 
and decision making.  

The gathered potentials of combining both mechanisms 
into artificial cognitive systems promise fruitful future 
research. The proposed model provides a novel, integrative 
approach for studying such combinations. The generality of 
the proposed associative structures enables direct modular 
and hierarchical combinations. Future research will 
investigate the suitability and extendibility of our approach 
for the simulation of efficient cognitive learning systems in 
simulated and real robotic environments. Moreover, future 
research will further study the benefits of hierarchical, 
anticipatory behavior control, learning, behavior, and 
cognition in general using and extending the proposed 
model. 
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