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Abstract Kernel Bayesian inference is a principled approach to nonparametric
inference in probabilistic graphical models, where probabilistic relationships be-
tween variables are learned from data in a nonparametric manner. Various algo-
rithms of kernel Bayesian inference have been developed by combining kernelized
basic probabilistic operations such as the kernel sum rule and kernel Bayes’ rule.
However, the current framework is fully nonparametric, and it does not allow a
user to flexibly combine nonparametric and model-based inferences. This is inef-
ficient when there are good probabilistic models (or simulation models) available
for some parts of a graphical model; this is in particular true in scientific fields
where “models” are the central topic of study. Our contribution in this paper is
to introduce a novel approach, termed the model-based kernel sum rule (Mb-KSR),
to combine a probabilistic model and kernel Bayesian inference. By combining the
Mb-KSR with the existing kernelized probabilistic rules, one can develop various
algorithms for hybrid (i.e., nonparametric and model-based) inferences. As an il-
lustrative example, we consider Bayesian filtering in a state space model, where
typically there exists an accurate probabilistic model for the state transition pro-
cess. We propose a novel filtering method that combines model-based inference for
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the state transition process and data-driven, nonparametric inference for the ob-
servation generating process. We empirically validate our approach with synthetic
and real-data experiments, the latter being the problem of vision-based mobile
robot localization in robotics, which illustrates the effectiveness of the proposed
hybrid approach.

Keywords kernel methods · probabilistic models · kernel mean embedding ·
kernel Bayesian inference · reproducing kernel Hilbert spaces · filtering · state
space models

1 Introduction

Kernel mean embedding of distributions (Smola et al, 2007; Song et al, 2013;
Muandet et al, 2017) is a framework for representing, comparing and estimating
probability distributions using positive definite kernels and the Reproducing Ker-
nel Hilbert Spaces (RKHS). In this framework, all distributions are represented
as corresponding elements, called kernel means, in an RKHS, and comparison and
estimation of distributions are carried out by comparison and estimation of the
corresponding kernel means. The Maximum Mean Discrepancy (Gretton et al,
2012) and the Hilbert-Schmidt Independence Criterion (Gretton et al, 2005) are
representative examples of approaches based on comparison of kernel means; the
former is a distance between probability distributions and the latter is a measure
of dependence between random variables, both enjoying empirical successes and
being widely employed in the machine learning literature (Muandet et al, 2017,
Chapter 3).

Kernel Bayesian inference (Song et al, 2011, 2013; Fukumizu et al, 2013) is
a nonparametric approach to Bayesian inference based on estimation of kernel
means. In this approach, statistical relationships between any two random vari-
ables, say X ∈ X and Z ∈ Z with X and Z being measurable spaces, are nonpara-
metrically learnt from training data consisting of pairs (X1, Z1), . . . , (Xn, Zn) ∈
X × Z of instances. The approach is useful when the relationship between X and
Z is complicated and thus it is difficult to design an appropriate parametric model
for the relationship; it is effective when the modeller instead has good knowledge
about similarities between objects in each domain, expressed as similarity func-
tions or kernels of the form kX (x, x′) and kZ(z, z′). For instance, the relationship
can be complicated when the structures of the two domains X and Z are very
different, e.g., X may be a three dimensional space describing locations, Z may be
a space of images, and the relationship between X ∈ X and Z ∈ Z is such that Z
is a vision image taken at a location X; since such images are highly dependent
on the environment, it is not straightforward to provide a model description for
that relationship. In this specific example, however, one can define appropriate
similarity functions or kernels; the Euclidean distance may provide a good sim-
ilarity measure for locations, and there are also a number of kernels for images
developed in computer vision (e.g., Lazebnik et al 2006). Given a sufficient number
of training examples and appropriate kernels, kernel Bayesian inference enables an
algorithm to learn such complicated relationships in a nonparametric manner, of-
ten with strong theoretical guarantees (Caponnetto and Vito, 2007; Grünewälder
et al, 2012a; Fukumizu et al, 2013).
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As standard Bayesian inference consists of basic probabilistic rules such as the
sum rule, chain rule and Bayes’ rule, kernel Bayesian inference consists of kernelized
probabilistic rules such as the kernel sum rule, kernel chain rule and kernel Bayes’

rule (Song et al, 2013). By combining these kernelized rules, one can develop fully-

nonparametric methods for various inference problems in probabilistic graphical
models, where probabilistic relationships between any two random variables are
learnt nonparametrically from training data, as described above. Examples include
methods for filtering and smoothing in state space models (Fukumizu et al, 2013;
Nishiyama et al, 2016; Kanagawa et al, 2016a), belief propagation in pairwise
Markov random fields (Song et al, 2011), likelihood-free inference for simulator-
based statistical models (Nakagome et al, 2013; Mitrovic et al, 2016; Kajihara
et al, 2018; Hsu and Ramos, 2019), and reinforcement learning or control prob-
lems (Grünewälder et al, 2012b; Nishiyama et al, 2012; Rawlik et al, 2013; Boots
et al, 2013; Morere et al, 2018). We refer to Muandet et al (2017, Chapter 4) for
a survey of further applications. Typical advantages of the approaches based on
kernel Bayesian inference are that i) they are equipped with theoretical conver-
gence guarantees; ii) they are less prone to suffer from the curse of dimensionality,
when compared to traditional nonparametric methods such as those based on
kernel density estimation1 (Silverman, 1986); and iii) they may be applied to non-
standard spaces of structured data such as graphs, strings, images and texts, by
using appropriate kernels designed for such structured data (Schölkopf and Smola,
2002).

We argue, however, that the fully-nonparametric nature is both an advantage
and a limitation of the current framework of kernel Bayesian inference. It is an
advantage when there is no part of a graphical model for which a good probabilistic
model exists, while it becomes a limitation when there does exist a good model
for some part of the graphical model. Even in the latter case, kernel Bayesian
inference requires a user to prepare training data for that part and an algorithm
to learn the probabilistic relationship nonparametrically; this is inefficient, given
that there already exists a probabilistic model. The contribution of this paper is
to propose an approach to making direct use of a probabilistic model in kernel
Bayesian inference, when it is available. Before describing this, we first explain
below why and when such an approach can be useful.

1.1 Combining Probabilistic Models and Kernel Bayesian Inference

An illustrative example is given by the task of filtering in state space models; see
Fig. 1 for a graphical model. A state space model consists of two kinds of vari-
ables: states x1, . . . , xt, . . . , xT , which are the unknown quantities of interest, and
observations z1, . . . , zt, . . . , zT , which are measurements regarding the states. Here
discrete time intervals are considered, and t = 1, . . . , T denote time indices with
T being the number of time steps. The states evolve according to a Markov pro-
cess determined by the state transition model p(xt+1|xt) describing the conditional
probability of the next state xt+1 given the current one xt. The observation zt

1 Note that kernel density estimation is a classical nonparametric approach studied in the
statistics literature, where “kernels” refer to smoothing kernels, but not reproducing kernels in
general. One should not confuse this classical approach with kernel mean embeddings, which
is rather a new framework for statistical inference developed in the last decade.
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Fig. 1 A graphical description of a state space model, where xt represent states and zt
observations (or measurements). In this paper we consider a situation where there exists a
good probabilistic model for the state-transition probability p(xt+1|xt), while the observation
process p(zt|xt) is complicated and to be dealt with in a data-driven, nonparametric way.

at time t is generated depending only on the corresponding state xt following the
observation model, the conditional probability of zt given xt. The task of filtering
is to provide a (probabilistic) estimate of the state xt at each time t using the
observations z1, . . . , zt provided up to that time; this is to be done sequentially for
every time step t = 1, . . . , T .

In various scientific fields that study time-evolving phenomena such as climate
science, social science, econometrics and epidemiology, one of the main problems
is prediction (or forecasting) of unseen quantities of interest that will realize in the
future. Formulated within a state space model, such quantities of interest are de-
fined as states x1, x2, . . . , xT of the system. Given an estimate of the initial state x1,
predictions of the states x2, . . . , xT in the future are to be made on the basis of the
transition model p(xt+1|xt), often performed in the form of computer simulation.
A problem of such predictions is, however, that errors (which may be stochastic
and/or numerical) accumulate over time, and predictions of the states increas-
ingly become unreliable. To mitigate this issue, one needs to make corrections to
predictions on the basis of available observations z1, z2, . . . , zT about the states;
such procedure is known as data assimilation in the literature, and formulated as
filtering in the state space model (Evensen, 2009).

When solving the filtering problem with kernel Bayesian inference, one needs
to express each of the transition model p(xt+1|xt) and the observation model
p(zt|xt) by training data: one needs to prepare examples of state-observation pairs
(Xi, Zi)

n
i=1 for the observation model, and transition examples (X̃i, X̃

′
i)
m
i=1 for the

transition model, where X̃i denotes a state at a certain time and X̃ ′i the subsequent
state (Song et al, 2009; Fukumizu et al, 2013). However, when there already exists
a good probabilistic model for state transitions, it is not efficient to re-express the
model by examples and learn it nonparametrically. This is indeed the case in the
scientific fields mentioned above, where a central topic of study is to provide an ac-
curate but succinct model description for the evolution of the states x1, x2, . . . , xT ,
which may take the form of (ordinary or partial) differential equations or that
of multi-agent systems (Winsberg, 2010). Therefore it is desirable to make kernel
Bayesian inference being able to directly make use of an available transition model
in filtering.
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1.2 Contributions

Our contribution is to propose a simple yet novel approach to combining the non-
parametric methodology of kernel Bayesian inference and model-based inference
with probabilistic models. A key ingredient of Bayesian inference in general is
the sum rule, i.e., marginalization or integration of variables, which is used for
propagating probabilities in graphical models. The proposed approach, termed
Model-based Kernel Sum Rule (Mb-KSR), realizes the sum rule in the framework of
kernel Bayesian inference, directly making use of an available probabilistic model.
(To avoid confusion, we henceforth refer to the kernel sum rule proposed by Song
et al (2009) as the Nonparametric Kernel Sum Rule (NP-KSR).) It is based on an-
alytic representations of conditional kernel mean embeddings (Song et al, 2013),
employing a kernel that is compatible with the probabilistic model under consid-
eration. For instance, the use of a Gaussian kernel enables the MB-KSR if the
probabilistic model is an additive Gaussian noise model. A richer framework of
hybrid (i.e., nonparametric and model-based) kernel Bayesian inference can be
obtained by combining the Mb-KSR with existing kernelized probabilistic rules
such as the NP-KSR, kernel chain rule and kernel Bayes’ rule.

As an illustrative example, we propose a novel method for filtering in a state
space model, under the setting discussed in Sect. 1.1 (see Fig. 1). The proposed
algorithm is based on hybrid kernel Bayesian inference, realized as a combination
of the Mb-KSR and the kernel Bayes’ rule. It directly makes use of a transi-
tion model p(xt+1|xt) via the Mb-KSR, while utilizing training data consisting of
state-observation pairs (X1, Z1), . . . , (Xn, Zn) to learn the observation model non-
parametrically. Thus it is useful in prediction or forecasting applications where the
relationship between observations and states is not easy to be modeled, but ex-
amples can be given for it; an example from robotics is given below. This method
has an advantage over the fully-nonparametric filtering method based on kernel
Bayesian inference (Fukumizu et al, 2013) as it makes use of the transition model
p(xt+1|xt) in a direct manner, without re-expressing it by state transition exam-
ples and learning it nonparametrically. This advantage is more significant when the
transition model p(xt+1|xt) is time-dependent (i.e., it is not invariant over time);
for instance this is the case when the transition model involves control signals, as
for the case in robotics.

One illustrative application of our filtering method is mobile robot localization
in robotics, which we deal with in Sect. 6. In this problem, there is a robot moving
in a certain environment such as a building. The task is to sequentially estimate
the positions of the robot as it moves, using measurements obtained from sensors
of the robot such as vision images and signal strengths. Thus, formulated as a state
space model, the state xt is the position of the robot, and the observation zt is
the sensor information. The transition model p(xt+1|xt) describes how the robot’s
position changes in a short time; since this follows a mechanical law, there is a
good probabilistic model such as an odometry motion model (Thrun et al, 2005,
Sect. 2.3.2). On the other hand, the observation model p(zt|xt) is hard to provide
a model description, since the sensor information zt are highly dependent on the
environment and can be noisy; e.g., it may depend on the arrangement of rooms
and be affected by people walking in the building. Nevertheless, one can make use
of position-sensor examples (X1, Z1), . . . , (Xn, Zn) collected before the test phase
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using an expensive radar system or by manual annotation (Pronobis and Caputo,
2009).

The remainder of this paper is organized as follows. We briefly discuss related
work in Sect. 2 and review the framework of kernel Bayesian inference in Sect. 3.
We propose the Mb-KSR in Sect. 4, providing also a theoretical guarantee for it,
as manifested in Proposition 1. We then develop the filtering algorithm in Sect. 5.
Numerical experiments to validate the effectiveness of the proposed approach are
reported in Sect. 6. For simplicity of presentation, we only focus on the Mb-KSR
combined with additive Gaussian noise models in this paper, but our framework
also allows for other noise models, as described in Appendix A.

2 Related Work

We review here existing methods for filtering in state space methods that are
related to our filtering method proposed in Sect. 5. For related work on kernel
Bayesian inference, we refer to Sect. 1 and 3.

– The Kalman filters (Kalman, 1960; Julier and Uhlmann, 2004) and particle
methods (Doucet et al, 2001; Doucet and Johansen, 2011) are standard ap-
proaches to filtering in state space models. These methods typically assume
that the domains of states and observations are subsets of Euclidean spaces,
and require probabilistic models for both the state transition and observation
processes be defined. On the other hand, the proposed filtering method does
not assume a probabilistic model for the observation process, and can learn it
nonparametrically from training data, even when the domain of observations
is a non-Euclidean space.

– Ko and Fox (2009); Deisenroth et al (2009, 2012) proposed methods for non-
parametric filtering and smoothing in state space models based on Gaussian
processes (GPs). Their methods nonparametrically learn both the state tran-
sition model and the observation model using Gaussian process regression
(Rasmussen and Williams, 2006), assuming training data are available for the
two models. A method based on kernel Bayesian inference has been shown to
achieve superior performance compared to GP-based methods, in particular
when the Gaussian noise assumption by the GP-approaches is not satisfied
(e.g., when noises are multi-modal) (McCalman et al, 2013; McCalman, 2013).

– Nonparametric belief propagation (Sudderth et al, 2010), which deals with
generic graphical models, nonparametrically estimates the probability density
functions of messages and marginals using kernel density estimation (KDE)
(Silverman, 1986). In contrast, in kernel Bayesian inference density functions
themselves are not estimated, but rather their kernel mean embeddings in an
RKHS are learned from data. Song et al (2011) proposed a belief propagation
algorithm based on kernel Bayesian inference, which outperforms nonparamet-
ric belief propagation.

– The filtering method proposed by Fukumizu et al (2013, Sect. 4.3) is fully non-
parametric: It nonparametrically learns both the observation process and the
state transition process from training data on the basis of kernel Bayesian infer-
ence. On the other hand, the proposed filtering method combines model-based
inference for the state transition process using an available probabilistic model,
and nonparametric kernel Bayesian inference for the observation process.
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– The kernel Monte Carlo filter (Kanagawa et al, 2016a) combines nonparametric
kernel Bayesian inference with a sampling method. The algorithm generates
Monte Carlo samples from a probabilistic model for the state transition process
based, and estimates the kernel means of forward probabilities based on them.
In contrast, the proposed filtering method does not use sampling but utilizes
the analytic expressions of the kernel means of probabilistic models.2

3 Preliminaries: Nonparametric Kernel Bayesian Inference

In this section we briefly review the framework of kernel Bayesian inference. We
begin by reviewing basic properties of positive definite kernels and reproducing
kernel Hilbert spaces (RKHS) in Sect. 3.1, and those of kernel mean embeddings
in Sect. 3.2 and 3.3; we refer to Steinwart and Christmann (2008, Sect. 4) for
details of the former, and to Muandet et al (2017, Sect. 3) for those of the latter.
We then describe basics of kernel Bayesian inference in Sect. 3.4, 3.5 and 3.6;
further details including various applications can be found in Song et al (2013)
and Muandet et al (2017, Sect. 4).

3.1 Positive Definite Kernels and Reproducing Kernel Hilbert Space (RKHS)

We first introduce positive definite kernels and RKHSs. Let X be an arbitrary
nonempty set. A symmetric function k : X×X → R is called a positive definite kernel

if it satisfies the following: ∀n ∈ N and ∀x1, . . . , xn ∈ X , the matrix G ∈ Rn×n with
elements Gi,j = k(xi, xj) is positive semidefinite. Such a matrix G is referred to as
a Gram matrix. For simplicity we may refer to a positive definite kernel k just as a
kernel in this paper. For instance, kernels on X = Rm include the Gaussian kernel
k(x, x′) = exp(−‖x− x′‖2/γ2) and the Laplace kernel k(x, x′) = exp(−‖x− x′‖/γ),
where γ > 0.

For each fixed x ∈ X , k(·, x) denotes a function of the first argument: x′ →
k(x′, x) for x′ ∈ X . A kernel k is called bounded if supx∈X k(x, x) < ∞. When
X = Rm, a kernel k called shift invariant if there exists a function κ : Rm → R such
that k(x, x′) = κ(x − x′), ∀x, x′ ∈ Rm. For instance, Gaussian, Laplace, Matèrn
and inverse (multi-)quadratic kernels are shift-invariant kernels; see Rasmussen
and Williams (2006, Sect. 4.2).

Let H be a Hilbert space consisting of functions on X , with 〈·, ·〉H being its
inner product. The space H is called a Reproducing Kernel Hilbert Space (RKHS),
if there exists a positive definite kernel k : X × X satisfying the following two
properties:

k(·, x) ∈ H, ∀x ∈ X ,
f(x) = 〈f, k(·, x)〉H, ∀f ∈ H, ∀x ∈ X , (1)

2 Intuitively, the relationship between the kernel Monte Carlo filter and the proposed filter
may be understood as something similar to the relationship between a particle filter and a
Kalman filter: As the Kalman filter does not require sampling and makes use of the analytic
solutions of required integrals, the proposed filter does not perform sampling and uses analytic
solutions of the integrals required for computing kernel means.
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where (1) is called the reproducing property; thus k is called the reproducing kernel

of the RKHS H.
Conversely, for any positive definite kernel k, there exists a uniquely associated

RKHS H for which k is the reproducing kernel; this fact is known as the Moore-

Aronszajn theorem (Aronszajn, 1950). Using the kernel k, the associate RKHS H
can be written as the closure of the linear span of functions k(·, x):

H = span {k(·, x) : x ∈ X}.

3.2 Kernel Mean Embeddings of Distributions

We introduce the concept of kernel mean embeddings of distributions, a framework
for representing, comparing and estimating probability distributions using kernels
and RKHSs. To this end, let X be a measurable space and M1(X ) be the set of
all probability distributions on X . Let k be a measurable kernel on X and H be
the associated RKHS. For any probability distribution P ∈ M1(X ), we define its
representation in H as an element called the kernel mean, defined as the Bochner
integral of k(·, x) ∈ H with respect to P :

mP :=

∫
k(·, x)dP (x) ∈ H. (2)

If k is bounded, then the kernel mean (2) is well-defined and exists for all P ∈
M1(X ) (Muandet et al, 2017, Lemma 3.1). Throughout this paper, we thus assume
that kernels are bounded. Being an element in H, the kernel mean mP itself is a
function such that mP (x′) =

∫
k(x′, x)dP (x) for x′ ∈ X .

The definition (2) induces a mapping (or embedding; thus the approach is
called kernel mean embedding) from the set of probability distributions M1(X )
to the RKHS H: P ∈ M1(X ) → mP ∈ H. If this mapping is one-to-one, that is
mP = mQ holds if and only if P = Q for P,Q ∈ M1(X ), then the reproducing
kernel k of H is called characteristic (Fukumizu et al, 2004; Sriperumbudur et al,
2010; Simon-Gabriel and Schölkopf, 2018). For example, frequently used kernels
on Rm such as Gaussian, Matérn and Laplace kernels are characteristic; see, e.g.,
Sriperumbudur et al (2010); Nishiyama and Fukumizu (2016) for other examples.
If k is characteristic, then any P ∈ M1(X ) is uniquely associated with its kernel
mean mP ; in other words, mP uniquely identifies the embedded distribution P , and
thus mP contains all information about P . Therefore, when required to estimate
certain properties of P from data, one can instead focus on estimation of its kernel
mean mP ; this is discussed in Sect. 3.3 below.

An important property regarding the kernel mean (2) is that it is the repre-
senter of integrals with respect to P in H: for any f ∈ H, it holds that

〈mP , f〉H =

〈∫
k(·, x)dP (x), f

〉
H

=

∫
〈k(·, x), f〉H dP (x) =

∫
f(x)dP (x), (3)

where the last equality follows from the reproducing property (1). Another
important property is that it induces a distance or a metric on the set of proba-
bility distributions M1(X ): A distance between two distributions P,Q ∈ M1(X )
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is defined as the RKHS distance between their kernel means mP ,mQ ∈ H:

∥∥mP −mQ

∥∥
H = sup

‖f‖H≤1

∫
f(x)dP (x)−

∫
f(x)dQ(x),

where the expression in the right side is known as the Maximum Mean Discrepancy

(MMD); see Gretton et al (2012, Lemma 4) for a proof of the above identity. MMD
is an instance of integral probability metrics, and its relationships to other metrics
such as the Wasserstein distance have been studied in the literature (Sriperum-
budur et al, 2012; Simon-Gabriel and Schölkopf, 2018).

3.3 Empirical Estimation of Kernel Means

In Bayesian inference, one is required to estimate or approximate a certain proba-
bility distribution P (or its density function) from data, where P may be a posterior
distribution or a predictive distribution of certain quantities of interest. In kernel
Bayesian inference, one instead estimates its kernel mean mP from data; this is
justified as long as the kernel k is characteristic.

We explain here how one can estimate a kernel mean in general. Assume that
one is interested in estimation of the kernel mean mP (2). In general, an estimator
of mP takes the form of a weighted sum

m̂P =
n∑
i=1

wik(·, Xi), (4)

where w1, . . . , wn ∈ R are some weights (some of which can be negative) and
X1, . . . , Xn ∈ X are some points. For instance, assume that one is given i.i.d. sample
points X1, . . . , Xn from P ; then the equal weights w1 = · · ·wn = 1/n make (4) is a

consistent estimator with convergence rate ‖mP − m̂P ‖H = Op(n
− 1

2 ) (Smola et al,
2007; Tolstikhin et al, 2017). In the setting of Bayesian inference, on the other
hand, i.i.d. sample points from the target distribution P are not provided, and thus
X1, . . . , Xn in (4) cannot be i.i.d. with P . Therefore the weights w1, . . . , wn need
to be calculated in an appropriate way depending on the target P and available
data; we will see concrete examples in Sect. 3.4, 3.5 and 3.6 below.

From (3), the kernel mean estimate (4) can be used to estimate the integral∫
f(x)dP (x) of any f ∈ H with respect to P as a weighted sum of function values:

∫
f(x)dP (x) = 〈mP , f〉H ≈ 〈m̂P , f〉H =

n∑
i=1

wif(Xi), (5)

where the last expression follows from the reproducing property (1). In fact, by the
Cauchy-Schwartz inequality, it can be shown that

∣∣∫ f(x)dP (x)−
∑n
i=1 wif(Xi)

∣∣ ≤
‖f‖H‖m̂P − mP ‖H. Therefore, if m̂P is a consistent estimator of mP such that
||m̂P − mP ||H→ 0 as n → ∞, then the weighted sum in (5) is also consistent in
the sense that

∣∣∫ f(x)dP (x)−
∑n
i=1 wif(Xi)

∣∣→ 0 as n→∞. The consistency and
convergence rates in the case where f does not belong to H have also been studied
(Kanagawa et al, 2016b, 2019).
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3.4 Conditional Kernel Mean Embeddings

For simplicity of presentation, we henceforth assume that probability distributions
under consideration have density functions with some reference measures; this ap-
plies to the rest of this paper. However we emphasize that this assumption is
generally not necessary both in practice and theory. This can be seen from how
the estimators below are constructed, and from theoretical results in the literature.

We first describe a kernel mean estimator of the form (4) when P is a conditional

distribution (Song et al, 2009). To describe this, let X and Y be two measurable
spaces, and let p(y|x) be a conditional density function of y ∈ Y given x ∈ X .
Define a kernel kX on X and let HX be the associated RKHS. Similarly, let kY be
a kernel on Y and HY be its RKHS.

Assume that p(y|x) is unknown, but training data {(Xi, Yi)}ni=1 ⊂ X × Y ap-
proximating it are available; usually they are assumed to be i.i.d. with a joint
probability p(x, y) = p(y|x)p(x), where p(x) is some density function on X . Using
the training data {(Xi, Yi)}ni=1, we are interested in estimating the kernel mean of
the conditional probability p(y|x) on Y for a given x:

mY|x :=

∫
kY(·, y)p(y|x)dy ∈ HY , (6)

which we call the conditional kernel mean.
Song et al (2009) proposed the following estimator of (6):

m̂Y|x =
n∑
j=1

wj(x)kY(·, Yj), (7)

w(x) := (w1(x), . . . , wn(x))> := (GX + nεIn)−1kX (x) ∈ Rn,

whereGX := (kX (Xi, Xj))
n
i,j=1 ∈ Rn×n is the Gram matrix ofX1, . . . , Xn, kX (x) :=

(kX (X1, x), . . . kX (Xn, x))> ∈ Rn quantifies the similarities of x and X1, . . . , Xn,
In ∈ Rn×n is the identity matrix, and ε > 0 is a regularization constant.

Noticing that the weight vector w(x) in (7) is identical to that of kernel ridge
regression or Gaussian process regression (see e.g., Kanagawa et al (2018, Sect. 3)),
one can see that (7) is a regression estimator of the mapping from x to the condi-
tional expectation

∫
kY(·, y)p(y|x)dy. This insight has been used by Grünewälder

et al (2012a) to show that the estimator (7) is that of function-valued kernel ridge

regression, and to study convergence rates of (7) by applying results from Capon-
netto and Vito (2007). In the context of structured prediction, Weston et al (2003);
Cortes et al (2005) derived the same estimator under the name of kernel dependency

estimation, although the connection to embedding of probability distributions was
not known at the time.

3.5 Nonparametric Kernel Sum Rule (NP-KSR)

Let π(x) be a probability density function on X , and p(y|x) be a conditional density
function of y ∈ Y given x ∈ Y. Denote by q(x, y) the joint density defined by π(x)
and p(y|x):

q(x, y) := p(y|x)π(x), x ∈ X , y ∈ Y. (8)
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Then the usual sum rule is defined as the operation to output the marginal density
q(y) on Y by computing the integral with respect to x:

q(y) =

∫
q(x, y)dx =

∫
p(y|x)π(x)dx. (9)

For notational consistency, we write the distribution of q(y) as QY .
The Kernel Sum Rule proposed by Song et al (2009), which we call Nonparamet-

ric Kernel Sum Rule (NP-KSR) to distinguish it from the Model-based Kernel Sum
Rule proposed in this paper, is an estimator of the kernel mean of the marginal
density (9):

mQY :=

∫
kY(·, y)q(y)dy =

∫ ∫
kY(·, y)p(y|x)π(x)dxdy. (10)

The NP-KSR estimates this using i) training data {(Xi, Yi)}ni=1 ⊂ X × Y for the
conditional density p(y|x) and ii) a weighted sample approximation {(γi, X̃i)}`i=1 ⊂
R×X to the kernel mean mΠ :=

∫
k(·, x)π(x)dx of the input marginal density π(x)

of the form

m̂Π =
∑̀
i=1

γikX (·, X̃i), (11)

where the subscript Π in the left side denotes the distribution of π. To describe the
NP-KSR estimator, it is instructive to rewrite (10) using the conditional kernel
means (6) as

mQY =

∫ (∫
kY(·, y)p(y|x)dy

)
π(x)dx =

∫
mY|xπ(x)dx.

This implies that this kernel mean can be estimated using the estimator (7) of
the conditional kernel means mY|x and the weighted sample {(γi, X̃i)}`i=1, which

can be seen as an empirical approximation of the input distribution Π ≈ Π̂ :=∑`
i=1 γ`δX̃i

, where δx denotes the Dirac distribution at x ∈ X . Thus, the estimator
of the NP-KSR is given as

NP-KSR : m̂QY :=
∑̀
i=1

γim̂Y|X̃i
=

n∑
j=1

wjkY(·, Yj),

w := (w1, . . . , wn)> := (GX + nεIn)−1GXX̃γ, (12)

where m̂Y|X̃i
is (7) with x = X̃i, γ := (γ1, . . . , γ`)

> ∈ R` and GXX̃ ∈ Rn×` is such

that (GXX̃)i,j = kX (Xi, X̃j). Notice that sinceGXX̃γ = (
∑`
j=1 γikX (Xi, X̃j))

n
i=1 =

(m̂Π(Xi))
n
i=1, the weights in (12) can be written as

(w1, . . . , wn)> = (GX + nεIn)−1(m̂Π(X1), . . . , m̂Π(Xn))>. (13)

That is, the weights can be calculated in terms of evaluations of the input empirical
kernel mean m̂Π at X1, . . . , Xn; this property will be used in Sect. 4.2.2.

The consistency and convergence rates of the estimator (12), which require the
regularization constant ε to decay to 0 as n → ∞ at an appropriate rate, have
been studied in the literature (Fukumizu et al, 2013, Theorem 8).
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3.6 Kernel Bayes’ Rule (KBR)

We describe here Kernel Bayes’ Rule (KBR), an estimator of of the kernel mean of
a posterior distribution (Fukumizu et al, 2013). Let π(x) be a prior density on X
and p(y|x) be a conditional density on Y given x ∈ X . The standard Bayes’ rule is
an operation to produce the posterior density q(x|y) on X for a given observation
y ∈ Y induced from π(x) and p(y|x):

q(x|y) =
π(x)p(y|x)

q(y)
, q(y) :=

∫
π(x′)p(y|x′)dx′.

In the setting of KBR, it is assumed that π(x) and p(y|x) are unknown but samples
approximating them are available; assume that the prior π(x) is approximated by
weighted points {(γi, X̃i)}`i=1 ⊂ R × X in the sense that its kernel mean mΠ :=∫
kX (·, x)π(x)dx is approximated by m̂Π :=

∑`
i=1 γikX (·, X̃i) as in (11), and that

training data {(Xi, Yi)}ni=1 ⊂ X ×Y are provided for the conditional density p(y|x).
Using m̂Π and {(Xi, Yi)}ni=1, the KBR estimates the kernel mean of the posterior

mQX|y :=

∫
kX (·, x)q(x|y)dx.

Specifically the estimator of the KBR is given as follows. Let w ∈ Rn be the
weight vector defined as (12) or (13), and D(w) ∈ Rn×n be a diagonal matrix with
its diagonal elements being w. Then the estimator of the KBR is defined by

KBR : m̂QX|y =
n∑
j=1

w̃jkX (·, Xj), w̃ := RX|YkY(y) ∈ Rn,

RX|Y :=D(w)GY

(
(D(w)GY )

2 + δIn

)−1

D(w) ∈ Rn×n, (14)

where kY(y) := (kY(y, Y1), . . . , kY(y, Yn))> ∈ Rn, GY = (kY(Yi, Yj))
n
i,j=1 ∈ Rn×n,

and δ > 0 is a regularization constant. This is a consistent estimator: As the
number of training data n increases and as m̂Π approaches mΠ , the estimate
m̂QX|y converges to mQX|y under certain assumptions; see Fukumizu et al (2013,
Theorems 6 and 7) for details.

4 Kernel Bayesian Inference with Probabilistic Models

In this section, we introduce the Model-based Kernel Sum Rule (Mb-KSR), a
realization of the sum rule in kernel Bayesian inference using a probabilistic model.
We describe the Mb-KSR in Sect. 4.1, and show how to combine the MB-KSR and
NP-KSR in Sect. 4.2. We explain how the KBR can be implemented when a prior
kernel mean estimate is given by a model-based algorithm such as the Mb-KSR
in Sect. 4.3. We will use these basic estimators to develop a filtering algorithm
for state space models in Sect. 5. As mentioned in Sect. 3.4, we assume that
distributions under considerations have density functions for the sake of clarity of
presentation.
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4.1 Model-based Kernel Sum Rule (Mb-KSR)

Let X = Y = Rm with m ∈ N. Define kernels kX and kY on X and Y, respectively,
and let HX and HY be their respective RKHSs. Assume that a user defines a
probabilistic model as a conditional density function3 on Y given X :

pM (y|x), x, y ∈ Rm,

where the subscript “M” stands for “Model.” Consider the kernel mean of the
probabilistic model pM (y|x):

mY|x =

∫
kY(·, y)pM (y|x)dy ∈ HY , x ∈ X . (15)

We focus on situations where the above integral has an analytic solution, and thus
one can evaluate the value of the kernel mean mY|x(y′) =

∫
kY(y′, y)pM (y|x)dy for

a given y′ ∈ Y.

An example is given by the case where pM (y|x) is an additive Gaussian noise
model, as described in Example 1 below. (Other examples can be found in Ap-
pendix A.) To describe this, let N(µ,R) be the m-dimensional Gaussian distribu-
tion with mean vector µ ∈ Rm and covariance matrix R ∈ Rm×m, and let g(x|µ,R)
denote its density function:

g(x|µ,R) := |2πR|−1/2 exp
(

(x− µ)>R−1(x− µ)
)
. (16)

Then an additive Gaussian noise model is such that an output random variable
Y ∈ Rm conditioned on an input x ∈ X is given as

Y = f(x) + ε, ε ∼ N(0, Σ),

where f : X → Rm is a vector-valued function and Σ ∈ Rm×m is a covariance
matrix; or equivalently, the conditional density function is given as

pM (y|x) = g(y|f(x), Σ), x, y ∈ Rm. (17)

The additive Gaussian noise model is ubiquitous in the literature, since the form of
the Gaussian density often leads to convenient analytic expressions for quantities
of interest. An illustrative example is the Kalman filter (Kalman, 1960), which uses
linear-Gaussian models for filtering in state space models; in the notation of (17),
this corresponds to f being a linear map. Another example is Gaussian process
models (Rasmussen and Williams, 2006), for which additive Gaussian noises are
often assumed with f being a nonlinear function following a Gaussian process.

The following describes how the conditional kernel means can be calculated for
additive Gaussian noise models by using Gaussian kernels.

3 For simplicity of presentation we assume the probabilistic model has a density function,
but the framework below can also hold even when this assumption does not hold (e.g., when
the mapping x→ y is deterministic, in which case the conditional distribution is given with a
Dirac delta function).



14 Yu Nishiyama et al.

Example 1 (An additive Gaussian noise model with a Gaussian kernel) Let

pM (y|x) be an additive Gaussian noise model defined as (17). For a positive definite

matrix R ∈ Rm×m, let kR : Rm ×Rm → R be a normalized Gaussian kernel 4 defined

as

kR(x1, x2) = g(x1 − x2|0, R), x1, x2 ∈ Rm, (18)

where g is the Gaussian density (16). Then the conditional kernel mean (15) with

kY := kR is given by

mY|x(y) = g(y|f(x), Σ +R), x, y ∈ Rm. (19)

Proof For each x ∈ X , the conditional kernel mean (15) can be written in the form
of convolution,mY|x(y) =

∫
g(y−y′|0, R)g(y′|f(x), Σ)dy′ =: g(·|0, R)∗g(·|f(x), Σ)(y).

and (19) follows from the well-known fact that the convolution of two Gaussian
probability densities is given by g(·|µ1, Σ1) ∗ g(·|µ2, Σ2) = g(·|µ1 + µ2, Σ1 +Σ2).

As in Sect. 3.5, let π(x) be a probability density function on X and define the
marginal density q(y) on Y by

q(y) =

∫
pM (y|x)π(x)dx, y ∈ Y.

The Mb-KSR estimates the kernel mean of this marginal probability

mQY :=

∫
kY(·, y)q(y)dy =

∫ (∫
kY(·, y)pM (y|x)dy

)
π(x)dx. (20)

This is done by using the probabilistic model pM (y|x) and an empirical approxi-

mation m̂Π =
∑`
i=1 γikX (·, X̃i) to the kernel mean mΠ =

∫
kX (·, x)π(x)dx of the

input probability π(x). Since the weighted points {(γi, X̃i)}`i=1 ⊂ R × X provide

an approximation to the distribution Π of π as Π ≈ Π̂ :=
∑`
i=1 γ`δX̃i

, we define
the Mb-KSR as follows:

Mb-KSR : m̂QY :=
∑̀
i=1

γimY|X̃i
=
∑̀
i=1

γi

∫
kY(·, y)pM (y|X̃i)dy, (21)

where mY|X̃i
is the conditional kernel mean (15) with x := X̃i. In the case of

Example 1, for instance, one can compute the value m̂QY (y) for any given y ∈ Y by
using the analytic expression (19) of mY|X̃i

in (21). As mentioned earlier, however,

one can use for the Mb-KSR other noise models by employing appropriate kernels,
as described in Appendix A. One such example is an additive Cauchy noise model
with a rational quadratic kernel (Rasmussen and Williams, 2006, Eq. 4.19), which
should be useful when modeling heavy-tailed random quantities.

4 Here we use a normalized Gaussian kernel kR(x1, x2) = g(x1 − x2|0, R) that is of the

form of a probability density function, rather than the unnormalized kernel k̃R(x1, x2) =
exp(− 1

2
(x1−x2)>R−1(x1−x2)) standard in the literature (Steinwart and Christmann, 2008,

p. 153). Our motivation is that, if the normalized kernel is used, then the kernel mean is also
of the form of a probability density function, which is convenient since the coefficient is not
required to be adjusted. On the other hand, if the unnormalized kernel k̃R is used, then the
resulting kernel mean should be multiplied by a constant as m̃Y|x = |2πR|1/2mY|x, where

|2πR|1/2 is the normalization constant of the Gaussian probability density. We use normalized
kernels also for other noise models; see Appendix A.
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YX Z

Model-based Nonparametric

Fig. 2 Hybrid kernel Bayesian inference in a three-variables chain graphical model.

We provide convergence results of the Mb-KSR estimator (21), as shown in
Proposition 1 below. The proof can be found in Appendix B. Below Op is the
order notation for convergence in probability, and HX ⊗ HX denotes the tensor
product of two RKHSs HX and HX .

Proposition 1 Let {(γi, X̃i)}`i=1 ⊂ R × X be such that m̂Π :=
∑`
i=1 γikX (·, X̃i),

satisfies ||m̂Π −mΠ ||HX = Op(`
−α) as ` → ∞ for some α > 0. For a function θ :

X ×X → R defined by θ(x, x̃) :=
∫ ∫

kY(y, ỹ)pM (y|x)pM (ỹ|x̃)dydỹ for (x, x̃) ∈ X ×X ,

assume that θ ∈ HX ⊗HX . Then for mQY and m̂QY defined respectively in (20) and

(21), we have ∥∥mQY − m̂QY

∥∥
HY

= Op(`
−α) (`→∞).

Remark 1 The convergence rate of m̂QY given by the Mb-KSR in Proposition 1 is
the same as that of the input kernel mean estimator m̂Π . On the other hand, the
rate for the NP-KSR is known to become slower than that of the input estimator,
because of the need for additional learning and regularization (Fukumizu et al,
2013, Theorem 8). Therefore Proposition 1 shows an advantage of the Mb-KSR
over the NP-KSR, when the probabilistic model is correctly specified. The condi-
tion that θ(·, ·) ∈ HX ⊗HX is the same as the one made in Fukumizu et al (2013,
Theorem 8).

For any function of the form f =
∑m
j=1 cjkY(·, yj) ∈ HY with c1, . . . , cm ∈ R

and y1, . . . , ym ∈ Y, its expectation with respect to q(y) can be approximated using
the Mb-KSR estimator (21) as∫

f(y)q(y)dy =
m∑
j=1

cjmQY (yj) ≈
m∑
j=1

cj
∑̀
i=1

γimY|X̃i
(yj). (22)

4.2 Combining the Mb-KSR and NP-KSR

Using the Mb-KSR and NP-KSR, one can perform hybrid (i.e., model-based and
nonparametric) kernel Bayesian inference. In the following we describe two ex-
amples of such hybrid inference with a simple chain graphical model (Fig. 2). In
Sect. 5, we use the estimators derived below corresponding to the two figures in
Fig. 2 to develop our filtering algorithm for state space models.

To this end, let X , Y, and Z be three measurable spaces, and let kX , kY and kZ
be kernels defined on the respective spaces. For both of the two cases below, let π(x)
be a probability density function on X . Assume that we are given weighted points
{(wi, X̃i)}`i=1 ⊂ R × X that provide an approximation m̂Π =

∑`
i=1 γikX (·, X̃i) to

the kernel mean
∫
kX (·, x)π(x)dx.
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4.2.1 NP-KSR followed by Mb-KSR (Fig. 2, Left)

Let p(y|x) be a conditional density function of y ∈ Y given x ∈ X , and pM (z|y) be a
conditional density function of z ∈ Z given y ∈ Y. Suppose that p(y|x) is unknown,
but training data {(Xi, Yi)}ni=1 ⊂ X × Y for it are available. On the other hand,
pM (z|y) is a probabilistic model, and assume that the kernel kZ is chosen so that
the conditional kernel mean mZ|y :=

∫
kZ(·, z)pM (z|y) is analytically computable

for each y ∈ Y. Define marginal densities q(y) on Y and q(z) on Z by

q(y) :=

∫
π(x)p(y|x)dx, q(z) :=

∫
q(y)pM (z|y)dy,

and let mQY :=
∫
kY(·, y)q(y)dy and mQZ :=

∫
kZ(·, z)q(z)dz be their respective

kernel means.
The goal here is to estimate mQZ using m̂Π =

∑`
i=1 γikX (·, X̃i), {(Xi, Yi)}ni=1

and pM (z|y). This can be done by two steps: i) first estimate the kernel mean
mQY using the NP-KSR (12) with m̂Π and {(Xi, Yi)}ni=1, obtaining an estimate

m̂QY =
∑n
j=1 wjkY(·, Yj) with w := (w1, . . . , wn)> := (GX +nεIn)−1GXX̃γ, where

γ := (γ1, . . . , γ`)
> ∈ R`, GXX̃ ∈ Rn×` is such that (GXX̃)i,j = kX (Xi, X̃j) and

ε > 0 is a regularization constant; then ii) apply the Mb-KSR to m̂QY using
pM (z|y), resulting in the following estimator of mQZ :

m̂QZ =
n∑
i=1

wimZ|Yi
, where mZ|Yi

:=

∫
kZ(·, z)pM (z|Yi)dz. (23)

4.2.2 Mb-KSR followed by NP-KSR (Fig. 2, Right)

Let pM (y|x) be a conditional density function of y ∈ Y given x ∈ X , and p(z|y)
be a conditional density function of z ∈ Z given y ∈ Y. Suppose that for the
probabilistic model pM (y|x), the kernel kY is chosen so that the conditional kernel
mean mY|x :=

∫
kY(y|x)dy is analytically computable for each x ∈ X . On the other

hand, assume that training data {(Yi, Zi)}ni=1 ⊂ Y×Z for the unknown conditional
density p(z|y) are available. Define marginal densities q(y) on Y and q(z) on Z by

q(y) :=

∫
π(x)pM (y|x)dx, q(z) :=

∫
q(y)p(z|y)dy,

and let mQY :=
∫
kY(·, y)q(y)dy and mQZ :=

∫
kZ(·, z)q(z)dz be their respective

kernel means.
The task is to estimate mQZ using m̂Π =

∑`
i=1 γikX (·, X̃i), pM (y|x) and

{(Yi, Zi)}ni=1 ⊂ Y × Z. This can be done by two steps: i) first estimate the
kernel mean mQY by applying the Mb-KSR (21) to m̂Π , yielding an estimate

m̂QY :=
∑`
i=1 γimY|X̃i

, where mY|X̃i
=
∫
kY(·, y)pM (y|X̃i)dy; ii) then apply the

NP-KSR to m̂QY . To describe ii), recall that the weights for the NP-KSR can be
written as (13) in terms of evaluations of the input empirical kernel mean: thus,
the estimator of mQZ by the NP-KSR in ii) is given by

m̂QZ =
n∑
i=1

wikZ(·, Zi), (24)
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with the weights w1, . . . , wn being

(w1, . . . , wn)> := (GY + nεIn)−1(m̂QY (Y1), . . . , m̂QY (Yn)))>

= (GY + nεIn)−1GY |X̃γ,

where GY |X̃ ∈ Rn×` is such that (GY |X̃)ij = mY|X̃j
(Yi) =

∫
kY(Yi, y)pM (y|X̃i)dy

and γ := (γ1, . . . , γ`)
> ∈ R`.

4.3 Kernel Bayes’ Rule with a Model-based Prior

We describe how the KBR in Sect. 3.6 can be used when the prior kernel mean m̂Π

is given by a model-based estimator such as (21). This way of applying KBR is
employed in Sect. 5 to develop our filtering method. The notation in this subsection
follows that in Sect. 3.6.

Denote by m̂Π :=
∑`
j=1 γjmj a prior kernel mean estimate, where m1, . . . ,m` ∈

HX represent model-based kernel mean estimates and γ1, . . . , γ` ∈ R; for later use,
we have written the kernel means m1, . . . ,m` rather abstractly. For instance, if
m̂Π is obtained from the Mb-KSR (21), then mj may be given in the form mj =∫
kX (·, x)pM (x|X̃j)dx for some probabilistic model pM (x|x̃) and some X̃j ∈ X .

Then the KBR with the prior m̂Π is simply given by the estimator (14) with
the weight vector w ∈ Rn replaced by the following:

w = (GX + nεIn)−1
Mγ ∈ Rn,

where γ := (γ1, . . . , γn)> ∈ R` and M ∈ Rn×` is such that Mij = mj(Xi). This
follows from that the weight vector w for the KBR is that of the NP-KSR (13);
see also Sect. 4.2.2.

5 Filtering in State Space Models via Hybrid Kernel Bayesian Inference

Based on the framework for hybrid kernel Bayesian inference introduced in Sect.
4, we propose a novel filtering algorithm for state space models, focusing on the
setting of Fig. 1. We formally state the problem setting in Sect. 5.1, and then
describe the proposed algorithm in Sect. 5.2, followed by an explanation about
how to use the outputs of the proposed algorithm in Sect. 5.3. As before, we
assume that all distributions under consideration have density functions for clarity
of presentation.

5.1 The Problem Setting

Let X be a space of states, and Z be a space of observations. Let t = 1, . . . , T
denotes the time index with T ∈ N being the total number of time steps. A state
space model (Fig. 1) consists of two kinds of variables: states x1, x2, . . . , xT ∈ X
and observations z1, z2, . . . , zT ∈ Z. These variables are assumed to satisfy the
conditional independence structure described in Fig. 1, and probabilistic relation-
ships between the variables are specified by two conditional density functions: 1)



18 Yu Nishiyama et al.

a transition model p(xt+1|xt) that describes how the next state xt+1 can change
from the current state xt; and 2) an observation model p(zt|xt) that describes how
likely the observation zt is generated from the current state xt. Let p(x1) be a
prior of the initial state x1.

In this paper, we focus on the case where the transition process is an additive
Gaussian noise model, which has been frequently used in the literature. As men-
tioned before, nevertheless, other noise models described in Appendix A can also
be used. We consider the following setting.

– Transition Model: Let X = Rm, and kX be a Gaussian kernel of the form
(18) with covariance matrix R ∈ Rn×n. Define a vector-valued function f :
Rm → Rm and a covariance matrix Σ ∈ Rn×n. It is assumed that f and Σ

are provided by a user, and thus known. The transition model is an additive
Gaussian noise model such that xt+1 = f(xt) + εt with εt ∼ N(0, Σ), or in the
density from,

p(xt+1|xt) = g(xt+1|f(xt), Σ),

where g(x|µ,R) denotes the Gaussian density with mean µ ∈ Rm and covariance
matrix R ∈ Rm×m; see (16).

– Observation Model: Let Z be an arbitrary domain on which a kernel kZ :
Z × Z → R is defined. We assume that training data

{(Xi, Zi)}ni=1 ⊂ X × Z

are available for the observation model p(zt|xt). The user is not required to
have knowledge about the form of p(zt|xt).

The task of filtering is to compute the posterior p(xt|z1:t) of the current state
xt given the history of observations z1:t := (z1, . . . , zt) obtained so far; this is to be
done sequentially for all time steps t = 1, . . . , T . In our setting, one is required to
perform filtering on the basis of the transition model p(xt+1|xt) and the training
data {(Xi, Zi)}ni=1.

Regarding the setting above, note that the training data {(Xi, Zi)}ni=1 are as-
sumed to be available before the test phase. This setting appears when directly

measuring the states of the system is possible but requires costs (in terms of computa-

tions, time or money) much higher than those for obtaining observations. For example,
in the robot localization problem discussed in Sect. 1.1, it is possible to measure
the positions of a robot by using an expensive radar system or by manual an-
notation, but in the test phase the robot may only be able to use cheap sensors
to obtain observations, such as camera images and signal strength information
(Pronobis and Caputo, 2009). Another example is problems where states can be
accurately estimated or recovered from data only available before the test phase.
For instance, in tsunami studies (see e.g. Saito 2019), one can recover a tsunami
in the past on the basis of data obtained from various sources; however in the
test phase, where the task may be that of early warming of a tsunami given that
an earthquake has just occurred in an ocean, one can only make use of observa-
tions from limited sources, such as seismic intensities and ocean-bottom pressure
records.
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5.2 The Proposed Algorithm

In general, a filtering algorithm for a state space model consists of two steps: the
prediction step and the filtering step. We first describe these two steps, as this will
be useful in understanding the proposed algorithm.

Assume that the posterior p(xt−1|z1:t−1) at time t − 1 has already been ob-
tained. (If t = 1, start from the filtering step below, with p(x1|z1:0) := p(x1)) In
the prediction step, one computes the predictive density p(xt|z1:t−1) by using the
sum rule with the transition model p(xt|xt−1):

p(xt|z1:t−1) =

∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1.

Suppose then that a new observation zt has been provided. In the filtering step,
one computes the posterior p(xt|z1:t) by using Bayes’ rule with p(xt|z1:t−1) as a
prior and the observation model p(zt|xt) as a likelihood function:

p(xt|z1:t) ∝ p(zt|xt)p(xt|z1:t−1)

Iterations of these two steps over times t = 1, . . . , T result in a filtering algorithm.
We now describe the proposed algorithm. In our approach, the task of filtering

is formulated as estimation of the kernel mean of the posterior p(xt|z1:t):

mXt|z1:t :=

∫
kX (·, xt)p(xt|z1:t)dxt ∈ HX , (25)

which is to be done sequentially for each time t = 1, . . . , T as a new observation zt
is obtained. (Here HX is the RKHS of kX .) The prediction and filtering steps of
the proposed algorithm are defined as follows.

Prediction Step: Let mXt−1|z1:t−1
∈ HX be the kernel mean of the posterior

p(xt−1|z1:t−1) at time t− 1

mXt−1|z1:t−1
:=

∫
kX (·, xt−1)p(xt−1|z1:t−1)dxt−1,

and assume that its estimate m̂Xt−1|z1:t−1
∈ HX has been computed in the form

m̂Xt−1|z1:t−1
=

n∑
i=1

[αXt−1|z1:t−1
]ikX (·, Xi), where αXt−1|z1:t−1

∈ Rn, (26)

whereX1, . . . , Xn are those of the training data. (If t = 1, start from the filtering
step below.) The task here is to estimate the kernel mean of the predictive
density p(xt|z1:t−1):

mXt|z1:t−1
:=

∫
kX (·, xt)p(xt|z1:t−1)dxt.

To this end, we apply the Mb-KSR (Sect. 4.1) to (26) using the transition
model p(xt|xt−1) as a probabilistic model: the estimate is given as

m̂Xt|z1:t−1
:=

n∑
i=1

[αXt−1|z1:t−1
]imXt|xt=Xi

, (27)

mXt|xt−1=Xi
:=

∫
kX (·, xt)p(xt|xt−1 = Xi)dxt. (28)
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As shown in Example 1, since both kX and p(xt|xt−1) are Gaussian, the con-
ditional kernel means (28) have closed form expressions of the form (19).

Filtering Step: The task here is to estimate the kernel mean (25) of the posterior
p(xt|z1:t) by applying the KBR (Sect. 4.3) using (27) as a prior. To describe this,
define the kernel mean mZt|z1:t−1

∈ HZ of the predictive density p(zt|z1:t−1) :=∫
p(zt|xt)p(xt|z1:t−1)dxt of a new observation zt:

mZt|z1:t−1
:=

∫
kZ(·, zt)p(zt|z1:t−1)dzt.

The KBR first essentially estimates this by applying to the NP-KSR to (27)
using the training data {(Xi, Zi)}ni=1; the resulting estimate is

m̂Zt|z1:t−1
:=

n∑
i=1

[βZt|z1:t−1
]ikZ(·, Zi),

βZt|z1:t−1
:= (GX + nεIn)−1

GX′|XαXt−1|z1:t−1
∈ Rn, (29)

where GX = (kX (Xi, Xj))
n
i,j=1 ∈ Rn×n and GX′|X ∈ Rn×n is defined by eval-

uations of the conditional kernel means (28): (GX′|X)ij := mXt|xt−1=Xj
(Xi) =∫

kX (Xi, xt)p(xt|xt−1 = Xj)dxt. (If t = 1, generate sample points X̃1, . . . , X̃n ∈
X i.i.d. from p(x1), and define GX′|X ∈ Rn×n as (GX′|X)ij := k(Xi, X̃j) and

αXt−1|z1:t−1
:= (1/n, . . . , 1/n)> ∈ Rn.)

Using the weight vector βZt|z1:t−1
given above, the KBR then estimates the

posterior kernel mean (25) as

m̂Xt|z1:t :=
n∑
i=1

[αXt|z1:t ]ikX (·, Xi), αXt|z1:t := RX|Z(βZt|z1:t−1
)kZ(zt), (30)

where kZ(zt) = (kZ(Zi, zt))
n
i=1 ∈ Rn and RX|Z(βZt|z1:t−1

) ∈ Rn×n is

RX|Z(βZt|z1:t−1
) := D(βZt|z1:t−1

)GZ

(
(D(βZt|z1:t−1

)GZ)2 + δIn

)−1

D(βZt|z1:t−1
),

(31)
where GZ := (kZ(Zi, Zj)) ∈ Rn×n and D(βZt|z1:t−1

) ∈ Rn×n is the diagonal
matrix with its diagonal elements being βZt|z1:t−1

.

The proposed filtering algorithm is iterative applications of these prediction
and filtering steps, as summarized in Algorithm 1. The algorithm results in up-
dating the two weight vectors βZt|z1:t−1

,αXt|z1:t ∈ Rn.

In Algorithm 1, the computation of the matrix GX′|X is inside the for-loop
for t = 2, . . . , T , but one does not need to recompute it if the transition model
p(xt|xt−1) is invariant with respect to time t. If the transition model depends on
time (e.g., when it involves a control signal), then GX′|X should be recomputed
for each time.
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Algorithm 1 The proposed filtering method

Initial Prior Sampling: Generate X̃1, . . . , X̃n ∈ X i.i.d. from p(x1), and define GX′|X ∈
Rn×n as (GX′|X)ij := k(Xi, X̃j) and αX0|z1:0 := (1/n, . . . , 1/n)> ∈ Rn.
Observe: z1 ∈ Z.
Initial Filtering: Compute αX1|z1 ∈ Rn by the KBR (see Eqs. (29)(30)(31)).
for t = 2 : T do

Compute: GX′|X ∈ Rn×n as (GX′|X)ij :=
∫
kX (Xi, xt)p(xt|xt−1 = Xj)dxt.

Weight Computation 1: βZt|z1:t−1
= (GX + nεIn)−1GX′|XαXt−1|z1:t−1

∈ Rn.

Observe: zt ∈ Z.
Weight Computation 2: αXt|z1:t = RX|Z(βZt|z1:t−1

)kZ(zt) ∈ Rn (see Eq. (31)).

end for

5.3 How to Use the Outputs of Algorithm 1

The proposed filter (Algorithm 1) outputs a sequence of kernel mean estimates
m̂X1|z1:1 , m̂X2|z1:2 , . . . , m̂XT |z1:T ∈ HX as given in (30), or equivalently a sequence
of weight vectors αX1|z1:1 ,αX2|z1:2 . . . ,αXT |z1:T ∈ Rn. We describe below two ways
of using these outputs. Note that these are not the only ways: e.g., one can also
generate samples from a kernel mean estimate using the kernel herding algorithm
(Chen et al, 2010). See Muandet et al (2017) for other possibilities.

(i) The integral (or the expectation) of a function f ∈ HX with respect to the
posterior p(xt|z1:t) can be estimated as (see Sect. 3.3)∫

f(xt)p(xt|z1:t)dxt = 〈mXt|z1:t , f〉HX

≈ 〈m̂Xt|z1:t , f〉HX =
n∑
i=1

[αXt|z1:t ]if(Xi).

(ii) A pseudo-MAP (maximum a posteriori) estimate of the posterior p(xt|z1:t) is
obtained by solving the preimage problem (see Fukumizu et al (2013, Sect. 4.1)).

x̂t := arg min
x∈X
‖kX (·, x)− m̂Xt|z1:t‖

2
HX . (32)

If for some C > 0 we have kX (x, x) = C for all x ∈ X (e.g., when kX is a shift-
invariant kernel), (32) can be rewritten as x̂t = arg max

x∈X
m̂Xt|z1:t(x). If kX is a

Gaussian kernel kR (as we employ in this paper), then the following recursive
algorithm can be used to solve this optimization problem (Mika et al, 1999):

x(s+1) =

∑n
i=1Xi[αXt|z1:t ]ikR(Xi, x

(s))∑n
i=1[αXt|z1:t ]ikR(Xi, x(s))

(s = 0, 1, 2, . . . ). (33)

The initial value x(0) can be selected randomly. (Another option may be to
set x(0) as a point Ximax

∈ {X1, . . . , Xn} in the training data that is associated
with the maximum weight (i.e., imax = arg max[αXt|z1:t ]i). ) Note that the
algorithm (33) is only guaranteed to converge to the local optimum, if the
kernel mean estimate m̂Xt|z1:t(x) has multiple modes.
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6 Experiments

We report three experimental results showing how the use of the Mb-KSR can
be beneficial in kernel Bayesian inference when probabilistic models are available.
In the first experiment (Sect. 6.1), we deal with simple problems where we can
exactly evaluate the errors of kernel mean estimators in terms of the RKHS norm;
this enables rigorous empirical comparisons between the Mb-KSR, NP-KSR and
combined estimators. We then report results comparing the proposed filtering
method (Algorithm 1) to existing approaches by applying them to a synthetic
state space model (Sect. 6.2) and to a real data problem of vision-based robot
localization in robotics (Sect. 6.3).

6.1 Basic Experiments with Ground-truths

We first consider the setting described in Sect. 3.5 and 4.1 to compare the Mb-KSR
and the NP-KSR. Let X = Y = Rm. Define a kernel kX on X as a Gaussian kernel
kRX with covariance matrix RX ∈ Rn×n as defined in (18); similarly, let kY = kRY
be a Gaussian kernel on Y with covariance matrix RY ∈ Rn×n.

Let p(y|x) be a conditional density on Y given x ∈ X , which we we define as
an additive linear Gaussian noise model: p(y|x) = g(y|Ax,Σ) for x, y ∈ Rm, where
Σ ∈ Rm×m is a covariance matrix and A ∈ Rm×m. The input density function
π(x) on X is defined as a Gaussian mixture π(x) :=

∑L
i=1 ξig(x|µi,Wi), where

L ∈ N, ξi ≥ 0 are mixture weights such that
∑L
i=1 ξ = 1, µi ∈ Rm are mean

vectors and Wi ∈ Rm×m are covariance matrices. Then the output density q(y) :=∫
p(y|x)π(x)dx is also a Gaussian mixture q(y) =

∑L
i=1 ξig(y|Aµi, Σ +AWiA

>).

The task is to estimate the kernel mean mQY =
∫
kY(·, x)q(y)dy of the output

density q(y), which has a closed form expression

mQY =
L∑
i=1

ξig(·|Aµi, RY +Σ +AWiA
>).

This expression is used to evaluate the error
∥∥mQY − m̂QY

∥∥
HY

in terms of the

distance of the RKHS HY , where m̂QY is an estimate given by the Mb-KSR (21)
or that of the NP-KSR (12). For the Mb-KSR, the conditional density p(y|x) is
treated as a probabilistic model pM (y|x), while for the NP-KSR training data are
generated for p(y|x); details are explained below.

We performed the following experiment 30 times, independently generating in-
volved data. Fix parameters m = 2, A = Σ = I2, L = 4, ξ1 = · · · = ξ4 = 1/4,
RX = 0.1I2 and RY = I2. We generated training data {(Xi, Yi)}500i=1 for the condi-
tional density p(y|x) by independently sampling from the joint density p(x, y) :=
p(y|x)p(x), where p(x) is the uniform distribution on [−10, 10]2 ⊂ X . The pa-

rameters in each component of π(x) =
∑L
i=1 ξig(x|µi,Wi) were randomly gener-

ated as µi
i.i.d.∼ Uni[−5, 5]2 (i = 1, 2, 3, 4) and Wi = U>i Ui with Ui

i.i.d.∼ Uni[−2, 2]4

(i = 1, 2, 3, 4), where “Uni” denotes the uniform distribution. The input kernel
mean mΠ :=

∫
k(·, x)π(x)dx was then approximated as m̂Π = 1

500

∑500
i=1 kX (·, X̃i),

where X̃1 . . . X̃500 ∈ X were generated independently from π(x).
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Fig. 3 Top left: Estimation errors
∥∥mQY − m̂QY ∥∥HY vs. regularization constants ε. The

errors of the Mb-KSR and the Mb-KSR (est) are very small and overlap each other. Top right:
A model misspecification case (estimation errors vs. scale parameters σ1 > 0). Bottom left:
A model misspecification case (estimation errors vs. scale parameters σ2 > 0). Bottom right:
Estimation errors

∥∥mQZ − m̂QZ∥∥HZ vs. regularization constants ε for combined estimators.

The errors of three estimators (i) NP-KSR and Mb-KSR, (ii) NP-KSR and estimated Mb-KSR
and (iii) Mb-KSR and NP-KSR are very close and thus overlap each other. In all the figures,
the error bars indicate the standard deviations over 30 independent trials.

Fig. 3 (top left) shows the averages and standard deviations of the error∥∥mQY − m̂QY

∥∥
HY

over the 30 independent trials, with the estimate m̂QY given by

three different approaches: NP-KSR, Mb-KSR and “Mb-KSR (est).” The NP-KSR
learned p(y|x) with using the training data {(Xi, Yi)}500i=1, and we report results with
different regularization constants as ε = [.1, .05, .01, .005, .001, .0005, .0001, .00005]
(horizontal axis). For the Mb-KSR, we used the true p(y|x) as a probabilistic model
pM (y|x). “Mb-KSR (est)” is the Mb-KSR with pM (y|x) being the linear Gaussian
model with parameters A and Σ learnt from {(Xi, Yi)}500i=1 by maximum likelihood
estimation.

We can make the following observations from Fig. 3 (top left): 1) If the proba-
bilistic model pM (y|x) is given by parametric learning with a well-specified model,
then the performance of the Mb-KSR is as good as that of the Mb-KSR with a
correct model; 2) While the NP-KSR is a consistent estimator, its performance is
worse than the Mb-KSR, possibly due to the limited sample size and the nonpara-
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metric nature of the estimator; 3) The performance of the NP-KSR is sensitive to
the choice of a regularization constant.

We next discuss results highlighting the Mb-KSR using misspecified proba-
bilistic models, shown in Fig. 3 (top right and bottom left). Here the NP-KSR
used the best regularization constant in Fig. 3 (top left), and the Mb-KSR (est)
was given in the same way as above. In Fig. 3 (top right), the Mb-KSR used a
misspecified model defined as pM (y|x) = g(y|σ1Ax,Σ), where σ1 > 0 controls the
degree of misspecification (horizontal axis); σ1 = 1 gives the correct model p(y|x)
and is emphasized with the vertical line in the figure. In Fig. 3 (bottom left), the
Mb-KSR used a misspecified model pM (y|x) = g(y|Ax, σ2Σ) with σ2 > 0; the case
σ2 = 1 provides the correct model and is indicated by the vertical line. These two
figures show the sensitivity of the Mb-KSR to the model specification, but we also
observe that the Mb-KSR outperforms the NP-KSR if the degree of misspecifica-
tion is not severe. The figures also imply that, when it is possible, the parameters
in a probabilistic model should be learned from data, as indicated by the perfor-
mance of the Mb-KSR (est).

Combined Estimators. Finally, we performed experiments on the combined esti-
mators made of the Mb-KSR and NP-KSR described in Sect. 4.2.1 and 4.2.2; the
setting follows that of these sections, and is defined as follows.

Define the third space as Z = Rm with m = 2, and let kZ := kRZ be the
Gaussian kernel (18) on Z with covariance matrix RZ ∈ Rm×m. Let p(y|x) :=
g(y|A1x,Σ1) be the conditional density on Y given x ∈ X , and p(z|y) := p(z|A2y,Σ2)
be that on Z given y ∈ Y, both being additive linear Gaussian noise models,
where we set A1 = A2 = Σ1 = Σ2 = Im ∈ Rm×m. As before, the input den-
sity π(x) on X is a Gaussian mixture π(x) =

∑L
i=1 ξig(x|µi,Wi). Then the out-

put distribution QZ is also a Gaussian mixture with L = 4 and ξ1 = · · · =
ξ4 = 1/4, and parameters µi ∈ Rm and Wi ∈ Rm×m are randomly generated

as µi
i.i.d.∼ Uni[−5, 5]2 and Wi = U>i Ui with Ui

i.i.d.∼ Uni[−2, 2]4. Then the out-
put density is given as a Gaussian mixture q(z) :=

∫ ∫
p(z|y)p(y|x)π(x)dxdy =∑L

i=1 ξig(z|A2A1µi, Σ2 +A2(Σ1 +A1WiA
>
1 )A>2 ) .

The task is to estimate the kernel mean mQZ :=
∫
kZ(·, x)q(z)dz, whose closed

form expression is given as

mQZ =
L∑
i=1

ξig
(
·|A2A1µi, RZ +Σ2 +A2(Σ1 +A1WiA

>
1 )A>2

)
.

The error
∥∥mQZ − m̂QZ

∥∥
HZ

as measured by the norm of the RKHS HZ can then

also be computed exactly for a given estimate m̂QZ .

Fig. 3 (bottom right) shows the averages and standard deviations of the estima-
tion errors over 30 independent trials, computed for four types of combined estima-
tors referred to as “NP+NP,” “NP+Mb,” “NP+Mb(est),” and “Mb+NP,” which
are respectively (i) NP-KSR + NP-KSR, (ii) NP-KSR + Mb-KSR, (iii) NP-KSR
+ Mb-KSR (est), and (iv) Mb-KSR + NP-KSR. As expected, the model-combined
estimators (ii)-(iv) outperformed the full-nonparametric case (i).
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6.2 Filtering in a Synthetic State Space Model

We performed experiments on filtering in a synthetic nonlinear state space model,
comparing the proposed filtering method (Algorithm 1) in Sect. 5 with the fully-
nonparametric filtering method proposed by Fukumizu et al (2013). The problem
setting, described below, is based on that of Fukumizu et al (2013, Sect. 5.3).

– (State transition process) Let X = R2 be the state space, and denote by
xt := (ut, vt)

> ∈ R2 the state variable at time t = 1, . . . , T . Let b,M, η, σh > 0
be constants. Assume that each xt has an latent variable θt ∈ [0, 2π], which is an
angle. The current state xt then changes to the next state xt+1 := (ut+1, vt+1)>

according to the following nonlinear model:

(ut+1, vt+1)>=(1 + b sin(Mθt+1))(cos θt+1, sin θt+1)> + ςt, (34)

where ςt ∼ N(0, σ2hI2) is an independent Gaussian noise and

θt+1 = θt + η (mod 2π). (35)

– (Observation process) The observation space is Z = R2, and let zt ∈ R2 be
the observation at time t = 1, . . . , T . Given the current state xt := (ut, vt)

>,
the observation zt is generated as

zt = (sign(ut)|ut|
1
2 , sign(vt)|vt|

1
2 )> + ξt,

where sign(·) outputs the sign of its argument, and ξt is an independent zero-
mean Laplace noise with standard deviation σo > 0.

We used the fully-nonparametric filtering method by Fukumizu et al (2013,
Sect. 4.3) as a baseline, and we refer to it as the fully-nonparametric kernel Bayesian

filter (fKBF). As for the proposed filtering method, the fKBR sequentially estimates
the posterior kernel means mXt|z1:t =

∫
kX (·, xt)p(xt|z1:t)dxt (t = 1, . . . , T ) using

the KBR in the filtering step. The difference from the proposed filter is that the
fKBR uses the NP-KSR (Sect. 3.5) in the prediction step. Thus, a comparison
between these two methods reveals how the use of a probabilistic model via the
Mb-KSR is beneficial in the context of state space models.

We generated training data (Xi, Zi)
n
i=1 ⊂ X × Z for the observation model as

well as those for the transition process (Xi, X
′
i)
n
i=1 ⊂ X × X by simulating the

above state space model, where X ′i denotes the state that is one time ahead of
Xi. The proposed filter used (Xi, Zi)

n
i=1 in the filtering step, and Eqs. (34) and

(35) as a probabilistic model in the prediction step. The fKBF used (Xi, Zi)
n
i=1

in the filtering step, and (Xi, X
′
i)
n
i=1 in the prediction step. For each of these two

methods, we defined Gaussian kernels kRX and kRZ of the form (18) on X and Z,
respectively, where we set RX = σ2X I2 and RZ = σ2ZI2 for σX , σZ > 0.

For each method, after obtaining an estimate m̂Xt|z1:t of the posterior kernel
mean at each time t = 1, . . . , T , we computed a pseudo-MAP estimate x̂t using the
algorithm (33) in Sect. 5.3, as a point estimate of the true state xt. We evaluated
the performance of each method by computing the mean squared error (MSE)
between such point estimates x̂t and true states xt. We tuned the hyper parame-
ters in each method (i.e., regularization constants δ, ε > 0 and kernel parameters
σX , σY > 0) by two-fold cross validation with grid search. We set T = 100 for the
test phase.
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Fig. 4 Comparisons between the proposed filtering method and the fully-nonparametric kernel
Bayes filter (fKBF) by Fukumizu et al (2013). For details, see Sect. 6.2.

Fig. 4 (top left) visualizes the weight vector αXt|z1:t ∈ Rn of the estimate
m̂Xt|z1:t =

∑n
i=1[αXt|z1:t ]ikX (·, Xi) given by the proposed filter (30) at a certain

time point t. In the figure, the green curve is the trajectory of states given by (34)
without the noise term. The red and blue points are the observation zt and the true
state xt. The small points indicate the locations of the training data X1, . . . , Xn,
and the value of the weight[αXt|z1:t ]i for each data point Xi is plotted in the z axis,
where positive and negative weights are colored in cyan and magenta, respectively.

Fig. 4 (top right) shows the averages and standard deviations of the MSEs
over 30 independent trials for the two methods, where the parameters of the state
space model are b = 0.4, M = 8, η = 1, σh = 0.2 and σo = 0.05. We performed
the experiments for different sample sizes n. As expected, the direct use of the
transition process (34) via the Mb-KSR resulted in better performances of the
proposed filter than the fully-nonparametric approach.

Similar results are obtained for Fig. 4 (bottom left), where the parameters
are set as b = 0.4, M = 8, η = 1, σo = 0.01, and the Gaussian noise ςt in
the transition process (34) is replaced by a noise from a Gaussian mixture: ςt ∼
1
4

∑4
i=1N(µi, (0.3)2I2) with µ1 = (0.2, 0.2)>, µ2 = (0.2,−0.2)>, µ3 = (−0.2, 0.2)>,

and µ4 = (−0.2,−0.2)>. We performed this experiment to show the capability of
the Mb-KSR to make use of additive mixture noise models (see Appendix A.3).
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Finally, Fig. 4 (bottom right) describes results for the case where we changed
the transition model in the test phase from that in the training phase. That is,
we set b = 0.4, M = 8, σh = 0.1, σo = 0.01 and η = 0.1 in the training phase, but
we changed the parameter η in (35) to η = 0.4 in the test phase. The proposed
filter directly used this knowledge in the test phase by incorporating it by the Mb-
KSR, and this resulted in significantly better performances of the proposed filter
than the fKBR. Note that such additional knowledge in the test phase is often
available in practice, for example in problems where the state transition process
involves control signals, as for the case of the robot location problem in the next
section. On the other hand, exploitation of such knowledge is not easy for fully
nonparametric approaches like fKBR, since they need to express the knowledge in
terms of training samples.

6.3 Vision-based Robot Localization

We performed real data experiments on the vision-based robot localization problem
in robotics, formulated as filtering in a state space model. In this problem, we
consider a robot moving in a building, and the task is to sequentially estimate the
robot’s positions in the building in real time, using vision images that the robot
has obtained with its camera.

In terms of a state space model, the state xt at time t = 1, . . . , T is the robot’s
position xt := (xt, yt, θt) ∈ X := R2 × [−π, π], where (xt, yt) is the location and θt
is the direction of the robot, and the observation zt ∈ Z is the vision image taken
by the robot at the position xt. (Here Z is a space of images.) It is also assumed
the robot records odometry data ut := (x̄t, ȳt, θ̄t) ∈ R2 × [−π, π], which are the
robot’s inner representations of its positions obtained from sensors measuring the
revolution of the robot’s wheels; such odometry data can be used as control signals
(Thrun et al, 2005, Sect. 2.3.2). Thus, the robot localization problem is formulated
as the task of filtering using the control signals: estimate the position xt using a
history of vision images z1, . . . , zt and control signals u1, . . . , ut sequentially for
every time step t = 1, . . . , T .

The transition model p(xt+1|xt, ut, ut+1), which includes the odometry data
ut and ut+1 as control signals, deals with robot’s movements and thus can be
modeled on the basis of mechanical laws; we used an odometry motion model (see
e.g. Thrun et al (2005, Sect. 5.4)) for this experiment, defined as

xt+1 = xt + δtrans cos(θt + δrot1) + ξx, δrot1 := atan2(ȳt+1 − ȳt, x̄t+1 − x̄t)− θ̄t,

yt+1 = yt + δtrans sin(θt + δrot1) + ξy, δtrans := ((x̄t+1 − x̄t)
2 + (ȳt+1 − ȳt)

2)
1
2 ,

cos θt+1 = cos(θt + δrot1 + δrot2) + ξc, δrot2 := θ̄t+1 − θ̄t − δrot1,
sin θt+1 = sin(θt + δrot1 + δrot2) + ξs,

where atan2(·, ·) is the arctangent function with two arguments, and ξx ∼ N(0, σ2x ),
ξy ∼ N(0, σ2y ) ξc ∼ N(0, σ2c ), and ξs ∼ N(0, σ2s) are independent Gaussian noises
with respective variances σ2x , σ

2
y , σ

2
c and σ2s , which are the parameters of the tran-

sition model.
The observation model p(zt|xt) is the conditional probability of a vision image

zt given the robot’s position xt; this is difficult to provide a model description in a
parametric form, since it is highly dependent on the environment of the building.
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Fig. 5 Paths that a robot approximately followed for data acquisition (Pronobis and Caputo,
2009, Fig. 1 (b)). (The use of the figure is granted under the STM Guidelines.)

Instead, one can use training data {(Xi, Zi)}ni=1 ⊂ X × Z to provide information
of the observation model. Such training data, in general, can be obtained before
the test phase, for example by running a robot equipped with expensive sensors
or by manually labelling the position Xi for a given image Zi.

In this experiment we used a publicly available dataset provided by Pronobis
and Caputo (2009) designed for the robot localization problem in an indoor office
environment. In particular, we used a dataset named Saarbrücken, Part A, Standard,

and Cloudy. This dataset consists of three similar trajectories that approximately
follow the blue dashed path in the map described in Fig. 5.5 The three trajectories
of the data are plotted in Fig. 6 (left), where each point represents the robot’s
position (xt, yt) at a certain time t and the associated arrow the robot’s direction
θt. We used two trajectories for training and the rest for testing.

For our method (and for competing methods that use the transition model),
we estimated the parameters σ2x , σ2y , σ2c and σ2s in the transition model using
the two training trajectories for training by maximum likelihood estimation. As a
kernel kZ on the space Z of images, we used the spatial pyramid matching kernel
(Lazebnik et al, 2006) that is based on the SIFT descriptors (Lowe, 2004), where
we set the kernel parameters as those recommended by Lazebnik et al (2006). As

5 Copyright @ 2009, SAGE Publications.
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Fig. 6 (Left) Data for three similar trajectories corresponding to the blue path shown in Fig.
5. (x, y) indicates the position of the robot, and the arrow at each position indicates the angle,
θ, of the robot’s pose. (Right) Estimation accuracy of the robot’s position as a function of
training sample size n.

a kernel kX on the space X of robot’s positions, we used a Gaussian kernel. The
bandwidth parameters and regularization constants were tuned by two-fold cross
validation using the two training trajectories. For point estimation of the position
xt at each time t = 1, . . . , T in the test phase, we used the position Ximax

in the
training data {(Xi, Zi)} associated with the maximum in the weights αXt|z1:t for
the posterior kernel mean estimate (30): imax = arg maxi=1,...,n[αXt|z1:t ]i

We compared the proposed filter with the following three approaches, for which
we also tuned hyper-parameters by cross-validation:

– Näıve method (NAI): This is a simple algorithm that estimates the robot’s
position xt at each time t = 1, . . . , T as the position Ximax

in the training data
that is associated with the image Zimax

closest to the given observation zt in
terms of the spatial pyramid matching kernel: imax := arg maxi=1,...,n kZ(zt, Zi).
This algorithm does not take into account the time-series structure of the prob-
lem, was used as a baseline.

– Nearest Neighbors (NN) (Vlassis et al, 2002): This method uses the k-NN
(nearest neighbors) approach to nonparametrically learn the observation model
from training data {(Xi, Zi)}ni=1. For the k-NN search we also used the spatial
pyramid matching kernel. Filtering is realized by applying a particle filter,
using the learned observation model and the transition model (the odometry
motion model). Since the learning of the observation model involves a certain
heuristic, this approach may produce biases.

– Fully-Nonparametric Kernel Bayes Filter (fKBF) (Fukumizu et al, 2013):
For an explanation of this method, see Sect. 6.2. Since the NP-KSR, which
learns the transition model, involves the control signals (i.d., odometry data),
we also defined a Gaussian kernel on controls. As in Sect. 6.2, a comparison
between this method and the proposed filter reveals the effect of combining
the model-based and nonparametric approaches.



30 Yu Nishiyama et al.

Fig. 6 (right) describes averages and standard deviations of RMSEs (root mean
squared errors) between estimated and true positions over 10 trials, performed for
different training data sizes n. The NN outperforms the NAI, as the NAI does
not use the time-series structure of the problem. The fKBF shows performances
superior to the NN in particular for larger training data sizes, possibly due to the
fact that the fKBF is a statistically consistent approach. The proposed method
outperforms the fKBR in particular for smaller training data sizes, showing that
the use of the odometry motion model is effective. The result supports our claim
that if a good probabilistic model is available, then one should incorporate it into
kernel Bayesian inference.

7 Conclusions and Future Directions

We proposed a method named the model-based kernel sum rule (Mb-KSR) for
computing forward probabilities using a probabilistic model in the framework of
kernel mean embeddings. By combining it with other basic rules such as the non-
parametric kernel sum rule and the kernel Bayes rule (KBR), one can develop
inference algorithms that incorporate available probabilistic models into nonpara-
metric kernel Bayesian inference. We specifically proposed in this paper a novel
filtering algorithm for a state space model by combining the Mb-KSR and KBR,
focusing on the setting where the transition model is available while the obser-
vation model is unknown and only state-observation examples are available. We
empirically investigated the effectiveness of the proposed approach by numerical
experiments that include the vision-based mobile robot localization problem in
robotics.

One promising future direction is to investigate applications of the proposed fil-
tering method (or more generally the proposed hybrid approach) in problems where
the evolution of states is described by (partial or ordinary) differential equations.
This is a situation common in physical scientific fields where the primal aim is to
provide model descriptions for time-evolving phenomena, such as climate science,
social science, econometrics and epidemiology. In such a problem, a discrete-time
state space model is obtained by discretization of continuous differential equations,
and the transition model p(xt+1|xt), which is probabilistic, characterizes numer-
ical uncertainties caused by discretization errors. Importantly, certain numerical
solvers of differential equations based on probabilistic numerical methods (Hennig
et al, 2015; Cockayne et al, 2019; Oates and Sullivan, 2019) provide the transition
model p(xt+1|xt) in terms of Gaussian probabilities (Schober et al, 2014; Kerst-
ing and Hennig, 2016; Schober et al, 2018; Tronarp et al, 2018). Hence, we expect
that it is possible to use a transition model obtained from such probabilistic solvers
with the Mb-KSR, and to combine a time-series model described by differential
equations with nonparametric kernel Bayesian inference.

Another future direction is to extend the proposed filtering method to the
smoothing problem, where the task is to compute the posterior probability over
state trajectories, p(x1, . . . , xT |z1, . . . , zT ). This should be possible by incorporat-
ing the the Mb-KSR into the fully-nonparametric filtering method based on ker-
nel Bayesian inference developed by Nishiyama et al (2016). An important issue
related to the smoothing problem is that of estimating the parameters of a proba-
bilistic model in hybrid kernel Bayesian inference. For instance, in the smoothing
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problem, one may also be asked to estimate the parameters in the transition model
from a given test sequence of observations. We expect that this can be done by de-
veloping an EM-like algorithm, or by using the ABC-based approach to maximum
likelihood estimation proposed by Kajihara et al (2018).

A Conditional Kernel Means for Additive Noise Models

While we focused on the additive Gaussian model with a Gaussian kernel in the main body,
we collect here other noise models and the corresponding kernels that can be used with the
Mb-KSR. The key is how to find pairs of a probability density p and a kernel k, both of which
are defined on Rm, such that the the kernel mean mp(x) :=

∫
k(x, y)p(y)dy has a closed form

expression. To this end, we briefly mention Nishiyama and Fukumizu (2016), who study certain
such pairs.

The idea of Nishiyama and Fukumizu (2016) is to find pairs of a density p and a shift-
invariant kernel k such that both p and k share the same functional form; such pairs are called
conjugate. Recall that a kernel k is shift-invariant if there exists a function κ : Rm → R such
that k(x, y) = κ(x − y) for x, y ∈ Rm; see Rasmussen and Williams (2006, Section 4.2) for
examples of such kernels. In this case the kernel mean mp can be written as the convolution
between κ and p: mp(x) = (κ ∗ p)(x) =

∫
κ(x − y)p(y)dy. Therefore one can find pairs of

k and p that admit a closed form expression of mp by examining a convolution semigroup
(i.e., a family of density functions that is closed under convolution) in which the function κ is
included. For instance, the set of Gaussian densities is closed under convolution, and therefore
the kernel mean mp = κ ∗ p of a Gaussian density p has a closed form expression (which is
again Gaussian) if κ is also Gaussian.

Examples other than those described below may be found in Table 1 of Briol et al (2019),
which collects pairs of a kernel and a density whose kernel means have closed form expressions.

A.1 Cauchy Noise Models and Rational Quadratic Kernels

Let µ ∈ Rm and Σ ∈ Rm×m be a positive definite matrix. The density function of a Cauchy
distribution on Rm (with µ and Σ being its location and scale parameters) is defined as

pCauchy(x|µ,Σ) = Cm,Σ(1 + (x− µ)>Σ−1(x− µ))−
1+m

2 , (36)

where Cm,Σ :=
Γ ((1+m)/2)

Γ (1/2)πm/2|Σ|1/2
is the normalization constant. Let f : Rm → Rm be a

known function. Then an additive Cauchy noise model, which is a conditional density function
on Y = Rm given x ∈ X = Rm, is defined as

pM (y|x) := pCauchy(y|f(x), Σ). (37)

For a positive definite matrix R ∈ Rm×m, denote by kR : Rm × Rm → R be a normalized
rational quadratic kernel (Rasmussen and Williams, 2006, Eq. 4.19) defined as

kR(x1, x2) = pCauchy(x1 − x2|0, R), x1, x2 ∈ Rm,

where pCauchy is the Cauchy density (36). This kernel can be written as a scale mixture of
Gaussian kernels with different bandwidth parameters; see Rasmussen and Williams (2006,
p. 87). Then, if R = γ2Σ, the conditional kernel mean (15) with kY := kR is given by

mY|x(y) = pCauchy(y|f(x), (1 + γ)2Σ), x, y ∈ Rm.

See Nishiyama and Fukumizu (2016, Example 4.3) for details and for a generalization to α-
stable distributions.
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A.2 Variance-Gamma Noise Models and Matérn Kernels

For λ > m/2, α > 0, µ ∈ Rm and a positive definite matrix Σ ∈ Rm×m, define a variance-
gamma distribution on Rm as

pVG(x|λ, α, µ,Σ) :=
21−λ

(2π)m/2Γ (λ)
αλ+m/2

[
(x− µ)>Σ−1(x− µ)

](λ−m/2)/2
×Kλ−m/2

(
α
[
(x− µ)>Σ−1(x− µ)

]1/2)
, x ∈ Rm,

where Kλ−m/2 is the modified Bessel function of third kind with index λ−m/2; this is obtained
as a specific case of Hammerstein (2010, Eq. 2.4, p.74) with the asymmetry parameter β = 0.
Note that for λ = (m+ 1)/2 and α = 1, the variance gamma distribution reduces to a Laplace
distribution.

The form of the variance-gamma distributions is the same as that of Matérn kernels
(Matèrn, 1986). In fact, the Matérn kernel described in Rasmussen and Williams (2006,
Eq. 4.14) is, up to constant, given by

k(x1, x2) = pVG(x1 − x2|ν +m/2,
√

2ν, 0, Σ), x1, x2 ∈ Rm, (38)

where ν > 0; ν + m/2 is the order of differentiability of functions in the associated RKHS
(which is norm-equivalent to a Sobolev space). Note also that the Laplace kernel is the Matérn
kernel with ν = 1/2.

For a known function f : Rm → Rm, we define an additive variance-gamma noise model
as

pM (y|x) := pVG(y|λ,
√

2ν, f(x), Σ).

Then with the Matérn kernel (38), the conditional kernel mean (15) is given by

mY|x(y) = pVG(y|λ+ ν +m/2,
√

2ν, f(x), Σ), x, y ∈ Rm.

See Nishiyama and Fukumizu (2016, Example 4.6) for details.

A.3 Mixture Noise Models

For a known function f : Rm → Rm, consider a probabilistic model

pM (y|x) = pmix(y − f(x)), x, y ∈ Rm, (39)

where pmix is a mixture density

pmix(y) =

L∑
i=1

ωipi(y), y ∈ Rm,

with ω1, . . . , ωL ≥ 0 are mixing coefficients such that
∑L
i=1 ωi = 1 and p1, . . . , pL are prob-

ability density functions on Rm. For a kernel kY on Rm, the conditional kernel mean of the
mixture model (39) is then given by

mY|x(y) =

∫
kY (·, y)pmix(y − f(x))dy =

L∑
i=1

ωi

∫
kY (·, y)pi(y − f(x))dy.

Therefore, if the terms
∫
kY (·, y)pi(y−f(x))dy admit closed form expressions (e.g., when both

kY and p1, . . . , pn are Gaussian), then the conditional kernel mean is also given in closed form.
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B Proof of Proposition 1

Proof We can expand the squared error in the RKHS HY as

‖m̂QY −mQY ‖
2
HY

=

∥∥∥∥∥∑̀
i=1

γimY|X̃i
−mQY

∥∥∥∥∥
2

HY

=
∑̀
i,j=1

γiγj

〈
mY|X̃i

,mY|X̃j

〉
HY
− 2

∑̀
i=1

γi

〈
mY|X̃i

,mQY

〉
HY

+
∥∥mQY ∥∥2HY

=
∑̀
i,j=1

γiγj

∫ ∫
kY (y, ỹ)pM (y|X̃i)pM (ỹ|X̃j)dydỹ

−2
∑̀
i=1

γi

∫ (∫ ∫
kY (y, ỹ)pM (y|X̃i)pM (ỹ|x)dydỹ

)
π(x)dx

+

∫ ∫ (∫ ∫
kY (y, ỹ)pM (y|x)pM (ỹ|x̃)dydỹ

)
π(x)π(x̃)dxdx̃

=
∑̀
i,j=1

γiγjθ(X̃i, X̃j)− 2
∑̀
i=1

γi

∫
θ(X̃i, x)π(x)dx+

∫ ∫
θ(x, x̃)π(x)π(x̃)dxdx̃

= 〈(m̂Π −mΠ)⊗ (m̂Π −mΠ), θ〉HX⊗HX
≤ ‖m̂Π −mΠ‖2HX ‖θ‖HX⊗HX ,

where the fifth equality follows from the assumption that θ ∈ HX ⊗HX . The assertion then
follows from ||m̂Π −mΠ ||HX = Op(`−α) and ‖θ‖HX⊗HX <∞.

Acknowledgements We would like to thank the anonymous reviewers for their comments
that helped us improve the clarity and the quality of the paper. A part of this work was
conducted when YN and MK belonged to the Institute of Statistical Mathematics, Tokyo.

References

Aronszajn N (1950) Theory of reproducing kernels. Transactions of the American Mathematical
Society, 68(3) pp 337–404

Boots B, Gordon G, Gretton A (2013) Hilbert Space Embeddings of Predictive State Repre-
sentations. In: The Conference on Uncertainty in Artificial Intelligence (UAI), pp 92–101

Briol F, Oates CJ, Girolami M, Osborne MA, Sejdinovic D (2019) Probabilistic integration:
A role in statistical computation? Statistical Science (to appear)

Caponnetto A, Vito ED (2007) Optimal rates for regularized least-squares algorithm. Found
Comput Math J 7(4):331–368

Chen Y, Welling M, Smola A (2010) Super-samples from kernel herding. In: Proceedings of the
Twenty-Sixth Conference on Uncertainty in Artificial Intelligence, AUAI Press, pp 109–116

Cockayne J, Oates C, Sullivan T, Girolami M (2019) Bayesian Probabilistic Numerical Meth-
ods. SIAM Review, to appear

Cortes C, Mohri M, Weston J (2005) A General Regression Technique for Learning Transduc-
tions. In: International Conference on Machine Learning (ICML), pp 153–160

Deisenroth M, Turner R, Huber M, Hanebeck U, Rasmussen C (2012) Robust Filtering and
Smoothing with Gaussian Processes. IEEE Transactions on Automatic Control

Deisenroth MP, Huber MF, Hanebeck UD (2009) Analytic Moment-based Gaussian Process
Filtering. In: International Conference on Machine Learning (ICML), pp 225–232

Doucet A, Johansen AM (2011) A tutorial on particle filtering and smoothing: Fifteen years
later. In: Crisan D, Rozovskii B (eds) The Oxford Handbook of Nonlinear Filtering, Oxford
University Press, pp 656–704



34 Yu Nishiyama et al.

Doucet A, Freitas ND, Gordon NJ (eds) (2001) Sequential Monte Carlo Methods in Practice.
Springer

Evensen G (2009) Data Assimilation: The Ensemble Kalman Filter. Springer
Fukumizu K, Bach FR, Jordan MI (2004) Dimensionality Reduction for Supervised Learning

with Reproducing Kernel Hilbert Spaces. Journal of Machine Learning Research 5:73–99
Fukumizu K, Song L, Gretton A (2013) Kernel Bayes’ Rule: Bayesian Inference with Positive

Definite Kernels. Journal of Machine Learning Research pp 3753–3783
Gretton A, Bousquet O, Smola A, Schölkopf B (2005) Measuring statistical dependence with

hilbert-schmidt norms. In: Jain S, Simon HU, Tomita E (eds) Algorithmic Learning Theory,
Springer-Verlag, Berlin/Heidelberg, Lecture Notes in Computer Science, vol 3734, pp 63–77

Gretton A, Borgwardt KM, Rasch MJ, Schölkopf B, Smola AJ (2012) A Kernel Two-Sample
Test. Journal of Machine Learning Research 13:723–773
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