Physics in Medicine & Biology % IPEM e nvesiene

PAPER « OPEN ACCESS

. ey . .y Recent citations
Analytical probabilistic modeling for radiation -
- Mark Bangert and Peter Ziegenhein

therapy treatment planning - Collsion risk mitiqation of Varian

TrueBeam linear accelerator with

. . . . supplemental live-view cameras
To cite this article: Mark Bangert et al 2013 Phys. Med. Biol. 58 5401 Steven M. Nguyen et al

- Robust Proton Treatment Planning:

Physical and Biological Optimization
Jan Unkelbach and Harald Paganetti

View the article online for updates and enhancements.

CZd MONTE CARLO. UNLIMITED.

Monte Carlo Secondary Dose Check
and Plan QA with SciMoCa™

This content was downloaded from IP address 192.124.26.251 on 17/10/2018 at 09:31


https://doi.org/10.1088/0031-9155/58/16/5401
http://dx.doi.org/10.1007/978-3-662-54801-1_24
http://dx.doi.org/10.1016/j.prro.2018.07.001
http://dx.doi.org/10.1016/j.prro.2018.07.001
http://dx.doi.org/10.1016/j.prro.2018.07.001
http://dx.doi.org/10.1016/j.semradonc.2017.11.005
http://dx.doi.org/10.1016/j.semradonc.2017.11.005
http://oas.iop.org/5c/iopscience.iop.org/263139761/Middle/IOPP/IOPs-Mid-PMB-pdf/IOPs-Mid-PMB-pdf.jpg/1?

OPEN ACCESS

TIOP PUBLISHING PHYSICS IN MEDICINE AND BIOLOGY

Phys. Med. Biol. 58 (2013) 5401-5419 doi:10.1088/0031-9155/58/16/5401

Analytical probabilistic modeling for radiation
therapy treatment planning

Mark Bangertl, Philipp Hennig2 and Uwe Oelfke'

! Department of Medical Physics in Radiation Oncology, German Cancer Research
Center—DKFZ, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
2 Max Planck Institute for Intelligent Systems, Spemannstrafe 38, D-72076 Tiibingen, Germany

E-mail: markbangert@gmail.com

Received 6 February 2013, in final form 1 July 2013
Published 23 July 2013
Online at stacks.iop.org/PMB/58/5401

Abstract

This paper introduces the concept of analytical probabilistic modeling (APM)
to quantify uncertainties in quality indicators of radiation therapy treatment
plans. Assuming Gaussian probability densities over the input parameters of the
treatment plan quality indicators, APM enables the calculation of the moments
of the induced probability density over the treatment plan quality indicators
by analytical integration. This paper focuses on analytical probabilistic dose
calculation algorithms and the implications of APM regarding treatment
planning. We derive closed-form expressions for the expectation value and the
(co)variance of (1) intensity-modulated photon and proton dose distributions
based on a pencil beam algorithm and (2) the standard quadratic objective
function used in inverse planning. Complex correlation models of high
dimensional uncertain input parameters and the different nature of random
and systematic uncertainties in fractionated radiation therapy are explicitly
incorporated into APM. APM variance calculations on phantom data sets show
that the correlation assumptions and the difference of random and systematic
uncertainties of the input parameters have a crucial impact on the uncertainty of
the resulting dose. The derivations regarding the quadratic objective function
show that APM has the potential to enable robust planning at almost the
same computational cost like conventional inverse planning after a single
probabilistic dose calculation. Beneficial applications of APM in the context
of radiation therapy treatment planning are feasible.
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1. Introduction

Quantitative science requires an adequate analysis of uncertainties. Both experimental and
theoretical data are only meaningful in combination with the associated error bars.

In radiation therapy, uncertainties regarding treatment plan quality indicators may
originate from setup uncertainties, range uncertainties, intrafractional motion, and
interfractional motion, among others. Goitein (1985) was one of the first to explicitly discuss
this issue in a 1985 paper, where he quantified the variability of a dose distribution by simulating
three different dose calculation scenarios.

Despite the ever increasing complexity of dose distributions formed by multiple intensity-
modulated beams, current clinical practice does not include a patient-specific uncertainty
analysis of treatment plan quality indicators (Bortfeld 2006). Instead, uncertainties are
accounted for with standardized margin concepts focusing on tumor coverage (van Herk
et al 2004).

Approaches to quantify the uncertainties of treatment plan quality indicators for individual
patients, such as worst case simulations and variance calculations based on dose blurring or
sampling, remain computationally challenging or suffer from inherent limitations. Worst case
simulations (Goitein 1985) provide only point estimates of a probability density and the worst
case in the space of the input parameters does not necessarily correspond to the worst case
in the space of the treatment plan quality indicators. Dose blurring (van Herk ef al 2002,
Baum ez al 2004) may conceal the true variability of treatment plan quality indicators (Ploquin
et al 20006). Reliable variance estimates usually require time consuming sampling processes,
i.e., repeated simulations of different scenarios. The number of samples ranges from 10*, as
applied by Maleike et al (2006) who consider uncorrelated motion of individual voxels of the
patient anatomy, to 102, as applied by Sobotta et al (2012) who consider rigid shifts of the
patient anatomy and use Gaussian Process regression to decrease the number of samples.

Incorporating uncertainties in more than three translational parameters, accommodating
arbitrary correlation models of the uncertainties in these parameters, and accounting for the
different nature of random and systematic uncertainties in the context of fractionated radiation
therapy additionally compromises the efficiency and validity of these approaches.

Furthermore, it is impossible to efficiently obtain information about the uncertainty
induced by different intensity-modulations, i.e., different bixel weights, with dose blurring,
sampling, and worst case simulations. Consequently, approaches which incorporate uncertainty
information into the planning process in order to obtain robust treatment plans require repeated
sampling processes or worst case simulations for the optimization (Unkelbach et al 2009,
Unkelbach and Oelfke 2004, Pflugfelder e al 2008, Fredriksson et al 2011, Liu et al 2012).

We introduce the concept of analytical probabilistic modeling (APM) to quantify
uncertainties in radiation therapy treatment planning. Based on explicit assumptions about
the probability density of the most important input parameters that are subject to uncertainty,
we show that it is possible to derive closed-form expressions for the expectation value and the
(co)variance of treatment plan quality indicators. APM is a bottom-up approach propagating the
probability density over the underlying parameters into a probability density over the resulting
quality indicators by analytical integration. It eliminates the need for sampling entirely, while
being generally applicable to a wide range of problems in radiation therapy treatment planning.
It accommodates complex correlation models of high dimensional uncertain input parameters,
accounts for the different nature of random and systematic uncertainties in fractionated
radiation therapy, and generalizes to arbitrary intensity-modulations.

In this paper, we focus on analytical probabilistic dose calculations incorporating range
and setup uncertainties for photons and protons. We derive analytical expressions for
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the expectation value and the (co)variance of the resulting dose distributions based on a
conventional pencil beam algorithm (Hong et al 1999) and show how APM may accelerate
robust optimization in combination with the standard quadratic objective function used in
inverse planning (Oelfke and Bortfeld 2001).

The overarching idea of APM is introduced in section 2, the analytical probabilistic dose
calculation and its foundation are laid out in section 3, the derivations regarding the quadratic
objective function are presented in section 4, and the implications of APM are discussed
in section 5 where we also elaborate on the resulting novel possibilities in the context of
probabilistic planning.

2. Analytical probabilistic modeling

We consider a treatment plan quality indicator /(X ) as a function of uncertain input parameters
X, e.g. the dose distribution as a function of the patient position. If the uncertainty in the input
parameters X is described with a probability density p(X), the mth moment of the probability
density over I(X) is given by

E[I(X)m]=/dXP(X) 1(X)™. (D

In its most general form, this integral has to be solved with Monte Carlo integration. However,
parameterizing the uncertainties in X by a multivariate normal distribution A'(X; X, Xx) with
mean vector X and covariance matrix Ty and replacing the treatment plan quality indicator
1(X) with a functional approximation [(X) that can be integrated analytically against Gaussian
densities renders the following integral analytically tractable:

E[I(X)’”]%E[IA(X)'"]:/dXN(X;)_(, =x) 1™, 2)

Hence, it is possible to compute the mean and (co)variance of /(X) in closed form. The
challenge is to find descriptions for A/ (X; X, =x)and i (X) which allow for high approximation
quality and low computational cost at the same time.

Modeling uncertainties with Gaussian densities is a widely accepted practice in radiation
therapy even though Gaussian densities are not necessarily the best approximation of reality.
We admit to use the Gaussian family mainly out of algebraic convenience as marginalization
and conditioning, exercised repeatedly in section 3, correspond to simple linear algebraic
computations. If required, more complex probability densities can be constructed as a weighted
sum of Gaussians.

In general, APM may be applicable to various treatment plan quality indicators and
sources of uncertainty. In this paper we focus on analytical probabilistic proton and photon
dose calculations under the influence of range and setup uncertainties and the implications for
robust treatment planning. Alternative applications of APM are outlined in section 5.

3. Analytical probabilistic dose calculation

3.1. Nominal dose calculation

Let V be the number of voxels i and B be the number of bixels j. Then, the nominal dose
d € RY can be described as a linear function of the dose influence D € RV *8

d = Dw or di = Z ijij (3)
Jj
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Figure 1. (a) Depth dose profile of a 147 MeV proton beam according to Bortfeld (1997) (crosses)
and the suggested analytical approximation (solid) composed by a weighted superposition of ten
Gaussians (dashed). (b) Measured lateral profile for a 1 cm x 1 cm 6 MeV photon beam (crosses)
at 50 mm depth and the suggested analytical approximation (solid) with two error functions (solid).

with the bixel weight vector w € R5. For our derivations, we postulate that D;; factorizes into

a depth part Z;; and a lateral part L;;, which in turn factorizes in x- and y-direction:

d,' = Z ijijZij = Z ijf]ijZ,] (4)
J J

3.1.1. Protons. For a proton pencil beam, the lateral dose profile L can be parameterized
with a Gaussian (Gottschalk et al 1993, Soukup et al 2005). Consequently, it can be integrated
analytically against Gaussian probability densities. The Bragg curve describing the depth dose
profile Z, in contrast, is a function of general nonlinear form (Bortfeld 1997) that cannot be
integrated analytically against Gaussian probability densities. Hence, we suggest to model
Z with a weighted superposition of multiple Gaussians, as (1) every Lipschitz-continuous
function can be approximated arbitrarily well with a weighted sum of Gaussians (Scholkopf
and Smola 2001) and (2) this particular choice for Z makes the subsequent integrals analytical.
We found that ten Gaussians, each with a distinct weight w j;, mean ,uj.k, and width §j yield
very good approximations for proton depth dose curves with ranges up to R7** = 350 mm,
as exemplary shown in figure 1(a) for one selected range. The proton dose d!’ * can then be
computed according to

X2 W V) 25— 2
7(x,j ) 7(.\,_, ;) Gjj ”/k>

1 2 1 2 [OF)% 2
dp+ — wj— e 2 e 2% _ Ik e 2% (5)
l XJ: / 271)»% / 2”)‘1'2,‘ Xk: 2 8?,{

where u’;/ ¥ denote the lateral positions of bixel j and x/y;; are the lateral coordinates of voxel
i projected to the beam orientation of bixel j. The width of the lateral Gaussian proton beam
profile A;; is a function of the radiological depth z;;. For our simulations we calculate A;;(z;;)
according to Gottschalk et al (1993) assuming initial beam widths of the proton beam ranging
from 2.3 to 5.2 mm for beam energies from 230 to 70 MeV (Safai et al 2012). The described
proton pencil beam algorithm corresponds to the implementation of Hong et al (1999) using
a custom parameterization for Z.

3.1.2. Photons. For photons we use a sum of two error functions for the lateral parts L*/” and
an exponential function for the depth part Z to describe the dose d!, as both error functions
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and exponential functions can be integrated analytically against Gaussians:

Z W f dM] 2. 7 / dl‘l'j 2)\_;‘/ . A e*CZ,‘j
J
aj /27m2 /2nx2
Y
J

N ; xij = bj;
er ﬁ)\q] er ﬁ)\'l]
Yij — aIYj Yij — bf Cens
fl —— ~Ae 6
() - ()| o ?

x/yij denote the lateral coordinates of voxel i projected to the beam orientation of bixel j.
The integration limits ax/ ¥ and b/ are given by the projection of the aperture outline onto
the geometric depth z7; J © of voxel i from the virtual photon source of bixel j. A;; is a function
to the radiological depth z;;. We found that a linear model A;;(z;;) = 7 - z;; + ¢ is a good
approximation to account for the blur-out of the photon penumbra. t and ¢ are found with a
least squares fit of measured lateral dose profiles; A and c¢ are found with a least squares fit
of measured depth dose profiles. Comparisons of the analytical approximations to measured

data for L*”” and Z are shown in figures 1(b) and 3(b), respectively.

(x,j w ) (nj /L')

| =

| =

3.2. Uncertainty model

The calculated nominal dose d does not correspond to the dose that is actually delivered during
the treatment because of uncertainties regarding the input parameters of the dose calculation
algorithm and uncertainties regarding the actual treatment scenario (Lomax 2008a, 2008b).
Among the most important sources of uncertainty are setup uncertainties, i.e., lateral offsets
A*, A” of the patient relative to the beam, and—for particles—range uncertainties, i.e., offsets
A? of the calculated radiological depths z. It is possible to incorporate these offsets into the
analytical expressions for the proton and photon dose:

dip+ — dip+(Ax, Ay’ AZ)

X AN2 v AYY2 7: z z)2
B (XU ”l,f+A/') _ (,\,] ;4]+Af) ] _ (q, M/A+A - )

1 - !
= Z wj————¢ 2 e 25 . Z Dk e w7 7
; / 271)% / 271)»12]. 27 (sz.k

d’ = d! (A%, A, AZ)

x (x‘j—u +A ‘)2 ; d B Oij u:;JrA';)z
_ Z / T / i M, 27 A eCGitA) (8)
2nA2 /27'[%2

Note that we assume Ax e RB, A € R?, and A® € R which corresponds to one offset in
x,y, and z per bixel j. Alternative approaches are feasible within our framework, e.g. a voxel
and bixel dependent range uncertainty A? ;> but beyond the scope of this paper.

The parameters A7, AV;, and Aj1 in equations (7) and (8) are subject to uncertainty. For
our analytical probabilistic model, we assume that the underlying probability distribution
p(A*, A, A%) of the offsets A", A”, and A® corresponds to a product of multivariate normal
distributions with the mean zero:

p(A*, A, A%) = p(A") p(A”) p(AY)
=N (A% 0, T N(AY; 0, =) V(A% 0, T9). ©))
With the covariance matrices ¥ € RBE*E, 5V ¢ RB*B and £° € RE*8 it is possible to
explicitly specify the correlation between different uncertainties. E.g. setup uncertainties in
A of bixels belonging to the same beam orientation might be considered perfectly correlated,
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as they are applied almost simultaneously; range uncertainties A§. of bixels belonging to the
same beam and impinging at the same lateral position but with different energies may be
considered perfectly correlated, as these bixels penetrate the same tissue on one ray. In these
simple scenarios, the matrices X*, X7, and X? exhibit block structure. With the standard
deviation o, of the uncertainty in bixel a/b we have X, = 0,05 if the uncertainties in
bixels a and b are perfectly correlated and X, = 0 if the uncertainties in bixels a and b are
uncorrelated. More sophisticated correlation assumptions, such as distinct motion patterns of
the patient, are feasible within our framework but not discussed in this paper.

In equation (9) we implicitly postulate that the uncertainties A, AY, and A® are
independent from one another. This will allow for a clear structure of the following derivations
but it is not a prerequisite for our calculations to remain analytically tractable.

The probability density p(A*, A”, A*) induces a probability density p(d) over the
resulting dose distribution according to equations (7) and (8). p(d) will be non-Gaussian
due to the sum over all bixels j and the nonlinear form of the lateral and depth dependent
components of the dose. Our functional parameterizations of d”" and d”, however, allow for
the analytical calculation of all moments of the dose distribution, in particular of its expectation
value E[d] and covariance matrix E[dd | — E[d|E[d]".

Furthermore, the components of the lateral parts L*/” and the depth part Z of the mean
and (co)variance can be calculated separately as we postulated that the probability density of
the considered uncertainties and the dose calculation factorize in x, y, and z and A*, AY, and
A%, respectively.

The expectation value of the dose is given by

Eld;] = /dAx dAY dA* p(A") p(AY)p(AY) di(A*, AV, AY)

/ dA*dAY dA? p(A")p(AY) p(A?) Zw,ijLl]Z

= w; {/dA" (AYL, } {/dA»"p(A-")L{j} {fdAzp(Az)Zij}

= Z w;L5L) 2 (10)

L 'J

For the covariance of the dose, which is defined as

cov(d;, d;) = E[did)] — E[d;]E[d/], (11)
and the variance of the dose var(d;) = cov(d;, d;) we require the additional calculation of the
mixed terms E[d;d;] according to

Eldid] = /dA)‘ dA”dA® p(A*)p(A")p(A%) di(A*, A, A)d) (A", AV, A7)
/ dA*dAY dA® p(A")p(A”)p(AT) Z w;LL 7 {Z mellemZZm}

= /dAx dAY dA® p(A*)p(A)p(AY) D wiw, L5L, L L ZiiZi

Im™ij
jm

= ijwm {fdAxp(Ax)ijLj‘m} {fdAyp(Ay)L’ lm} {/dAzp(Az)ZijZIm}

= E w]wm zjlm tjlm“iﬂm' (12)
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Hence, the calculation of the first moment of the probability density of the dose distribution
is reduced to the calculation of Efj/ Y and Z; ;3 the calculation of the second moment is reduced

to the calculation of the matrix elements TZ/lfn and E;j;,. In the following sections 3.3 and
3.4 we derive analytical expressions for these quantities separately for protons and photons.
When following our derivations, it is worthwhile to keep in mind that the indices i, [ always
refer to voxels, j, m always refer to bixels, and k, n always refer to the components of the ten

Gaussians parameterizing the proton depth dose profile Z.

3.3. Analytical probabilistic proton dose calculation

3.3.1. Setup uncertainties. In order to calculate the expectation value of the proton dose
incorporating setup uncertainties in x-direction® we use appendix A and appendix B to solve

£ = / dA* p(AY) L

I A G e
— 335 p)
— / dA)]c e Z)Z/j e le.j
X 2
[2m 55, [27 s
(xij—n)? o
1 - 2(/{/.2,+>.:]v’€‘) x 1 - AP
= 2— e Uit dAJ ﬁ e 222 (13)
x o
27 (A2 L+ X j)

=1
X7, denotes the variance of the setup uncertainty for bixels j. i and 6 can be computed
according to appendix B but their exact values are mute at this point as the integration over
A% yields 1.
To compute the covariance we define

Xii M)f At
xijlm = (xllli)’ ”‘)jcm = (/J//i)’ A;m = (Ai>a
2
Al (AOU o ) B — @” gf’”) (14)
Im j

ilem = /dAxp(Ax) ij ;(m

1
) ——e
/ 2
2nkij

7%A17(2x)—le

and solve

X AX)2
Gy
2.2,
ij

Ot AR)?
2

2 im

1
/ dA* p(AF e
\/ ZJTA'IZIn

S

dAY ————

/ 2 /127
1

27 /|Aijlm|

1 Lax T yjmy—1 Ax
dA* —e_iA/m (/)7 A,
f M on |z im]

1

' 27 /|Aijlm|

1
27 JIATIm s

e~ % ijim— I+ Ay )T ATy i — W, A%

e~ 1 (ijim — W, AT, YT AT (X i — W, A%

1 C \T (Al jmy—1 )
e*j(xijlm*ﬂ'}m) (A3 (xi,'lm*ﬂ},,,)‘ (15)

3 The corresponding derivations for the y-direction are entirely analogous.
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Figure 2. (a) Illustration of the moment calculations for an artificial example of a lateral proton
dose profile (blue) created by superimposing eight Gaussian components of varying weight, mean,
and width (dashed blue). Assuming a Gaussian uncertainty of standard deviation 0 = 2mm
which is perfectly correlated for all component means, we calculate the mean dose (red) and the
dose standard deviation (green). Values calculated by sampling are shown as crosses, analytically
calculated values as solid lines. The analytical calculation is exact, so the two kinds of calculations
are identical up to sampling error. The calculation at one specific point x* indicated by a dashed
black line is additionally illustrated on the y-axis: inputs x sampled from the Gaussian distribution
N (x; x*, 6%) yield samples from the lateral dose profile represented by the gray histogram. The
mean and the standard deviation of this distribution can be calculated analytically; together they can
be used to construct a Gaussian approximation (black) of the true probability distribution indicated
by the histogram. (b) Similar illustration of the moment calculations for an artificial example of a
proton depth dose profile (blue) created by 11 pencil beams of varying weight (dashed blue). We
assume a Gaussian uncertainty of the calculated range with standard deviation & = 3% which is
perfectly correlated for all pencil beams.
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Figure 3. (a) Illustration of the moment calculations for an artificial example of a lateral photon
dose profile (blue) created by eight bixels of varying weight and width (dashed blue). Assuming
a Gaussian setup uncertainty of standard deviation o = 2mm which is perfectly correlated for
all bixels, we calculate the mean dose (red) and the dose standard deviation (green). Values
calculated by sampling are shown as crosses, analytically calculated values as solid lines. Again,
the calculation at one specific point x* indicated by a dashed black line is additionally illustrated
on the y-axis. Further explanation can be found in the caption of figure 2. (b) Similar illustration of
the moment calculations for a photon depth dose profile (solid blue). For comparison a measured
depth dose profile including the build up effect is also shown (blue circles). We assume a Gaussian
uncertainty of the radiological depth with standard deviation ¢ = 3 mm.
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The matrix elements Y;j;, correspond to a two-dimensional normal distribution whose
covariance matrix is given by AY™ 4+ ¥J" Figure 2(a) shows results of the analytical
calculations in comparison to sampled data for a random lateral proton dose profile.

3.3.2. Range uncertainties. In order to calculate the expectation value of the proton dose
incorporating range uncertainties we have to solve

' B Gijnyrad)?
Zij= /dAZp(AZ) I
k /27‘[8]2-k
_ Z e 2(52A+>: D (16)

(82 +Ef)

To compute the covariance we define

R Zij z — /-’ij AL — A;
Zijim (Zlm ) s "ijmn (an> > jm <A§;1 s

2 z z
o= (ajk : > == (Ejj 2jm> (17)
z z
0 8’7‘1"1 Em] Emm
and perform analogous derivations as in equations (15) to obtain
Gy pta,)? Com—n gy
C z Wi T Wy - mean )
Eijim = | dA*p(A%) ) K e Pk o7
2 N
kn 27[81’1{ mn
Wk Wmp
= fdAZ p(AY) E —
2T |®jkmn|
. e_%(z'ﬂm /kmn+A/m)T(®jknm)7l(Zijlm jknm+A//u)
— wiw /dAz ; IA/,”(E!’”) lAjm
- z JkEmn im =
kn ! Zﬂm
;e*%(ﬁj!m ,Am,,JrA )T(O/kmn) l(z,,Im /kmn+Aj'11)
21 |@jkmn|
— [OYR0) l e_%(zijlm /kn1n)T(®jkmn+E/m) ](Z:/Im ]kmn)
- ; jkYmn )

27 /|®jkmn+2jm|

(18)

For proton range uncertainties, the matrix elements Y;j, correspond to a quadratic
form over two-dimensional normal distributions whose covariance matrices are given by
@Jkmn 1 53jm Figure 2(b) shows results of the analytical calculations in comparison to sampled
data for a random proton depth dose profile.

The histograms of the sampled dose values around x* show that the induced probability
density over the dose p(d(x*)) is usually of general, non-Gaussian form, as explained in
section 3.2. Due to the perfect correlation of the uncertainties of the underlying pencil beams,
the dose maximum and minimum around x* are accumulation points in p(d(x*)).

3.4. Analytical probabilistic photon dose calculation

3.4.1. Setup uncertainties. In order to calculate the expectation value of the photon dose
incorporating setup uncertainties we have to solve
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du® G a2
/.ijz/dA)‘p(A") Lf,:/dN (AX)/ — ey
' /2nk2
(-v,'-fu’;)z
/ dM/ e_zmj?ﬁz—;j)' (19)

21 (A2 + 2%

To compute the covariance we apply the vector notation introduced in equation (14),
define
a)i(' X b;( i
@iy = (a;c] ) iilm = (b;]) (20)

Yijim = f dA* p(A") L5,

and solve

x; i~ A%)2 . Y ax 2
d/'l“ Gy “/2 J by, de _ O —Hm+Am)
£, 52
= [oapar [ ﬁL, RS-

bfj’m ¥ X 1 IAYT(Z//YX)—]A){
dut, [ dAY, ———e in
2/ [z

ijim
1

27| Aliim|

bt d [,L)jc,m
e 27 IAD £ 2]

For photon setup uncertainties, the matrix element Y, corresponds to an integral over
a bivariate normal distribution which can be evaluated numerically (Genz 2004). Figure 3(a)
shows results of the analytical calculations in comparison to sampled data for a random lateral
photon profile. Again, we see that the induced probability density p(d(x*)) around x* is of
general, non-Gaussian form.

o 3 =R, AT (A (e, AT,

e” 1 (xszm—ll«jfm)T (AHIm 4 5 my=1 ijim =) . (1)

3.4.2. Radiological depth uncertainties. In order to calculate the expectation value of
the photon dose incorporating uncertainties in the calculated radiological depth z;; we have
to solve

az?

J

/dA; ;
Z
[2m X3
22 Z AZ Z 42 Z )2 z ...
1 7A/. +2(‘E/./.Aj+(52“.) —(CE/./) +2L‘):/./.“j
=A / dAT ————¢
J
(2w X%,
T JJ

232,
IAC_CZU-’—%CZE;I'/‘dA; 1 e
|27 25,

JJ

z 2 )2
AS4cXs
(Ajtem;p

= (22)
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To compute the covariance we apply the vector notation introduced in equation (17),
define the column vector ¢ = (c, ¢), and solve

=
=

f dAZp(Az)AZ e—C(Zij"rA‘;.) eiC(ZI'"JrArzn)

ijlm =
1 z im=1 Az z
— A2e¢zim | JAZ e TALET AL, cTA,
Jjm 2 /|ij|
— A2 e—cTz,-j/,,, . e%cTc
T jm=1 Az - B T Az
. f e L A, hera,) ), | AT,
Jm 2 i
T/ |Z./m|

— A2 e—cTz;//m .exc'e

1 L AZT (o jm—! z 1 2 \T z
/dA;m —e_iA/m():j —DHA3, .e_f(c+Ajm) (c+A3,

= AT L gaeTe L g ae (BT DT
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In the last step we have used that (A~! +1)~! = A(A +1)~". For photons, the matrix element
Eijim 1s given by the product of Z;; and Z;,, multiplied with a correction factor e Zin that
depends only on the covariance of the uncertainties of the bixels j and m. Figure 3(b) shows
results of the analytical calculations in comparison to sampled data for a photon depth dose
profile. For photons, uncertainties in the calculated radiological depth are negligible in the
clinic yet still we wanted to include our derivations to demonstrate that our approach is
flexible enough to accommodate any function that can be integrated against a multivariate
normal distribution. In the remainder of this paper we do not account for uncertainties in the
radiological depth for photons.

3.5. Preparation and execution errors

So far we have only considered one random error A; which corresponds to a radiation
treatment delivered in one fraction. In radiation therapy, however, we typically have multiple
fractions with a systematic (preparation) error Ajys which is the same for all fractions
f =1,...,F and a random (execution) error A;?;?d which is different for every fraction
f (van Herk er al 2002). With APM it is possible to account for the different nature of
preparation and execution errors. For demonstration purposes we consider a lateral proton
dose profile delivered in F fractions. Incorporating fractionation effects, the factor ij/ ? from
equation (4) becomes
F 1 i
L; i = ——¢€ iy (24)

; [2mAF;

where we have dropped the superscript x. With the two probability distributions over A7 and
Ar;md
if

c— i+ ASYS L arand )2
7(/\” }L/+Aj +Ajf )

p(AY") = N (AY; 0, £%) (25)

p(AF™) = N(A}™; 0, 25) (26)
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we have to calculate £;; for the expectation value of equation (24) according to

Lij = f dA™p(A™) f AT p(AFM)L;
(,n/*;t/)z
_ F e 5D 27)
2 R S
\/2n(x,.j +3F 4+ 39

To calculate the second moment we have to solve

T = [ 48P pa) [ AT p(ATLL,

fdASySp(ASyS)/dA?nd p(Arfand)

. ASYS 4 arand 2
_u,, nj+AT+ATRD sys

! 1 @ —tm A+ ALd)2

2.2, — Cammrrt 87 S

. ——e¢ i ——e¢ im . (28)

" 2 2
f=1 g=1 27‘[)»[.]. =Ty

sys Arand

ijlm :
im> Bifmg and AY"" the matrix element

With the standard variable definitions for x; i, m> A
Y jim can be expressed as a sum of 2D Gaussians:

F F
Yijin = D) / dA™p(A™) / dA™ p(AT™)

f=1 g=1
) ;e—%<xu-rm—ﬂ/-m+A375+A;?f“£g>T<A"/"'">*‘ ijim— b ju+ A+ AT )

2T /|Aijlm|

F F
2. 1
oS 2w IATI 4 SR 4 S|

— L =) T (AT IR L 5ImS Y= (e

. e 2 Wijim jm ijlm jm) | (29)

JmS is given by

s N
= N s |
2:m J Emm
For the definition /"% however, we have to distinguish two different cases. While systematic
errors are also correlated over all fractions, random errors are only correlated within the same

fraction:
. »R oR
Siow = ( e 2;;") forf=g
Bk — e 31)

A R0 '
zéﬁé’irr:(o” ER) for f # ¢

Consequently we have

Yijim = F o 3 i =) T (A B 2 i)
27[\/|Aijlm + 2({(’)’;5 + Eij|
4 F(F—1) e_%(xijlm_ll'jm)T(Aiilm+21{$ﬁrr+2jms)71(xijlm_”'jm)'

271\/ |Aim 4 SR 4 smS|
(32)
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Figure 4. Nominal dose (solid black) and expectation value (solid gray) of a weighted superposition
of ten lateral Gaussian proton beam profiles (dashed black) as well as the standard deviation based
on delivery in 1 (red), 10 (green), and 30 (blue) fractions. We assume perfect correlation of the
offsets A; of all components and (a) 2 mm standard deviation for the random and systematic
error and (b) 3 mm standard deviation for the random error and 1 mm standard deviation for the
systematic error.

Equivalent derivations are possible in two and three dimensions for both protons and
photons. Figure 4 exemplary shows results for a varying number of fractions F for two
different combinations of random and systematic errors.

3.6. Results

We implemented the analytical probabilistic dose calculation for two-dimensional test cases in
MATLAB*. Figure 5 shows the nominal dose, the expectation value, and standard deviations
assuming different fractionation schemes for a photon and proton treatment plan for a C-
shaped target volume surrounding an organ at risk. Our calculations assume a systematic setup
error of 1 mm and a random setup error of 2 mm for both protons and photons. A 3% range
uncertainty (Yang et al 2012) is only considered for protons. Setup uncertainties of bixels
impinging from the same beam orientation and range uncertainties of bixels impinging from
same beam orientation at the same lateral position are considered to be perfectly correlated;
other uncertainties are considered to be uncorrelated. The computation time is 75 s for the
standard deviation of the proton plan (~200 bixels, ~2000 voxels) and 20 s for the standard
deviation of the photon plan (~100 bixels, ~10 000 voxels).

The prescribed target dose is 60 Gy. For delivery in one fraction, we observe standard
deviations of up to 8 Gy at the end of the range of the proton beam. For photons, we observe
standard deviations of up to 9 Gy right after entering the patient for beams that penetrate a lot
of healthy tissue before reaching the target volume. For delivery in 30 fractions, the standard
deviation of the photon plan is significantly reduced because of the averaging out of the effects
induced by random setup errors. For protons, however, the systematic range errors prevent an
averaging out over multiple fractions.

4. Analytical probabilistic modeling for robust planning

We have shown that it is possible to calculate the first two moments, i.e., the expectation value
and the covariance of the probability density p(d) of the dose distribution with an analytical

4 A computationally more efficient C** version is under development.
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Figure 5. Nominal dose d (first row), expectation value E[d] (second row), and standard deviation
o for delivery in 1 (third row), 10 (forth row), and 30 fractions (fifth row) for 9 photon beams (left
column) and 3 proton beams (right column). We assume a range uncertainty of 3%, a systematic
setup error of 1 mm, and a random setup error of 2mm. The color scale in the first row applies
to the nominal dose and the expectation value and the color scale in the third row to the standard

deviation.

probabilistic dose calculation. Consequently, p(d) can be approximated with a multivariate
normal distribution with the mean E[d] and the covariance matrix £¢:

p(d) = N(d; E[d], %).

(33)
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Hence, the deviation of the dose from a prescribed dose d —d* also follows a multivariate
normal distribution with the same covariance matrix but a shifted mean:

pd—d*) =N(d —d*;: E[d] —d*, ). (34)
With the penalty matrix P = diag(py, ..., pv), the standard quadratic objective function

F (Oelfke and Bortfeld 2001) corresponds to
=d—d")"Pd-d). (35)

If (1) d — d* follows a multivariate normal distribution with the mean vector E[d] — d*
and a non-singular covariance matrix £¢ and (2) P is a V x V non-negative definite matrix,
then F follows a generalized x? distribution with expectation value (Imhof 1961, Liu ef al
2009)

E[F] = t(PS?) + (E[d] — d*)" P(E[d] — d*) (36)
and variance (Imhof 1961, Liu et al 2009)
o7 =2-{tr (P=4?) + (E[d] —d*)"PE*P(E[d] —d*)} . (37)

The evaluation of equation (37) is computationally challenging because it requires the
full V x V matrix X¢. However, equation (36), which corresponds to the objective function
introduced by Unkelbach and Oelfke (2004) for robust planning, can be evaluated efficiently
for different bixel weight vectors w. The second term corresponds to the standard objective
function using the expectation value of the dose instead of the nominal dose, and the first term
requires only the diagonal elements of %¢:

|4
r(Px?) = vaz

v=I

j— (= X X y y
Z :pvz :ij’" vjvm v/vm‘:‘uﬂ)m £v]£vm£vj£vmz Z )

(= X X y
- Z :ijWlE Pv vjvm Ujvmc‘vjvm ijﬁvmﬁvjﬁvmz va)

jm
=w Quw. (38)

Hence, equation (36) may be evaluated—and optimized—at almost the same cost as the
standard quadratic objective function after the precalculation of the B x B matrix 2.

5. Discussion

This paper introduces APM to quantify uncertainties for radiation therapy treatment planning.
We focus on analytical probabilistic dose calculations and derive closed-form expressions for
the calculation of the expectation value and the covariance of dose distributions for intensity-
modulated photon and proton radiation therapy. Thereby we explicitly account for the different
nature of systematic and random errors in fractionated radiation therapy and accommodate
complex correlation models of the underlying uncertainties. Currently these aspects are often
neglected, especially for robust planning with worst case optimization (Unkelbach et al 2009,
Pflugfelder et al 2008, Liu et al 2012). Figures 4 and 6, however, show that different correlation
assumptions and an adequate handling of both random and systematic errors have a critical
impact on the variance of dose distributions. APM is ideally suited for further investigations
regarding the consequences of random and systematic errors as well as varying correlation
models.



5416 M Bangert et al

— 13 Gy
9 Gy
5Gy

1Gy

Figure 6. Standard deviation for an irradiation with one anterior proton beam assuming a range
uncertainty of +3%, no setup uncertainty, and (a) perfect correlation of range uncertainties of
bixels impinging on the same lateral position, and (b) perfect correlation of all range uncertainties.

Using more sophisticated correlation models it is also possible to simulate spatial motion
of the patient for 4D treatment planning. If the uncertainty model is transferred from correlated
uncertainties of bixel positions to correlated uncertainties of voxel positions even dose
calculations on deforming geometries are analytically feasible.

As laid out in section 3, APM enables the efficient quantification of uncertainties in
intensity-modulated dose distributions. In future, we want to analytically propagate these
uncertainties into composite treatment plan quality indicators such as mean doses, maximum
doses, dose volume histograms, equivalent uniform doses, normal tissue complication
probabilities, or tumor control probabilities to improve the evidence for clinical decision
making.

Naturally, the main application of APM will be in particle therapy but conventional photon
radiation therapy may also benefit from fast computations of dose uncertainties. First, inverse
planning with APM may ensure adequate coverage of the clinical target volume without
definition of a planning target volume using direct constraints on the dose variance within
the tumor. Just like conventional margin recipes (van Herk er al 2004), APM may consider
random and systematic errors separately but it will also consider patient-specific factors such
as the relative weight of certain bixels. Second, inverse planning with APM will also account
for uncertainties in the dose applied to organs at risk. This may be important for photons where
we observe pronounced uncertainties of the dose distributions right where the photon beams
enter the patient, as shown in figure 5.

Beyond photons and protons, an analytical probabilistic dose calculation is also feasible
for carbon ions where the fragmentation tail could be modeled with a linear function. For
carbon ions, however, APM should include an analytical probabilistic survival calculation
based on the linear quadratic model (Joiner and van der Kogel 2009, chapter 4). Here, it
would be possible to account for uncertainties not only in the delivered dose D but also in the
parameters « and B of the linear quadratic model.

We see two main practical challenges for APM in radiation therapy treatment planning.

First, the validity of the uncertainty calculations depends on the accuracy of the functional
approximation of the treatment plan quality indicators. For the analytical probabilistic proton
dose calculation as described in section 3.3, the shortcomings of conventional pencil beam
algorithms compromise the accuracy in heterogeneous media. However, this limitation
could be overcome with more elaborate dose calculation algorithms based on pencil beam
decomposition (Soukup et al 2005) or an explicit measurement of the correlation of range
and setup uncertainties with multiple ray tracings. For the analytical probabilistic photon dose
calculation as described in section 3.4, the approximation of the lateral dose profile with error
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functions is good in the peak and penumbra region but poor in the low dose region, as shown in
figure 1(b). This limitation could be overcome with an additional underlying broad Gaussian
component in the lateral photon dose. As the approximation of the photon depth dose with
an exponential does not include the build up effect and the dosimetric uncertainties induced
by the uncertainties in the radiological depth were found to be negligible, we suggest to
exclude the uncertainties in the radiological depth for photons. For both particles and photons
a detailed comparison with more sophisticated dose calculation algorithms is part of ongoing
research.

Second, APM may be computationally more demanding than nominal calculations. For
the analytical probabilistic dose calculation, the most expensive computation is that of the
covariance terms, which requires O(B? x V) operations, while the computation of the
expectation value only requires O (B x V') operations—just like a conventional dose calculation.
Currently, an analytical probabilistic dose calculation including variance calculation takes
about 1 min for two-dimensional examples in MATLAB. The variance estimates do not come
for free but APM may enable a substantial acceleration compared to sampling techniques,
which require about the same time to simulate ~10 scenarios in MATLAB due to multiple
ray tracings.

The main advantage of APM regarding computational speed will manifest for probabilistic
planning based on the quadratic objective function F, as explained in section 4. If we use
APM to obtain estimates of the expectation value and covariance of the dose, we only need
a single APM run before the optimization. Conventional approaches to robust planning, in
contrast, use sampling to obtain estimates of the expectation value and covariance of the
dose requiring 10°~103 samples (Sobotta et al 2012) in every iteration of the optimization
process. While the estimates of the expectation value and the standard deviation stemming
from sampling techniques are subject to statistical uncertainty, the expectation value and the
standard deviation calculated with APM are exact; they are only compromised by the accuracy
of the underlying model.

We acknowledge that the minimization of the expectation value of the objective function
as outlined in section 5 does not necessarily guarantee the coverage of the tumor volume with a
certain dose at a desired probability—which is the ratio behind margin concepts (van Herk er al
2004). However, using the functional form for the dose covariance as derived with APM, it may
be feasible to incorporate such a constraint into probabilistic treatment planning approaches in
the future. As a first step we could try to specify the target coverage probability with constraints
on the expectation value of the dose minus a multiple of the standard deviation, or we could
restrict the overall variability of the dose distribution within the target with constraints on the
average standard deviation. In its current form the variance calculations can already serve as
valuable guidance for clinicians to assess the robustness of the dose distribution.

6. Conclusion

Treatment plan quality indicators in radiation therapy are sensitive to uncertainties. We
introduce the concept of analytical probabilistic modeling (APM) to quantify the influence of
these uncertainties.

Based on a Gaussian uncertainty model and functional parameterizations that can
be integrated analytically against Gaussian densities, it is possible to derive closed-form
expressions for the expectation value and the covariance of intensity-modulated photon and
proton dose distributions. Thereby we explicitly accommodate arbitrary correlation models of
the uncertainties and account for the different nature of systematic and random uncertainties
in fractionated radiation therapy.
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Our calculations indicate that the correlation model and the interplay of random and
systematic uncertainties have a critical impact on the overall uncertainty of the dose
distribution.

Beneficial applications of APM in the context of treatment planning are feasible—in
particular for robust planning with the standard quadratic objective function.

Appendix A. Marginal distributions of multivariate normal distributions

The marginal distribution of a multivariate normal distribution is again a multivariate normal
distribution. Consider x = [x}, X, ..., Xy, Xy+1, - - - , Xy]. Then we have

fdx]\/(x;i', E):fdxldx2~-~dx‘,dxu+1~-~de./\/(x;5c, )

= /dxl d)C2 e dxv Afl:v(xlzv;il:\u El:v)' (Al)

Appendix B. Products of multivariate normal distributions

The product of two multivariate normal distributions N7 (x; ¥, X1) and N3 (x; X2, ) is again
of Gaussian shape (Rasmussen and Williams 2006, A.2), yet not normalized:

Ny (x: %1, 20) Na(x; %2, ) = LN (x; %, 5) (B.D
where
=+ h7!
¥ =3+ 2w
¢ = 1 e Y@ —E) T (2145 @)
Qm)P2/TE + 2,
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