
Fast and Robust Shortest Paths on Manifolds Learned from Data
— Supplementary Material —

Georgios Arvanitidis† Søren Hauberg† Philipp Hennig‡ Michael Schober?
†Technical University of Denmark, Lyngby, Denmark

‡University of Tübingen, Tübingen, Germany
‡Max Planck Institute for Intelligent Systems, Tübingen, Germany

?Bosch Center for Artificial Intelligence, Renningen, Germany

A Approximate Shortest Paths

The propose approximation to the shortest path is
the posterior mean of a Gaussian process, and is
parametrized by a set of second derivatives z̈n on a
discrete mesh ∆ = {t0 = 0, t1, . . . , tN−1 = 1} ⊂ [0, 1]
of evaluation knots tn. Therefore, the shortest path is

µ(t) = m(t) + ωᵀvec

 x−m(0)
y −m(1)

z̈∆ − m̈(∆)

ᵀ
G = V ⊗

([
k(B,B) ∂2

∂s2 k(B,∆)
∂2

∂t2 k(∆,B) ∂4

∂t2∂s2 k(∆,∆)

]
(1)

+ diag(0, 0,Σ, . . . ,Σ)

)
ωᵀ =

(
V ⊗

[
k(t,B) ∂2

∂s2 k(t,∆)
])

G−1.

A fixed-point scheme to learn the parameters z̈∆ that
satisfy the ODE of the geodesic curve is presented
in Arvanitidis et al. (2019). Next we show how the
components of the GP can be chosen.

Mean function

The most natural choice regarding the mean function
of the prior is the straight line that connects the two
boundary points m(t) = c(0) + t · (c(1)− c(0)). This
is the shortest path when the Riemannian manifold is
flat. Also, when the curvature of the manifold is low,
then the shortest path will be relatively close to the
straight line. Likewise, when two points are very close
on the manifold. Note that the mean function of the
prior is the initial guess of the BVP solution.

For instance, if for the kernel we chose the SE, then
implicitly the prior assumption is that the shortest
paths are smooth curves varying on a length scale of
λ along t. Also, the amplitude V = [(a − b)ᵀSx(a −
b)] · Sx ∈ RD×D, where Sx is the sample covariance of
the dataset x1:N as in Hennig and Hauberg (2014).

Kernel

The kernel type implies the smoothness of the approxi-
mated curve. Since shortest paths are expected to be
relatively smooth as two times differentiable parametric
functions, a reasonable choice for the kernel is to be
smooth, e.g. squared exponential (SE), Matern, etc.

Moreover, it is important to use stationary kernels,
since they treat the two boundary points equally. For
example, the non-stationary Wienner kernel is a com-
mon choice for IVPs. However, in a BVP such a kernel
is a poor fit, because if the time interval is inverted,
then the resulting curve will be different.

Mesh

The Reproducing Kernel Hilbert Space (RKHS) (Ras-
mussen and Williams, 2006) of the Gaussian process
is spanned by the basis functions {k(tn, t)}N−1

n=0 . The
predictive posterior µ(t) lies in the RKHS as a linear
combination of the basis functions k(tn, t). Therefore,
for our approximation to work, we need the true short-
est path to be approximated sufficiently well by the
RKHS. This, means that the µ(t) has to be a smooth
approximation to the true path.

In our case, the mesh ∆ specifies the locations, as well
as the number of the basis functions. Consequently,
by increasing the size of mesh, we essentially increase
the RKHS such that to be able to approximate more
complicated true shortest paths. However, knowing
in prior the correct number and the placements of
the knots is unrealistic. For that reason a reasonable
solution is to use a uniform grid for the interval [0, 1].
Moreover, ∆ can be seen as a common hyper-parameter
for every choice of kernel.

Hyper-parameters

The hyper-parameters of each kernel are kept fixed, be-
cause learning the hyper-parameters in parallel with the
artificial dataset z̈∆ may lead to degenerate solutions.



Running heading title breaks the line

N 5 10 15 25 50 100
#1 2.52(± 0.4693 ) 2.51(± 0.3296) 2.51(± 0.1562) 2.49(± 0.1476) 2.47(± 0.0043) 2.47(± 0.0004)
#2 2.36(± 0.4541 ) 2.33(± 0.1800) 2.34(± 0.2426) 2.32(± 0.1162) 2.32(± 0.0011) 2.32(± 0.0004)
#3 2.20(± 0.5315 ) 2.19(± 0.1653) 2.18(± 0.0742) 2.17(± 0.0559) 2.17(± 0.0017) 2.17(± 0.0004)
#4 2.17(± 0.5496 ) 2.16(± 0.1972) 2.15(± 0.1028) 2.15(± 0.0417) 2.14(± 0.0020) 2.14(± 0.0003)

Table 1: Example for constant speed curves.

B Scaling of the algorithm with
respect to mesh and dimensions

Figure 1: Example of a shortest path.

The curvature of the Riemannian manifoldM i.e., the
behavior of the learned metric, implies the complexity
of the shortest paths. As regards the iterations that
the algorithm needs in order to find the parameters
which solve the ODE, these are related to the ability
of the RKHS to approximate the true shortest path.
In other words, when the true shortest path can be
approximated easily by the RKHS, then the only few
fixed point iterations are utilized.

For instance, in Fig. 1 we show a challenging shortest
path for a non-parametric metric with σM = 0.1, which
means that the curvature is high. When N = 10 the
RKHS is not large enough to approximate easily the
true path, so 300 iterations are needed in order for the
algorithm to converge. When we increase the N = 50
the true path can be smoothly approximated easier
by the enlarged RKHS, so that only 80 fixed point
iterations are needed. When we increase the σM = 0.15
the curvature ofM reduces, so now 85 and 32 iterations
are needed, respectively.

For completeness, we test how the method scales to
higher dimensions as well. In this dataset, we fix a ran-
dom point as the base point, and a subset of 100 points.
We fix the σM = 0.25 and we chose the dimensions
[3, 5, 10, 25, 50] and the mesh sizes [5, 10, 25, 50, 100].
Then, we map the 2-dimensional dataset into each
dimension using an orthogonal map, we add noise
N (0, 0.01) and we compute all the shortest paths be-
tween the subset and the base point for different mesh
sizes. As we see in Fig. 2, the scaling is sublinear as

2

50

4

6

25 100

N
u
m

b
e
r 

o
f 
it
e
ra

ti
o
n
s

8

50

Dimensions

10

10

Mesh Points

12

25
5 10

3 5

Figure 2: Scaling of the algorithm.

regards the mesh size. Of course, as the dimension
increases the problem becomes more complex, so more
iterations are needed. Note that theM does not have
high curvature, which means that the true shortest path
can be approximated relatively easy by each RKHS.

C Constant Speed Curves

The exact definition of the geodesic is that, it is a locally
minimizing curve with constant speed. This means
that the geodesic might be not the global shortest path,
but any segment on the geodesic curve is minimizing
the length locally. However, it is important that the
geodesic has constant speed. Also, by definition a curve
that satisfies the ODE has constant speed.

Here we test how the mesh size N affects the speed of
the resulting curve. In Table 1 we show the mean and
the standard deviation of the speed for 4 curves in the
data manifold of Fig. 1. The results show that when
the mesh increases, the speed becomes more constant
since the standard deviation decreases. Instead, for
small N the curve satisfies the ODE only at the knots
tn, however, it does not have the exact dynamics of
the true curve. In other words, with only N points
we are not always capable to approximate exactly the
true curve. This means that our solution is a smooth
approximation of the true curve, but it is not able to
have constant speed. As we increase the N the RKHS
can approximate exactly the true curve, which satisfies
the ODE for every t, and thus, it has constant speed.



Georgios Arvanitidis†, Søren Hauberg†, Philipp Hennig‡, Michael Schober?

D Robustness of the Solver

We conducted an experiment to test the robustness of
our solver. In particular, we computed a challenging
shortest path in the latent space of the deterministic
generator f(x, y) = [x, y, x2 + y2]. In Fig. 3 we show
the paths found by bvp5c, our method when initialized
with the straight line and when it is initialized by the
bvp5c’s solution. Obviously, the bvp5c converges to
a suboptimal solution, while our method manages to
find the true shortest path when initialized with the
straight line. Interestingly, due to its robustness our
solver manages to find a geodesic even by initializing it
with the suboptimal solution of bvp5c. Of course, this
is not the shortest path but it is a geodesic, because it
has constant speed as it satisfies the ODE ∀t, and also,
it is locally length minimizing.

Figure 3: Example of robustness.

E Downstream Tasks

We also compared the performance of our solver on
downstream tasks.

From the LAND experiment (Arvanitidis et al., 2019,
Sec. 4.1) we clustered the data using the trained mix-
ture models and a linear model, and we get the errors:
0% (ours), 15% (bvp5c), 21% (linear). We also numeri-
cally measure the KL divergence between the learned
distributions and the generating distribution, and ob-
serve that the proposed solver improves the fit: 0.35
(ours), 0.65 (bvp5c), 0.53 (linear).

Additionally, we performed k-means clustering on a
2-dimensional latent space of a VAE trained on MNIST
digits 0,1,2 and the resulting errors: 92(±5)% (ours,
1.6(±0.7) hours), 91(±5)% (bvp5c, 8(±4.5) hours),
83(±4)% (linear). The proposed model is, thus, both
faster and more accurate on downstream tasks.

References

G. Arvanitidis, S. Hauberg, P. Hennig, and M. Schober. Fast
and robust shortest paths on manifolds learned from data.
In International Conference on Artificial Intelligence and
Statistics (AISTATS), 2019.

P. Hennig and S. Hauberg. Probabilistic Solutions to Dif-
ferential Equations and their Application to Riemannian
Statistics. In Proc. of the 17th int. Conf. on Artificial
Intelligence and Statistics (AISTATS), volume 33, 2014.

C. Rasmussen and C. Williams. Gaussian Processes for
Machine Learning. MIT, 2006.


	Approximate Shortest Paths
	Scaling of the algorithm with respect to mesh and dimensions
	Constant Speed Curves
	Robustness of the Solver
	Downstream Tasks

