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Abstrakt

Um neuronale Netze (NNs) zu bewerten, werden hdufig die Klassen ausgegeben, die
die k hochsten Aktivierungen in ihren Ausgangsneuronen aufweisen. Das Ergebnis
ist eine statische Top-k-Liste, d. h. eine Liste mit der Lange k fiir jedes zu klassi-
tizierende Objekt. Bei uncertainty aware Top-k-Metriken héngt die Lange der Liste
davon ab, wie sicher das NN tiber die Korrektheit der Klassifikation ist. In dieser
Arbeit wurden verschiedene Algorithmen zur Implementierung von uncertainty
aware Top-k-Metriken an den Datensdtzen MNIST und CIFAR-100 evaluiert. Zu
diesem Zweck wurde ein Paradigma entwickelt, das sowohl die Redundanz der
Ausgabeklassen als auch die Genauigkeit der Klassifikation berticksichtigt. Die Ergeb-
nisse zeigen, dass uncertainty aware Top-k-Algorithmen im gegebenen Paradigma
eine sehr gute Alternative zu statischen Top-k-Listen sind, da insbesondere die
Redundanz der Ausgabeklassen stark reduziert wird. Dartiber hinaus wurden
Vergleiche zwischen den uncertainty aware Algorithmen gezogen. Algorithmen, die
mit einer kritischen Uberlappung zweier Verteilungen arbeiten, sind robuster als
welche, die mit einem Threshold arbeiten. Allerdings sind sie auch rechenintensiver.






Abstract

To evaluate neural networks (NNs), the classes that have the k highest activations in
their output neurons are often output. The result is a static top-k list, i.e. a list with
length k for each object to be classified. For uncertainty aware top-k metrics, the list
length depends on how certain the NN is about the correctness of the classification.
In this thesis, different algorithms implementing uncertainty aware top-k metrics
were evaluated on the MNIST and CIFAR-100 datasets. For this purpose, a paradigm
was established that takes into account both the redundancy of the output classes
and the accuracy of the classification. The results show that uncertainty aware top-k
algorithms in the given paradigm are a very good alternative to static top-k lists since
especially the redundancy of the output classes is strongly reduced. Furthermore,
comparisons between the uncertainty aware algorithms were drawn. Algorithms
dealing with a critical overlap are more robust than algorithms dealing with a
threshold value but are often computationally more costly.
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1. Introduction

Since the proposition of Neural Networks (NNs) by Rosenblatt, the field has been
growing largely. Artificial Intelligence (Al) is now occupying a fundamental role
in society. Whether in road traffic, medicine, sports, marketing or online shopping,
there is hardly a significant area of human interaction that does not increasingly
use Al Thus, NNs as part of Al have also gained importance in today’s society.
They help people make decisions on a daily basis, such as which product to buy,
but more and more they are also making decisions without human intervention.
A well-known example of this are self-driving cars, which are expected to safely
participate in road traffic without human intervention in the future. For this, the
car’s surroundings must be perceived and correctly classified to avoid accidents
which could cause casualties. Medicine also provides an example of how important
correct classification is. Detecting cancer from images and choosing the right therapy
are sometimes vital for survival.

Therefore, NNs have to classify precisely. Nevertheless, cases occur in which a
NN classifies incorrectly. That is why it would be a useful property of a NN, if
it would not only output a classification, but also how sure it is about it. Such a
property is called uncertainty aware.

One possibility to include uncertainty into a NN is with a Bayesian framework.
Whereas in classic NNs the weights are assumed to have fixed values, the weights
of Bayesian NNs are assumed to follow probability distributions. Often those are
Gaussians. Instead of fixed values, now weights depend on distributional parameters
that have to be obtained through approximations. Laplace approximations (MacKay
[1992]) are one possibility to do so.

The output of the top k classes, i.e. the k classes with the highest activation, has so
far been the classical approach to measure the performance of an NN architecture.
We will refer refer to this as static top-k. The metric used is accuracy, i.e. the share of
how many of the presented data were correctly classified. However, the choice of k is
arbitrary because, for one thing, in many cases the top-1 estimate is also the correct
classification. Hence, all additionally output classes of the top-k list are redundant.
On the other hand, there are cases where five is too small because the first five
activations are almost equal to activations five through ten. For example, such a case
could occur in image classification when the data contains 10 different classes of car
brands. The NN is sure that the image shows a car, but it is not sure about the brand.
Uncertainty aware top-k metrics could solve this problem. They use uncertainty
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Chapter 1. Introduction

methods to produce a top-k list as output, where k depends on how certain the NN is
of its classification. Accordingly, a very short list means it is very sure of the correct
classification. However, a very long list as output means that no certain classification
could be made.

This thesis provides an analysis and evaluation of different uncertainty aware top-k
metrics. The questions of whether uncertainty aware methods are superior to the
classical top-k metric and which of these methods is best for which case are to be
answered. In addition, trade-offs are made with respect to computational effort.
To do this, experiments are performed on two datasets, MNIST and CIFAR-100.
Different algorithms that realize uncertainty aware top-k metrics and the static top-k
are implemented and evaluated with respect to the correct accuracy, the average
total length of the top-k metric on the test set, redundancy and computational effort.
Therefore, the Accuracy-Redundancy Paradigm is introduced.

12



2. Theoretical Background

2.1. Neural Networks

2.1.1. Multilayer Perceptron

A NN is a directed graph with vertices and edges. The vertices are arranged in layers.
The edges specify the connections between the vertices. Each vertice has an edge to
each of the vertices in the previous layer. Such a layer is called fully connected. NNs
with more than one fully connected layer are called multilayer perceptrons.

The original perceptron only had one layer (Rosenblatt [1958]). Its general idea is
adapted from the human brain. Vertices, in this analogy, can be thought of as the
neurons. Edges represent the synapses. The edges are also assigned a weight that
specifies the strength of the connection between two neurons. Therefore, edges are
often simply called weights and vertices neurons.

The output of one neuron depends on three things. First, it depends on the output of
all preceding neurons connected by weights o0;. Second, what values these weights
wj; have (Terminology: Weight wj; is the value of an edge from neuron i to neuron
j). Third and final, each neuron has an activation function f,¢. Thus, the resulting
output of neuron j can be calculated by:

Oj = fact(Z wjioi)

Learning is achieved by adapting the weights. For this purpose a loss or error
function L is defined. The loss function L gives the error of the net over all training
patterns as a function of the weights. The graph resulting from this function is
called error or loss surface. Thus, finding the minimum of this function gives the
best possible weight values. As this minimum cannot be find analytically, steps
in direction of the steepest descent are taken, i.e. in the opposite direction of the
gradient. Weight adaption by taking these steps is called backpropagation.

2.1.2. Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNNs) differ in certain key aspects from NNs dis-
cussed until now. Especially in the field of Computer Vision, i.e. image classification,
this new network architecture is held responsible for many accomplishments.

A CNN has three different types of layers of neurons:

13



Chapter 2. Theoretical Background

e Convolutional layer

Convolutional layers have the task to extract certain features of the image. The
later/deeper a convolutional layer is positioned within a NN, the more high-
level are the features to be extracted. This is done by defining a Kernel/Filter K.
A kernel is defined by a certain size, e.g. 5x5 pixels, and weights belonging to
each pixel. The kernel now shifts over the image. The activation of the next
layer is calculated by normal matrix multiplication followed by an activation
function.

Pooling layer

Pooling layers are useful to reduce the dimensions of the image. Therefore, as
in convolutional layers, a kernel is defined, e.g. 2x2 pixels. This kernel again
shifts over the image. For maxpooling layers, the respective maximum in each
shift is used as activation for the next layer, for average pooling layers, the
average value of the kernel is calculated and used.

Fully-connected layer

In a CNN fully-conntected layers can be found at the end of the net. They are
responsible for classification. In theory, all extracted features of the image are
evaluated and depending on the evaluation, conclusions are drawn about the
respective class of the image.

Training a CNN can be achieved with backpropagation similar to multilayer percep-

trons.

2.1.3. Residual Networks (ResNets)

ResNets are CNNs which differ in only one key aspect from them. They have so called
skip connections between certain building blocks. The skip connections are using the
identity function as their activation function. Thus, the identity of a previous layer is
added to the activation after the building block. To solve the common problem of
non-matching dimensions arising from convolution and pooling layers, the identity
mapping is multiplied with a linear projection.

The resulting network architecture has empirically shown to perform better when
deeper CNNSs are necessary (He et al.|[2016]).

14



2.2. Laplace Approximations

2.2. Laplace Approximations

In classic NNs, weights are determined by gradient descent. After learning the
weights, they are assumed to be fixed. This procedure can be seen as a frequentistic
approach to interpret NNs. The parameter offering the best explanation of the data
at hand is chosen, which essentially is a maximum likelihood estimation.

In Bayesian NN, the data is assumed to be fixed while the weights are interpreted
as random variable. The probability distribution of the weights can be calculated
with the Bayes theorem and is called the posterior p(0 | ©). However, this posterior
is intractable because the integral of the denominator cannot be solved analytically.
That is why the posterior of the weights has to be approximated if a Bayesian
framework is desired.

Laplace approximations (MacKay|[1992]) offer one possibility to achieve this. They
construct a Gaussian distribution N (0 | u, X) around a single given mode. This mode
is the mean yu of the Gaussian and can be determined by standard backpropagation.
The covariance matrix X is constructed as the inverse of the Hessian of the loss
landscape.

Since the computation of such an inverse is often too expensive, assumptions about
the Hessian need to be made in order to keep the computational effort within
reasonable limits.

e Diagonal Laplace Approximations
In the diagonal Laplace approximations, it is assumed that the Hessian H has
the following property. Every entry h;; of the matrix is zero if i # j, i.e. only on
the main diagonal there are entries unequal zero. The inverse of such a matrix
can be easily calculated:

- hi,, ifi=j
0 else

Taking only the diagonal elements of a Hessian into account means that the
covariance between two dimensions (weights) is not considered, i.e. some
information on the loss landscape is lost.

To reduce the computational effort even further, one can also assume that
only the weights in the last layer are normally distributed. The weights in all
previous layers are assumed to be fixed. This is called a Laplace approximation
of the last layer.

2.3. Laplace Bridge
Obtaining posterior distributions is computationally costly. First, Laplace Approxi-

mations have to be performed. In a second step it is necessary to draw samples from
these approximations. The third and final step then consists of applying the softmax
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Chapter 2. Theoretical Background

function.

Sampling is necessary because the distribution in the output space is non-parametric
and therefore cannot be described analytically. This issue is addressed by the work of
Hobbhahn et al.. They used a method that resolves computationally costly sampling
which is called the Laplace Bridge. The Laplace Bridge approximates the posterior
distribution analytically. Thus, the computational effort due to sampling is saved.
The Laplace Bridge is based on the observation that a Dirichlet distribution looks
quite similar to a Gaussian if you change its variables with the Softmax-Function.

- RK K. =
0:R*—>[0,1]":0(2); = T
Now, if we assume that the Gaussian in the logit space is given, a direct map from the
parameters u and X of the Gaussian to the parameters a; of the Dirichlet distribution
in the standard basis exists.

K

— 1 (1_2 % —t
ak—zkk(l K+KZZ€ )
I

This is useful as the Dirichlet function in the standard basis is defined on the intervall
I=1[0,1].

An algorithm for uncertainty aware top-k based on the Laplace Bridge is described in
Section[3.5
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3. Algorithms

3.1. Static Top-k

Top-k outputs only the classes belonging to the k output neurons with the highest
activations in descending order, e.g. the top five classes.

Therefore, strictly speaking, this algorithm does not provide a result that takes uncer-
tainty into account. Rather, it serves as a benchmark which should be outperformed
by the uncertainty aware algorithms to justify such approaches in the first place.

3.2. Simple Top-X% of Probability Vectors

The activations of the output neurons are mapped to values between zero and
one, which allows the resulting values to be interpreted as probabilities for the
corresponding classes. The mapping can be accomplished with the softmax function:

- RK K. i
0:R*—10,1] 'G(Z)I_Zf:]ezf

This algorithm sorts the classes in descending order based on the probabilities
resulting from the softmax function and starts adding classes to the uncertainty
aware top-k list. In the process, the probabilities of the added classes are summed up
until a defined threshold value is exceeded, e.g. 0.5. For the probabilities in Figure
this would mean that class 5 and class 6 are included in the top-k list because
added together they exceed the threshold value of 0.5. Consequently, all the other
classes are left out the top-k list because after exceeding the threshold, the algorithm
terminates and no further classes are added to the list. This algorithm is referred to
as simple top-x throughout this thesis.
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Chapter 3. Algorithms
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Figure 3.1.: Visulization of a softmaxed output of a NN with 10 output neurons.
simple top-x and LA-mean adding these values up in descending order
until a threshold value is exceeded. LA-mean is generating these values
out of the means of samples shown in Figure

3.3. Top-X% of Probability Vectors for Last-Layer Laplace
Approximations

This algorithm works quite similarly to the simple top-x algorithm described in
the Section above. The only difference between these two algorithms is that this
time Laplace approximations are used. Only the weights of the last layer of the
neural network are approximated using Laplace. Consequently, all other weights in
the previous layers are static after they have been trained. The last-layer Laplace
approximation achieves promising results with respect to modeling uncertainty in a
NN Kristiadi et al.| [2020].

From the resulting Gaussian distribution, 1000 output vectors are now generated by
sampling. Each output vector is then normalized using the softmax function. After
that, the mean value of all output vectors is calculated. The predicted classes of the
top-k list are emitted using the same principle as in the simple top-x algorithm with
the help of a threshold.

The composition of the softmax function and the mean are not commutative. Thus,
the results differ from the simple top-x. This algorithm will be called LA-mean from
now on.

18



3.4. Overlap of Samples for Last-Layer Laplace Approximations
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Figure 3.2.: Visualization of the distributions generated by sampling. These are
needed for the LA algorithms (LA-mean and LA-overlap). LA-overlap
checks the overlap between two histograms by comparing two quantiles.
LA-mean is building the mean for each class to generate an output as

shown in Figure

3.4. Overlap of Samples for Last-Layer Laplace
Approximations

Again, last-layer Laplace approximations are used to create a Gaussian distribution.
As above, this distribution is used to draw 1000 samples. After that, the output
vectors are again normalized with the softmax function. Now, there exists a histogram
of samples for each class (Figure 3.2).

To model uncertainty a critical overlap x is defined (e.g. 0.05). The first step is to
sort the classes in descending order according to the respective sample means. After
that, the x-quantile of the upper class is compared with the (1 —x)-quantile of the
lower class. If it is smaller or equal, the lower class is added to the top-k list and
becomes the upper class in the next comparison. The class with the next smaller
mean becomes the lower class. If the x-quantile is larger, the algorithm terminates
and no further classes are added to the top-k list.

In the upper paragraph an algorithm is described which creates an uncertainty-aware
top-k list from the comparison of two adjacent classes. However, another possibility
is to take only the class with the largest mean value and to perform the comparison
with all lower classes. The classes with a sufficiently large overlap with the top class
are added to the top-k list.

The first method, which compares two adjacent classes, will be referred to as LA-
overlap adjacent. The second, which only compares the top class with the lower
classes, will be called LA-overlap top.

19



Chapter 3. Algorithms

3.5. Uncertainty aware with the Laplace Bridge

Uncertainty aware can also be realized through a method proposed by [Hobbhahn
et al.| without sampling. The Laplace Bridge is used to get a Dirichlet distribution in
the output space. As the marginal distribution over each component of a Dirichlet
relative to all the other components is a Beta distribution over these parameters, one
can use the following algorithm to get an uncertainty aware top-k metric.

First, the class predictions are sorted in descending order based on their probability.
If the adjacent beta marginals of the top two classes overlap more than a defined
critical overlap (e.g. 0.05), the second class is added to the top-k classes. This
process is repeated until two adjacent beta marginals do not overlap sufficiently
(next comparison is between the second and third class). In this case the algorithm
terminates. The result is a list of the top-k classes for this specific classification
problem.

As in Section 3.4} it is again possible to make the comparison just between top class
and all other classes. The adjacent method is in this case called LB adjacent, the other
one LB top.

| Class 0
30 | Class 1
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25 A Class 3
Class 4
> 201 Class 5
D Class 6
o 154 Class 7
a
Class 8
10 Class 9
54
od -~ AN
0.0 0.2 0.4 0.6 0.8 1.0

p(x)

Figure 3.3.: Marginal distributions of a Dirichlet. The a-parameters of the Dirichlet
are calculated through the Laplace Bridge. LB algorithms test those
marginals for a sufficient overlap.
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4. Methods

4.1. Datasets

For this thesis, experiments were conducted to evaluate the algorithms in Section 3]
using two different datasets, MNIST and CIFAR-100.

The MNIST data set consists of images that show handwritten digits. So in total
there are 10 different classes in the data set (0, 1, 2, 3,4, 5, 6, 7, 8, 9). The training set
includes a total of 60.000 images. The test set consists of 10.000 images. Every image
has a pixel size of 32x32. As the images in MNIST are black and white, every image
only provides one input channel (LeCun et al.|[1998])).

The CIFAR-100 data set has ten times as many classes as MNIST, thus 100 classes
exist. Nevertheless, it includes 60.000 training and 10.000 test images as well as
MNIST. The images of CIFAR are colored and therefore have three input channels
(Krizhevsky et al.| [2009]).

4.2. Network Architectures

For the MNIST experiments a CNN consisting out of two convolution and three
linear, fully connected layers was trained on the full training set. The kernel size in
the convolution layers corresponded to 5x5 pixels. After each convolution layer the
outputs were maxpooled through a kernel of 2x2 pixels. The three fully connected
layers consisted of 120, 84 and 10 neurons, respectively.

Training was performed with a learning rate of 0.1. The loss function was the cross
entropy loss L = =Y./ t;-log(p;). As the optimizer function the stochastic gradient
descent was used. A batch consisted of four images. Training was iterated over the
whole training set two times.

CIFAR-100 experiments were performed with a ResNet. We used pretrained weights
which made training unnecessary. The ResNet consisted of 18 layers, 17 convo-
lutional layers and one fully-connected layer. Beginning at the second layer, skip
connections over two layers each were integrated. In the CIFAR-100 Experiments
we used a batchsize of 128.
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Chapter 4. Methods

4.3. The Accuracy-Redundancy Paradigm (ARP)

In classic NN Performance can be measured by Receiver Operating Characterisitcs
(ROC). ROC curves show the performance of a classifier as a function of different
decision thresholds. Therefore, the true positive rate and the false positive rate are
measured and plotted against each other in a 2-dimensional graph. The principle of
ROC is best explained on an example of a binary classifier. The true positive rate is
hereby the correct classified elements of class 1 divided by all elements of class 1
that the NN has seen. The false positive rate is defined as the elements classified as
class 1 although they were belonging to class 2 divided by all elements of class 2.
We adapt this scheme to measure performance of uncertainty aware top-k metrics.
The true positive rate is quite the same as in the normal ROC setup. It measures how
many percent of the test set consisting out of N images are classified correctly, i.e.
the accuracy rate 7,.

__ correct
7",1 - T N7

The false positive elements now equal those classes that have been added to the
top-k metric although the correct class is already an element of it. We call those
elements redundant. To get the redundancy rate r, we have to divide by all classes
that have been outputted. The average length avgl is the mean of the lengths of all
produced top-k lists through evaluating the test images. Avgl.,, is the average length
of all correct classified images.

7

Tr = avgleor*ra*N

We call this new scheme the ARP. An uncertainty aware metric is considered good if
it has a very high accuracy and a small redundancy, i.e. the data point of this metric
in the ARP is close to the upper left corner of the graph which can be seen as the

optimum (Figure [£.T).

Accuracy
o o g
o (o= o

I
'S

o
N

0.0

0.'0 0.‘2 0i4 0t6 0j8 le
Redundancy rate
Figure 4.1.: The plot of the ARP. It captures two dimensions, the redundancy rate
and the accuracy, of an uncertainty aware top-k algorithm. The optimal
algorithm has an accuracy rate of 1. Simultaneously, its redundancy rate
equals 0.
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5. Experiments

5.1. MNIST

5.1.1. Data Aquisition

A CNN with an architecture described in Section 4.2 was trained four times with
training sets of different sizes. The first training was conducted with the full training
set provided from MNIST. This net is called CNN-full from now on. The other
three training sets contained 1000, 2000 and 3000 images, respectively, which were
randomly chosen out of the full training set. We call these nets CNN-1k, CNN-2k
and CNN-3k, respectively. Then, for each of these trained NN, last-layer Laplace
approximations were performed. In order to do this the package backpack (Dangel
et al.| [2020]) was used. In the final step the validation set was predicted for every
algorithm described in Section

Static top-k was evaluated for every possible k, i.e. ten times (k € {1,2,3,...,10}).

For the algorithms that add up the outputs until a certain threshold value is reached
(top-x, LA-mean), ten different threshold values were used:

0.997,0.97,0.95,0.9,0.8,0.7,0.6,0.5,0.25,0.1

For algorithms that generate a top-k based on critical overlaps of distribution or
histograms of samples (LA-overlap adjacent, LA-overlap top, LB adjacent, LB top),
ten different critical overlaps were used:

0.001,0.01,0.025,0.05,0.1,0.2,0.3,0.5,0.75,0.9

The choice of these thresholds and critical overlaps is somewhat arbitrary. However,
the choice attempts to select values that provide the greatest possible insights.

In total, the validation set was predicted 280 times (4 training data sets x 7 algorithms
x 10 thresholds/critical overlaps/k).

5.1.2. Results
All results of the MNIST experiments can be found in the tables in Appendix A.

e CNN-full yields a static Top-1 overall accuracy of 98.16%. This is very high,
which can be traced to the simplicity of MNIST. CNN-3k provides a static top-1
overall accuracy of 89.34%. The other two nets, CNN-2k and CNN-1k, have a
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Chapter 5. Experiments

24

static top-1 overall accuracy of 51.36% and 29.81%, respectively. So, the fewer
training images the net has seen, the lower the overall accuracy.

As expected, static top-2 yields higher overall accuracies for each of the four
nets. CNN-full provides a overall accuracy of 99.67%. This means that in
1.51% of the images in the validation set is the classes with the second highest
activation in its output neuron is the correct class. CNN-3k, CNN-2k and
CNN-1k provide overall accuracies of 97.10%, 67.74% and 46.46%, respectively.
Consequently, the number of images that are correctly classified based on the
second highest activation increases when the uncertainty of the NN is higher
due to manipulations on the amount of training data.

This scheme can be confirmed by the static top-3 algorithm. The less training
data a net has received, the more cases there are where the class corresponding
to the neuron with the third highest activation is the correct one. The static
top-3 accuracies of the respective NNs are 99.89%, 98.68%, 79.35% and 56.49%
(CNN-full, CNN-3k, CNN-2k and CNN-1k). For CNN-full this means that
only eleven images exists where the resulting outputs of the NN does not yield
the correct class amongst the three highest activations.

The average lengths of the static top-k algorithm are trivial and given by the
defined k.

Simple top-x is the first algorithm which deals with thresholds manipulated
for analysis. As one might expect, the average lengths and overall accuracy
decreases with smaller threshold values. CNN-full provides an average length
of 1.55 with an accuracy of 99.96% if the threshold value equals 0.997. For
MNIST this means only four images of the validation set were classified
incorrectly. Hence, simple top-x with a threshold value of 0.997 outperforms
static top-3 in both accuracy and average length.

The average length decreases most between the threshold values 0.997 and
0.97 from 1.55 to 1.15. This means that the strongest softmaxed activation is
often between these two values in CNN-full. After that, the average length
decreases only slightly until, at a threshold of 0.1, no second class is included
in the top-k list in any case.

Note that the simple top-x algorithm with a threshold value of 0.1 is always
equivalent to the static top-1 algorithm in the MNIST case. This is because,
according to the pigeonhole principle, if there are ten output neurons, at least
one of them will have a softmaxed output equal or higher than 0.1. Thus, the
threshold value is exceeded with the first element of the resulting top-k list,
which leads to the termination of the algorithm. This is not the case for other
data sets with more than ten classes and hence more than ten output neurons
in the NN.

Training with less images leads to a smaller accuracy rate and to larger average
lengths. Still, CNN-3k yields a very high accuracy at 99.93% with the highest
explored threshold value. However, its average length is about three times
as large as in CNN-full (4.90). The redundancy rate is quite similar as in the



5.1. MNIST

CNN-full case.

In CNN-2k, the pattern continues as average lengths increases and accuracy
decreases throughout the thresholds. For the two highest thresholds 0.997 and
0.97 on average more than half of the classes are included in the top-k list.
Reducing the threshold leads to a higher decrease in accuracy. The range of
accuracy is now between 70.14% and 99.93%. This means that more cases occur
where the top-1 output is not the correct one and does not exceed the threshold
value.

An average length of 10.0 occurs in the CNN-1k net for the highest three
threshold values. Thus, every class is included in the top-k list. Of course in
such a case the informative value of the corresponding data is very small.
Also noteworthy is that the average length always equals the threshold value
rounded up to tenths times ten. Such a behavior would also be shown by a
NN that always raises the same softmaxed output for every neuron in the
output layer, i.e. the NN does not know anything about the data. However,
the accuracy rates do not confirm this assumption as they are higher than the
threshold value. So although the softmaxed outputs are very close to each
other, the largest values still correspond to the correct class more often than
not.
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Figure 5.1.: Simple top-x vs. LA-mean in the ARP for the tested NNs. We see
that the two algorithms do not differ by a significant amount for
either of the examined NNs.

LA-mean produces results that are very similar to simple top-x. However,
there are minor differences in the three indicators accuracy, average length and
redundancy rate. LA-mean shows somewhat higher values here in any case.
However, these are not significant in ARP, as Figure also shows. In each of
the four NN, the accuracy-redundancy curve does not differ. The similarity
between those to algorithms means that the composition of the mean and the
softmax function yields similar values in the output space.

Two groups of algorithms dealing with a critical overlap were examined. In
one, the distribution of the top class was tested against all distributions of the
lower classes for critical overlap (LB and LA-overlap top); in the other, the
respective adjacent classes were considered (LB and LA-overlap adjacent).

LA-overlap top has a smaller average length than its pendant LA-overlap
adjacent throughout all conditions. This seems fairly obvious, as the difference
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of the means of the two compared distributions in LA-overlap adjacent is
smaller than the same difference in LA-overlap top. Hence, the quantiles are
more likely to overlap. This leads to more classes being included in the top-k
list. This discrepancy is largest in the case of a small critical overlap, i.e. a
value of 0.001. In CNN-full LA-overlap adjacent has an average length of 1.41
whereas LA-overlap top provides an average length of 1.05. CNN-3k, CNN-2k
and CNN-1k show an average length of 3.73, 7.70 and 10.0 with LA-overlap
adjacent and an average length of 1.59, 2.87 and 8.56 with LA-overlap top,
respectively. Especially in CNN-2k the reduction of the average length is
substantial. Also we see that the LA-overlap top algorithm avoids to put out
all classes for the smallest observed overlap in CNN-1k.

Although average length of the adjacent algorithm exceeds the one of the
top algorithm, interestingly accuracy does not differ significantly between
those two algorithms. This is can be seen in Figure 5.2 where similar accuracy
rates of the algorithms are achieved. In CNN-full for the three smallest critical
overlaps accuracy rates over 99.00% are achieved, which is also the case for
the LA-overlap adjacent algorithm. In the other three NNs the difference in
terms of accuracy grows. Nevertheless, the algorithms are in the same order of
magnitude.

The higher average length of the adjacent algorithm leads to a higher re-
dundancy rate. A exception is thrown here by CNN-1k. LA-overlap adjacent
provides here better results with a critical overlap of 0.2. Note that this is a one
time exception and the data points of LA-overlap top are distributed more
equally over the graph.
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Figure 5.2.: LA-overlap top vs. LA-overlap adjacent in the ARP for the tested
NNs. The top algorithm provides smaller redundancy rates with
approximately the same accuracy rates compared to the adjacent
algorithm.

The same pattern can be found when comparing LB adjacent and LB top.

LB adjacent provides higher average lengths than LB top for the same reason
described above. However, the absolute differences are not as large as for
the LA-overlap algorithms. LB adjacent provides an average length of 1.0048,
whereas LB top yields an average length of 1.0026 with a critical overlap
value of 0.001 in CNN-full. In CNN-3k and CNN-2k, this difference increases.
CNN-3k provides an average length of 1.12 for LB top and 1.26 for LB adjacent,
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CNN-3k 2.20 for LB top and 3.30 for LB adjacent.

Again, there are no significant differences in the accuracy rate between the top
and the adjacent algorithm. LB adjacent provides a maximum of 99.24% correct
classified images. Comparing this to the maximum of LB top which is 99.23%
shows that LB adjacent classifies only one additional image correctly. Just as
above for the LA-overlap algorithms, this difference increases in CNN-3k and
CNN-2k. However, the accuracy remains in the same order of magnitude for
the two algorithms.

In CNN-1K, there is almost no difference between the LB top and the LB
adjacent algorithm. Only for a critical overlap value of 0.3 they differ in terms
of average length as LB top does not output every possible class in this case
(average length: 9.9321). For lower critical overlaps both algorithms have an
average length of ten, i.e. they output all classes. For higher critical overlaps
no further class is included into the top-k list. This leads to an average length
of 1.00 in these cases.
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Figure 5.3.: LB top vs. LB adjacent in the ARP for the tested NNs. In CNN-full,
CNN-3k and CNN-2k, the top algorithm provides smaller redun-
dancy rates accompanied with approximately the same accuracy
rates. In CNN-1k, both algorithms output either one or ten classes
for the most of the examined critical overlaps.

Overall comparison of the algorithms in the ARP yields the following results.
The LB algorithm is very conservative in a sense that not many classes are
added to the top-k list. Although this leads to a small redundancy rate through-
out the evaluated critical overlaps, accuracy does not improve as well as in
the other algorithms. In CNN-1k, LB-top does include either all classes or
none of them in the top-k list. Hence, LB-top does not provide meaningful
results in this case. Excluding CNN-1k because of this, accuracy increases in
CNN-2k the most. Surprisingly, the associated curve even drops below the
one of static top-k. This means that static top-2 has a higher accuracy with a
smaller redundancy rate than LB-top with a critical overlap of 0.001.

In all other cases static top-k is the most redundant algorithm. The more
training data the net has seen, the bigger is the gap in terms of redundancy
between static top-k and the other algorithms. In CNN-full even static top-2
reaches a higher redundancy rate than every other algorithm, while in CNN-1k
the curves of the simple top-x and static top-k are nearly identical.
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Simple top-x is the algorithm that reaches the highest accuracy rates. Especially
in CNN-full and CNN-3k, this is achieved by reasonable redundancy rates. As
training data is reduced, the redundancy rates resemble more and more the
ones of static top-k.
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Figure 5.4.: Overall comparison of the examined algorithms in the ARP. The
adjacent-algorithms were left out because they are more redundant
but not more accurate than the top-algorithms. LA-mean is left out
because of the similarity of results to simple top-x. Static top-k is the
most redundant algorithm. The curves LA-overlap top and simple
top-x are very similar to each other. However, LA-overlap is more
robust against the manipulation of its criteria (critical overlap).
Simple top-x reaches higher redundancy rates if its threshold value
is small. LB top is the most conservative algorithm in adding classes
to the top-k list. Thus, it does not reach the accuracy rates of the
other algorithms.
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5.2. CIFAR-100

5.2.1. Data Aquisition

In the CIFAR-100 Experiments a ResNetl8 with pretrained weights was used
(Section £.2). Again, in order to perform the last-layer Laplace approximations
backpack (Dangel et al.|[2020]) was used. As CIFAR-100 contains 100 classes, it does
not make sense to evaluate static top-k for every possible k. Therefore, ten different
values between 0 and 20 were chosen:

1,2,3,4,5,7,10,12,15,20

For the other two groups of algorithms, i.e. algorithms that deal with critical overlaps
respectively algorithms that deal with threshold values, the same values as in the
MNIST experiments were used (Section [5.1)).

This means the following values were used as thresholds:

0.997,0.97,0.95,0.9,0.8,0.7,0.6,0.5,0.25,0.1
Algorithms that deal with critical overlaps were evaluated with those values:
0.001,0.01,0.025,0.05,0.1,0.2,0.3,0.5,0.75,0.9

Thus, the CIFAR-100 validation set was evaluated a total of 70 times (7 algorithms x
10 thresholds/overlaps/k).

5.2.2. Results
All results of the CIFAR-100 experiments can be found in the tables in Appendix B.

e Static top-1 reaches an accuracy of 76.23%. This already shows that CIFAR-100
is a more complex data set than MNIST. With k = 20, static top-k has an
accuracy of 98.57. Thus, not for every image in the test does the correct class
rank amongst the 20 highest activations. The biggest difference can be found
between k =1 and k = 2, showing that in just under 13% of cases, the correct
class is the one that belongs to the neuron with the second highest output.

e The two algorithms dealing with threshold values reveal similar results as in
the MNIST experiments. Again, simple top-x and LA-mean provide nearly the
same curve in the ARP. Again, the values for the three measured variables of
accuracy, average length and redundancy rate are slightly higher for LA-mean,
but not significantly different. LA-mean has an accuracy of 97.95% and an
average length of 11.38 for a threshold of 0.997, whereas the simple top-x
algorithm provides an accuracy of 97.91% and an average length of 11.16 in
this case. Unlike as in the MNIST experiments, the average length in the case
of the smallest threshold value 0.1 is larger than 1 although not by far (1.0011).
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So, there are a few cases where the activation belonging to the most activated
neuron is smaller then 0.1. In the ARP we see a linear increase throughout the
thresholds (Figure[5.5). This is also a difference to the MNIST experiments.
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Figure 5.5.: Simple top-x vs. LA-mean in the ARP on the CIFAR-100 data set.
They nearly produce the same outputs in the ARP.

As in the MNIST experiments, algorithms that examine the overlap of the top
class to other classes provide smaller redundancy rates compared to the ones
comparing two adjacent classes. Mainly, this is because they do not include
not as much classes in the top-k list, i.e. they have smaller average lengths. For
instance, LB top has an average length of 2.08, whereas LB adjacent provides
an average length of 2.85 for the smallest examined critical overlap. A even
bigger difference occurs at the LA overlap algorithms. LA-overlap top has an
average length of 1.53, while LA-overlap adjacent results in an average length
of 4.21 with a critical overlap of 0.001.

A similarity in pattern compared to the MNIST experiments continues in
terms of accuracy. Both LB algorithms show accuracy rates over 80.00% for
the three smallest examined overlaps. Specifically, LB top provides rates of
81.81%, 80.78% and 80.11% for overlaps of 0.001, 0.01 and 0.025, respectively.
LB adjacent yields percentages of 83.27%, 82.02% and 81.31% for these cases.

The same is true for the LA-overlap algorithms even for the four smallest
overlaps. In LA-overlap top, accuracy rates range from 84.41% to 80.71%,
in LA-overlap adjacent from 88.86% to 83.09% in these cases. The fact that
the top algorithms provide reasonable accuracy rates together with reduced
redundancy rates caused by smaller average lengths is also shown in the
ARP(Figure[5.6). We see that the curves corresponding to the top algorithms
are closer to the top left corner representing the optimum.
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Figure 5.6.: Top vs. adjacent algorithms in the ARP on the CIFAR-100 data set.
Left: LA-overlap adjacent vs. LA-overlap top. Right: LB adjacent
vs. LB top. In both cases, the top algorithms provide smaller
redundancy rates. At the same time, they result in accuracy rates
that are not significantly smaller than the ones of the adjacent
algorithms.

e Overall comparison of the examined algorithms shows that LA-overlap top is
the most conservative algorithm, i.e. has the smallest average lengths. This is in
contrast to the MNIST experiments where LB top provided the smaller average
lengths. Nevertheless, LA-overlap reaches higher accuracy rate leading to
smaller redundancy rates what every other algorithm is achieving. The highest
accuracy overall is reached by static top-20 at the cost of the highest redundancy
rate. Simple top-x provides a similar curve but with smaller redundancy rates.
However, simple top-x reaches very high redundancy rates at 0.8 for small
thresholds as well, meaning that every 4 out of 5 elements in a top-k list are
redundant. This issue appears not to be a problem in LA-overlap. Noteworthy
is that the curve corresponding to LB top is below all other curves, even the
one of static top-k.
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Figure 5.7.: Overall comparison of the examined algorithms on CIFAR-100 in the ARP.
The adjacent algorithms were left out because they are more redundant
but not significant more accurate than the top-algorithms. LA-mean is
left out because of the similarity of results to simple top-x. The results
yielded by simple top-x and static top-k are very similar. Simple top-x
provides a slightly smaller redundancy rate throughout the examined
thresholds. LA-overlap top results in the smallest redundancy rate but
does not yield accuracy rates as high as the first two. LB top yields the
smallest accuracy rates. Nevertheless, its redundancy rate much higher
than the one LA-adjacent top provides.
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6. Discussion

In this thesis, six algorithms that output a uncertainty aware top-k list and the static
top-k algorithm were presented and analyzed. For this purpose, experiments on two
datasets, MNIST and CIFAR-100, were conducted.

In order to compare the algorithms, a paradigm based on ROC-curves was intro-
duced. The ARP (Section[4.3) captures two dimensions of uncertainty aware metrics,
i.e. the accuracy and the redundancy rate.

While accuracy is a very straightforward dimension with hardly any ambiguities in
interpretation, the redundancy rate offers room for discussion. In this thesis, we used
the formula r, = m to calculate the redundancy rate. It is meant to measure
how many of all classes that are in the top-k lists are redundant. Since one could
argue that at least one class must be in such a list by design, one could also consider
the formula 7, = m. In this case only the to the top-k list added classes are
taken into account in the denominator. However, one downside of this method is
that algorithms that are very conservative in adding classes to the top-k list, such as
LB top or adjacent in the MNIST experiments, can still have very high redundancy
rates. For example, if the length of the top-k list equals two only in one case and
in all other instances is equal to one, the redundancy rate is zero if the added class
is not redundant, or one if it is. Furthermore, with this formula it is possible that
a division by zero is possible when for no image further classes are added to the
top-k list. To intercept this special case is relatively easy. One could just define the
redundancy rate in such a case to be zero as there are no redundant classes at all.
After all, in both of these measurements for redundancy rate the flaw still exists that
they only handle the classes already added to a top-k list. Therefore, no statement
is made about how many additional classes were not added. This could be fixed
by defining a basic set of possible redundant classes which could be outputted.
Therefore, for bigger datasets, a maximal list length k. of the top-k list has to be
defined. Then, the redundant classes of the static top-k algorithm with k =k, are
used in the denominator. However, this method always produces incredible small
values in redundancy rates for nets with a good base accuracy because a list length
of kyayx is almost never reached by the used uncertainty aware top-k algorithms in the
experiments conducted here. Furthermore, it rewards algorithms which are very
restrictive in adding classes to the top-k list like the LB top and adjacent in the
MNIST experiments.

Both alternative methods for measuring the redundancy rate were tried in the
experiments, but did not yield results that would have led to other interpretations.
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As already mentioned earlier, the ARP captures two dimension of uncertainty
aware top-k lists. Possibly useful features besides accuracy and redundancy that con-
vey information about the quality of the algorithms are not considered. For example,
one such useful feature could be the length of the top-k lists for misclassified images.
Since the length of the top-k lists indicates how certain the NN is about the correct
class, a good algorithm would have larger list lengths for misclassified images. A
first indication that this might be the case is the fact that the average length of
correctly classified images is often slightly shorter than the average length of all im-
ages. Nevertheless, ARP does not help to compare this feature in different algorithms.

With the used ARP, uncertainty aware algorithms outperform the static top-k al-
gorithm. In both the MNIST and CIFAR-100 experiments, they show much lower
redundancy rates with approximately the same or even higher accuracy. However,
in order to evaluate a NN a certain threshold or a critical overlap has to be defined
for these methods. As the individual optimum might be different for every NN,
preliminary investigations are necessary in order to provide a meaningful result of
the NN’s performance. Static top-k has the advantage that given a k comparison of
different NN architectures can be achieved in the simplest way possible.
Furthermore, uncertainty aware algorithms are computationally more costly than
static top-k. Especially the algorithms that involves sampling from a distribution, i.e.
the LA-mean and the two LA-overlap algorithms, surpass the computational effort
of static top-k by far. Nevertheless, there are algorithms that are not that computa-
tionally costly. Simple top-x provides an uncertainty aware list with a computational
effort within O(n) where n defines the number of classes. The same is valid for the
LB algorithms once Laplace approximations have been performed.

Mainly simple top-x seems to be a cheap but in many cases very efficient method
to realize uncertainty aware top-k once the threshold value is defined. On the other
hand LA-mean yields very similar results but with a much bigger computational
effort. Thus, the LA-mean might not be a useful algorithm.

The LB algorithms provide qualitative different results for the two examined datasets.
They seem to be very conservative in adding classes to the top-k list for simple
datasets like MNIST. For CIFAR-100 there are algorithms that produce shorter top-k
lists on average (LA-overlap top). However, the results of both datasets have in com-
mon that they are not similar to the results that the LA-overlap algorithms provide.
This is somewhat surprising since the Laplace Bridge attempts to approximate the
posterior distributions. The approximation does not appear to have been sufficiently
accurate, at least for the two datasets examined.

As already mentioned, the LA-overlap algorithms are by far the most costly algo-
rithm examined due to sampling that produce . Nevertheless, it yields advantages
over top-x because defining the critical overlap does not have as large of an influence
on accuracy as defining a threshold value. In other words, by choosing the right
threshold value the performance of a NN can be easily manipulated.

Comparison of the single uncertainty aware algorithms dealing with critical overlap
shows that the algorithms comparing the top class with the others seem to be
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superior to the ones comparing adjacent classes. This is very straightforward as
the means of the distributions of the classes resemble each other more if the NN
is uncertain. Thus, the distributions belonging to these means are more likely to
overlap, especially if an algorithm is used that compares adjacent classes. That is
why the adjacent algorithms have higher redundancy rates and averages lengths,
although they do not yield significantly higher accuracy rates. Conclusively, we state
that top algorithms provide better results than adjacent algorithms.

Last but not least, it should be noted that the two datasets used are relatively
small, with 60,000 training images and 10,000 test images each. Nevertheless, as
already mentioned, the results differ to a remarkable degree for some algorithms. To
draw more general conclusions it is necessary to examine further and more complex
datasets like ImageNet.
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7. Conclusion

In conclusion, we state that uncertainty aware top-k metrics seem to be a useful tool to
measure performance of NNs. All of the examined algorithms outperform the classic
static top-k approach in the ARP. This paradigm is not flawless but seems to be a first
approach to compare different uncertainty aware top-k algorithms. Especially, how to
include a third dimension dealing with false classified images should be discussed.
Simple top-x is the cheapest algorithm but nevertheless appears to be valid approach
with good results. At the same time, due to the necessity of defining a threshold it
runs the risk of manipulating the performance measuring of a NN. In LA-overlap,
this risk does not exist as it deals with critical overlaps. However, this algorithms is
computationally very costly due to sampling. The LB algorithms try to reduce the
cost of sampling through an analytical solution of the posterior. Since the results
of LB and LA-overlap differ by a far amount we must state that the calculated
distributions do not represent a good approximation of the true distribution in the
population. Of course, the conclusions drawn here should be taken with caution,
since only two relatively small datasets were studied. In order to draw more general
conclusions, the results found here should be validated in experiments with larger
and more challenging datasets such as ImageNet.
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A. MNIST Results

Static Top-k

CNN-full
k \ 10 9 8 7 6 5 4 3 2 1
Accuracy 1.00 1.00 1.00 1.00 1.00 1.00 0.9998 0.9989 0.9967 0.9816
Average length | 10.00 9.00 8.00 7.00 6.00 500 4.00 3.00 2.00 1.00

CNN-3k
k | 10 9 8 7 6 5 4 3 2 1
Accuracy 100 1.00 09996 09994 09976 09958 0.9915 0.9805 0.9574 0.8730

Average length | 10.00 9.00  8.00 7.00 6.00 5.00 4.00 3.00 2.00 1.00

CNN-2k
k | 10 9 8 7 6 5 4 3 2 1
Accuracy 100 09991 09970 09944 09870 09762 09575 09265 0.8549 0.7014

Average length | 10.00  9.00 8.00 7.00 6.00 5.00 4.00 3.00 2.00 1.00

CNN-1k
k | 10 9 8 7 6 5 4 3 2 1
Accuracy 100 09731 0.8799 0.8178 0.7710 0.7339 0.7084 0.6759 0.5961 0.4093

Average length | 10.00  9.00 8.00 7.00 6.00 5.00 4.00 3.00 2.00 1.00
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Appendix A. MNIST Results

Simple Top-X

CNN-full

Threshold \ 0.997 0.97 0.95 0.9 0.8 0.7 0.6 0.5 0.25 0.1
Accuracy 0.9996 0.9981 0.9970 0.9952 0.9926 0.9898 0.9871 0.9830 0.9817 0.9816
Average length | 1.5457 1.1493 1.1077 1.0677 1.0383 1.0233 1.0142 1.0038 1.0001 1.00
CNN-3k

Threshold \ 0.997 0.97 0.95 0.9 0.8 0.7 0.6 0.5 0.25 0.1
Accuracy 09993  0.9905 0.9860 0.9757 0.9594 0.9414 0.9205 0.8963 0.8731 0.8730
Average length | 4.904400 2.5674 2.1684 1.7363 1.4016 1.2512 1.1518 1.0744 1.0003 1.00
CNN-2k

Threshold \ 0.997 0.97 0.95 0.9 0.8 0.7 0.6 0.5 0.25 0.1
Accuracy 0.9985 0.9890 0.9813 0.9645 09275 0.8930 0.8564 0.8085 0.7042 0.7014
Average length | 7.8996 53359 4.6263 3.6174 2.6049 2.044700 1.6917 1.4190 1.0144 1.00
CNN-1k

Threshold \ 0997 097 0.95 0.9 0.8 0.7 0.6 0.5 0.25 0.1
Accuracy 1.00 1.00 1.00 09731 0.8799 0.8178 0.7710 0.7339 0.6732 0.4093
Average length | 10.00 10.00 10.00  9.00 8.00 7.00 6.00 500 29448 1.00
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LA-mean

CNN-full
Threshold ‘ 0.997 0.97 0.95 0.9 0.8 0.7 0.6 0.5 0.25 0.1
Accuracy 0.9997 0.9984 0.9973 0.9957 0.9928 0.9902 0.9877 0.9830 0.9816 0.9815
Average length | 1.5849 1.1615 1.1149 1.0723 1.0410 1.0248 1.0156 1.0040 1.0001 1.00

CNN-3Kk
Threshold ‘ 0.997 0.97 0.95 0.9 0.8 0.7 0.6 0.5 0.25 0.1
Accuracy 0.9993 09921 0.9871 09777 0.9621 0.9447 0.9242 0.8981 0.8729 0.8727
Average length | 51001 2.6895 22704 1.7973 1.4344 12709 1.1654 1.0807 1.0005 1.0000

CNN-2k
Threshold ‘ 0.997 0.97 0.95 0.9 0.8 0.7 0.6 0.5 0.25 0.1
Accuracy 0.9985 0.9891 0.9817 09661 0.9300 0.8966 0.8601 0.8148 0.7041 0.7016
Average length | 79709 5.4417 4.7274 3.7042 2.6768 2.0968 1.7248 1.4404 1.0148 1.0000

CNN-1k
Threshold ‘ 0997 0.97 0.95 0.9 0.8 0.7 0.6 0.5 0.25 0.1
Accuracy 1.00 1.00 1.00 09731 0.8803 0.8174 0.7704 0.7339 0.6727 0.4097
Average length | 10.00 10.00 10.00 9.00 8.00 7.00 6.00 5.00 2.9452 1.00
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Appendix A. MNIST Results

LA-overlap adjacent

CNN-full
Overlap ‘ 0.001 0.01 0.025 0.05 0.10 0.20 0.30 0.50 0.75 0.90
Accuracy 0.9940 0.9917 0.9907 0.9898 0.9882 0.9867 0.9843 0.9815 0.9815 0.9815
Average length | 1.1418 1.0493 1.0355 1.0269 1.0193 1.0115 1.0060 1.00 1.00 1.00
CNN-3k
Overlap ‘ 0.001 0.01 0.025 0.05 0.10 0.20 0.30 0.50 0.75 0.90
Accuracy 0.9816 09666 0.9578 09476 0.9344 09154 0.8993 0.8739 0.8731 0.8731
Average length | 3.7304 2.3479 1.7825 1.4595 1.2551 1.1296 1.0731 1.0013 1.00 1.00
CNN-2k
Overlap ‘ 0.001 0.01 0.025 0.05 0.10 0.20 0.30 0.50 0.75 0.90
Accuracy 0.9835 09573 0.9355 09071 0.8679 0.8113 0.7690 0.7029 0.7019 0.7019
Average length | 7.7022 5.4235 4.0417 29064 2.0160 1.4473 1.2242 1.0027 1.00 1.00
CNN-1k
Overlap ‘ 0.001 0.01 0.025 0.05 0.10 0.20 0.30 0.50 0.75 0.90
Accuracy 1.00 1.00 1.00 0.9979 0.9704 0.8282 0.6591 0.4104 0.4086 0.4086
Average length | 10.00 9.9994 99322 9.5448 85483 6.1015 3.4194 1.0085 1.00 1.00
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LA-overlap top

CNN-full
Overlap ‘ 0.001 0.01 0.025 0.05 0.10 0.20 0.30 0.50 0.75 0.90
Accuracy 09932 0.9912 0.9904 0.9897 0.9881 0.9867 0.9842 0.9815 0.9815 0.9815
Average length | 1.0488 1.0309 1.0269 1.0230 1.0167 1.0113 1.0059  1.00 1.00 1.00
CNN-3k
Overlap ‘ 0.001 0.01 0.025 0.05 0.10 0.20 0.30 0.50 0.75 0.90
Accuracy 0.9695 0.9563 0.9484 09392 0.9283 0.9129 0.8986 0.8731 0.8724 0.8724
Average length | 1.5947 1.3702 1.2891 1.2339 1.1739 1.1121 1.0666 1.0011  1.00 1.00
CNN-2k
Overlap ‘ 0.001 0.01 0.025 0.05 0.10 0.20 0.30 0.50 0.75 0.90
Accuracy 0.9402 0.9066 0.8865 0.8688 0.8394 0.7979 0.7646 0.7030 0.7020 0.7020
Average length | 2.8679 2.1822 1.9383 1.7420 1.5381 1.3285 1.1946 1.0025 1.00 1.00
CNN-1k
Overlap ‘ 0.001 0.01 0.025 0.05 0.10 0.20 0.30 0.50 0.75 0.90
Accuracy 0.9825 0.9085 0.8569 0.8073 0.7457 0.6390 0.5562 0.4111 0.4091 0.4091
Average length | 8.5600 7.2600 6.3965 5.5279 4.3530 2.8841 1.9799 1.0089  1.00 1.00
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Appendix A. MNIST Results

LB adjacent

CNN-full
Overlap ‘ 0.001 0.01 0.025 0.05 0.10 0.20 0.30 0.50 0.75 0.90
Accuracy 0.9824 09823 0.9822 09822 0.9821 0.9820 0.9819 09816 0.9816 0.9816
Average length | 1.0048 1.0038 1.0037 1.0035 1.0019 1.0006 1.0004 1.00 1.00 1.00
CNN-3k
Overlap ‘ 0.001 0.01 0.025 0.05 0.10 0.20 0.30 0.50 0.75 0.90
Accuracy 0.9025 0.8959 0.8936 0.8901 0.8866 0.8819 0.8781 0.8729 0.8729 0.8729
Average length | 1.2549 1.1692 1.1313 1.0969 1.0665 1.0382 1.0177 1.00 1.00 1.00
CNN-2k
Overlap ‘ 0.001 0.01 0.025 0.05 0.10 0.20 0.30 0.50 0.75 0.90
Accuracy 0.8682 0.8405 0.8243 0.8069 0.7881 0.7613 0.7380 0.7013 0.7013 0.7013
Average length | 3.2977 2.6930 23726 2.0841 1.7853 1.4225 1.2001 1.00 1.00 1.00
CNN-1k
Overlap ‘ 0.001 0.01 0.025 0.05 0.10 0.20 0.30 0.50 0.75 0.90
Accuracy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.4091 0.4091 0.4091
Average length | 10.00 10.00 10.00 10.00 10.00 10.00 10.00 1.00 1.00 1.00
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LB top

CNN-full
Overlap ‘ 0.001 0.01 0.025 0.05 0.10 0.20 0.30 0.50 0.75 0.90
Accuracy 0.9823 0.9823 0.9822 0.9822 0.9821 09820 0.9819 0.9816 09816 0.9816
Average length | 1.0026 1.0020 1.0017 1.0014 1.0008 1.0006 1.0004 1.00 1.00 1.00
CNN-3k
Overlap ‘ 0.001 0.01 0.025 0.05 0.10 0.20 0.30 0.50 0.75 0.90
Accuracy 0.8991 0.8938 0.8912 0.8883 0.8847 0.8810 0.8779 0.8729 0.8729 0.8729
Average length | 1.1223 1.0835 1.0689 1.0548 1.0391 1.0234 1.0134 1.00 1.00 1.00
CNN-2k
Overlap ‘ 0.001 0.01 0.025 0.05 0.10 0.20 0.30 0.50 0.75 0.90
Accuracy 0.8468 0.8185 0.8050 0.7909 0.7751 0.7508 0.7325 0.7013 0.7013 0.7013
Average length | 2.1996 1.8189 1.6423 1.4880 1.3363 1.1899 1.1071 1.00 1.00 1.00
CNN-1k
Overlap ‘ 0.001 0.01 0.025 0.05 0.10 0.20 0.30 0.50 0.75 0.90
Accuracy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.4091 0.4091 0.4091
Average length | 10.00 10.00 10.00 10.00 10.00 10.00 9.9321 1.00 1.00 1.00
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B. CIFAR-100 Results

Static Top-k

k \ 1 2 3 4 5 7 10 12 15 20
Accuracy 0.7623 0.8600 0.8969 0.9188 0.9324 0.9501 0.9641 0.9720 0.9783 0.9857
Average length | 1.00 2.00 3.00 4.00 5.00 7.00 10.00  12.00 15.00  20.00
Simple Top-X

Threshold \ 0.997 0.97 0.95 0.9 0.8 0.7 0.6 0.5 0.25 0.1
Accuracy 09791 09522 0.9381 09132 0.8764 0.8506 0.8248 0.8021 0.7687 0.7625
Average length | 11.1585 6.3517 5.2861 3.8568 2.5477 1.9014 1.5356 1.3043 1.0442 1.0011
LA-mean

Threshold \ 0.997 0.97 0.95 0.9 0.8 0.7 0.6 0.5 0.25 0.1
Accuracy 09795 0.9543 0.9414 09174 0.8796 0.8527 0.8262 0.8043 0.7689 0.7623
Average length | 11.3753 6.4955 5.4026 3.9362 25890 19266 1.5503 1.3151 1.0451 1.0011
LA-overlap adjacent

Overlap \ 0.001 0.01 0.025 0.05 0.10 0.20 0.30 0.50 0.75 0.90
Accuracy 0.8886 0.8630 0.8474 0.8309 0.8128 0.7923 0.7785 0.7623 0.7621 0.7621
Average length | 42084 3.0251 2.4913 2.0526 1.5937 1.1949 1.0686 1.001 1.00 1.00
LA-overlap top

Overlap \ 0.001 0.01 0.025 0.05 0.10 0.20 0.30 0.50 0.75 0.90
Accuracy 0.8441 0.8263 0.8162 0.8071 0.7982 0.7871 0.7775 0.7623 0.7621 0.7621
Average length | 1.5386 1.3471 1.2769 12206 1.1604 1.0966 1.0563 1.001 1.00 1.00
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Appendix B. CIFAR-100 Results

LB adjacent

Overlap ‘ 0.001 0.01 0.025 0.05 0.10 0.20 0.30 0.50 0.75 0.90

Accuracy 0.8327 0.8202 0.8131 0.8067 0.7998 0.7884 0.7782 0.7623 0.7623 0.7623
Average length | 2.8501 24596 2.2338 20585 1.8229 1.5108 1.2487  1.00 1.00 1.00

LB top
Overlap \ 0.001 0.01 0.025 0.05 0.10 0.20 0.30 0.50 0.75 0.90
Accuracy 0.8181 0.8078 0.8011 0.7943 0.7876 0.7804 0.7735 0.7623 0.7623 0.7623

Average length | 2.0838 1.7921 1.6357 1.5041 1.3300 1.1820 1.0801 1.00 1.00 1.00
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