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Abstract

In real-world applications, Initial value problems (IVP) for Ordinary differential
equations (ODE) often involve uncertainties in the initial values and parameters
(e.g., uncertain initial biomass concentration in a bioreactor kinetics problem).
Such uncertainties could lead to noticeable variation to the resulted ODE solution,
especially in non-linear systems. Therefore, it is crucial to quantify the expected
ODE solution and the propagated uncertainty over time. However, ODE solvers on
their own fail to propagate the uncertainties properly. Hence, this thesis discusses
and compares approaches to address this issue from non-probabilistic and proba-
bilistic perspectives. In particular, we propose a novel fully probabilistic approach
to efficiently compute the expected value and variance of the ODE solutions. On
top of producing accurate point estimates, our fully probabilistic approach also
provides estimated numerical uncertainties, which can be further utilized in a com-
putation pipeline.
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Kurzfassung

Ausgangswertprobleme (IVPs) von gewöhnlichen Differentialgleichungen (ODEs)
in realen Anwendungen beinhalten oft Unsicherheiten bei Ausgangswerten und Pa-
rametern (z.B. unsichere anfängliche Biomasse-Konzentration in einem Bioreaktor-
Kinetikproblem). Solche Unsicherheiten können zu merklichen Abweichungen bei
der resultierenden ODE-Lösung führen, insbesondere bei nichtlinearen Systemen.
Daher ist es von entscheidender Bedeutung, die erwartete ODE-Lösung und die
propagierte Unsicherheit über die Zeit, zu quantifizieren. ODE-Löser allein sind je-
doch nicht in der Lage, die Unsicherheiten angemessen auszuwerten. In dieser Arbeit
werden daher Ansätze zur Lösung dieses Problems aus nicht-probabilistischer und
probabilistischer Sicht diskutiert und verglichen. Darüber hinaus wird ein neuer,
vollständig probabilistischer Ansatz zur effizienten Berechnung von Erwartungs-
wert und Varianz der ODE-Lösungen vorgestellt. Dieser Ansatz liefert nicht nur
genaue Punktschätzungen, sondern auch die numerischen Unsicherheiten, welche
in darauf folgenden Berechnungen weiterverwendet werden können.
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Chapter 1

Introduction

A variety of dynamical systems modeled by ordinary differential equations involve
uncertainties in initial values and parameters. In practical mechanical and struc-
tural systems, uncertainties are inherent in loads, parameters, material properties,
fraction tolerance, boundary conditions and geometric dimensions, due to the com-
plexity of real-world problems; such uncertainties could result in noticeable varia-
tion in the ODE solutions, especially in non-linear system (Wu et al., 2013). An
example of varying ODE solutions of a non-linear system is shown in Figure 1.1.
Besides, it is noted that smaller uncertainties in parameters could be propagated in

10

20

y[
1]

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

10

20

y[
2]

Figure 1.1: ODE solution samples: Varying ODE solutions of Lotka-Volterra system
w.r.t. different initial values, which are sampled from N ((5, 5)ᵀ, 0.3 · I2) with I2 denoting
the identity matrix.

the dynamical system and lead to comparably large uncertainties in the dynamic
response (Chen, 2004; Cheng and Sandu, 2009; Hanss, 2002; Wu et al., 2013).
Therefore, of great interest are the expected ODE solution and uncertainty prop-
agation over time. Since the approaches for uncertain initial values are directly
applicable to the uncertain parameters, we will only discuss the former. Consider
an Initial Value Problem (IVP) over the timespan T := [0, T ]:

ẏ(t) =
dy

dt
= fθ(y(t), t) t ∈ [0, T ], y(0) = y0, (1.1)

where f : Rd × T → Rd denotes the vector field, which is a function of the time
t ∈ T and the current state y(t) ∈ Rd. The vector field f is often characterized by
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Chapter 1 Introduction

a set of parameter(s) θ ∈ Θ. In our setting, the initial value y0 ∈ Rd is not a fixed
value but a random variable with the distribution p(y0):

y(0) = y0 ∼ p(y0),

which leads to the objects of interest:

• Expected ODE solution:

Ey0 [y(y0, t)] =

∫
y(y0, t)p(y0)dy0, (1.2)

• Variance of ODE solutions:

Vy0 [y(y0, t)] =

∫
(y(y0, t)− Ey0 [y(y0, t)])

2p(y0)dy0. (1.3)

We use y(y0, t) to explicitly denote the ODE solution regarding the initial value y0.
Also, in this thesis, we only consider the variation of the ODE solutions of each
dimension. Therefore, the variance is computed element-wise.

A particular family of probabilistic numerical ODE solvers treats IVP as a Gauss-
Markov process regression and utilizes Bayesian Filtering/Smoothing to compute
the solution efficiently (Schober et al., 2019; Tronarp et al., 2019, 2021). In such
filtering-based solvers, the initial value y(0) is assumed to be Gaussian distributed:

y(0) ∼ N (µ0,Σ0).

Based on this fact, one would expect that such probabilistic ODE solvers could
compute Ey0 [y(y0, t)] and Vy0 [y(y0, t)]. To clarify this, we take a time-invariant
linear ODE as an example:

ẏ(t) = f(y(y0, t), t) = a · y(y0, t) + b, y(0) = y0 ∼ N (m0, σ
2
0), (1.4)

where f denotes the vector field, a, b the parameters, and N (m0, σ
2
0) the Gaussian

distribution over the initial value y0 with mean m0 and variance σ2
0. As known,

this ODE has an analytical solution in the form:

y(y0, t) = exp(at) · (y0 + b/a)− b/a, (1.5)

which is globally linear in y0. Therefore, the expected ODE solution and the vari-
ance are also available in closed-form, which are given below:

Ey0 [y(y0, t)] = exp(at) · E[y0] = exp(at) · (m0 + b/a)− b/a, (1.6a)

Vy0 [y(y0, t)] = exp(at)2 · V[y0] = exp(2at) · σ2
0. (1.6b)

2
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Figure 1.2: PN posterior for the expected ODE solution and propagated variance.
shows the posterior returned by EKF and depicts the analytical solution. Imple-
mentation used ProbNum. Left : EKF with constant step size 0.05. Right: EKF with
adaptive step size (Bosch et al., 2021).

Figure 1.2 depicts the posterior returned by Extended Kalman Filtering (EKF) on
a linear ODE with a = 1, b = 0,m0 = 1, and σ2

0 = 0.1. The result is generated
using ODEFilter from ProbNum1. As shown in the right subfigure, when adaptive
step size is employed, the variance vanishes after several time steps, although the
posterior mean coincides with the analytical solution. On the other hand, when
we fixed the step size with h = 0.05, the uncertainty will not vanish but fail to
capture the true variation. Therefore, we need to develop new methods to solve
this problem, which loops back to the main purpose of this thesis.

Apart from filtering-based ODE solvers, other works also aimed to solve this
problem: Lin and Stadtherr (2006) utilized the interval Taylor Series (ITS) to find
the “unique” validated solution (a tight enclosure) of the given initial value problem,
where the initial values and parameters are from the corresponding enclosure of un-
certainties. Wu et al. (2013) proposed a new interval analysis method for non-linear
ODE systems with bounded uncertain parameters, where the set of ODEs with un-
certain parameters can be transformed into a new set of ODEs with deterministic
parameters, which can be directly solved by a classic numerical ODE solver. More
recently, Gerlach et al. (2020) proposed a systematic approach to deal with ODE
problems involved with uncertainties, using non-probabilistic ODE solvers along
with classic numerical integration methods. However, these approaches neglected
the computational uncertainty around the outputs. Being aware of the uncertainty
is crucial in many fields of process engineering, especially regarding safe learning
problems. Hence, probabilistic numerics (PN) (Hennig et al., 2015; Oates and Sul-
livan, 2019) aims to generally quantify the uncertainties in numerical algorithms by
assigning probability measures to numerical objects. Thus, numerical algorithms

1ProbNum: https://github.com/probabilistic-numerics
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Chapter 1 Introduction

are turned into inference problems, which return a posterior distribution over the
quantity of interest.

Since numerical uncertainties are involved in solving ODEs and computing inte-
grals, we aim to not only find the point estimates for the expected ODE solution
and the propagated variance, but also efficiently compute the posteriors over theses
two quantities:

Ey0∼p(y0)[y(t, y0)] ∼ N (µE(t),ΣE(t)), (1.7a)

Vy0∼p(y0)[y(t, y0)] ∼ N (µV(t),ΣV(t)), (1.7b)

where µE(t), µV(t) denote the posterior means and ΣE(t),ΣV(t) quantify the numer-
ical uncertainties produced during the computation.

In this thesis, we firstly offer a brief overview of the theoretical background related
to this problem. In Chapter 3, we discuss existing approaches and propose a novel,
fully probabilistic approach to calibrate numerical uncertainties, on top of giving
accurate solutions. Afterward, Chapter 4 evaluates and compares the proposed
approaches from both perspectives of the accuracy of the returned point estimates
and uncertainty calibration, based on various dynamical systems. In Chapter 5, we
conclude the contribution and limitation of this thesis and outline future work.

4



Chapter 2

Foundations

This chapter begins with a brief review of the necessary mathematical background.
After that, we introduce the ODE solvers and the integration methods from both
non-probabilistic and probabilistic perspectives and discuss the connections be-
tween both families of methods based on the current literature.

2.1 Mathematical Prerequisites

This section reviews the mathematical background related to the derivation of
the approaches in Chapter 3. We start with the calculation rules of Gaussian
distributions, followed by the introduction to the Kronecker product and some of
its properties.

2.1.1 Properties of Gaussian distributions

Gaussian distributions are of great importance in probabilistic machine learning
because of their convenient mathematical properties: Gaussian distributions are
closed under multiplication, linear projection, and conditioning. In summary, Gaus-
sian distributions provide the linear algebra of inference. LetN denote the Gaussian
distribution, the properties are summarized below (Petersen et al., 2008):

• Product of two Gaussian distributions is a scaled Gaussian:

N (x; a,A)N (x; b, B) = N (x; c, C)N (a; b, A+B), (2.1)

where C = (A−1 +B−1)−1, c = C(A−1a+B−1b).

• Given that x ∼ N (x;µ,Σ), then the linear map of x is also Gaussian dis-
tributed:

Ax ∼ N (Ax;Aµ,AΣAᵀ), (2.2)

and the marginalisation can be treated as a special case of linear projection
with

A =

[
I 0
0 0

]
.

5



Chapter 2 Foundations

• Given that

p(x) = N (x;µ,Σ), (2.3a)

p(y|x) = N (y;Ax+ b,Λ), (2.3b)

then the marginal distribution of y yields

p(y) = N (y;Aµ+ b, AΣAᵀ + Λ). (2.4)

2.1.2 Kronecker product

The Kronecker product is an operation on two matrices of arbitrary sizes, often
denoted by ⊗. Kronecker product can be treated as a generalization of the outer-
product of vectors onto matrices. Formally, the Kronecker product between two
matrices A ∈ Rm×n and B ∈ Rp×q is a mp × nq block matrix (Horn and Johnson,
1991, Section 4.2):

A⊗B =

a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 (2.5)

Kronecker products possess many convenient properties. The mostly used proper-
ties in this thesis are:

• The mixed-product property: If the matrices A,B,C,D are of such shapes
that AC and BD are well-defined matrix products, then:

(A⊗B)(C ⊗D) = (AC)⊗ (BD). (2.6)

• The inverse of a Kronecker product: It follows that A⊗B is invertible if and
only if A and B are invertible, in which case the inverse is given by:

(A⊗B)−1 = A−1 ⊗B−1. (2.7)

2.2 ODE Solvers

Numerical ODE solvers can be categorized into two families: Classic (or non-
probabilistic) solvers and probabilistic solvers. While the non-probabilistic numer-
ical ODE solvers compute numerical approximations of an ODE solution without
considering the numerical uncertainties, the probabilistic numerical ODE solvers
treat solving ODE as an inference problem and assign a probability measure to the
output. In this section, we give an elaborate explanation of both solver families.

6



2.2 ODE Solvers

2.2.1 Non-probabilistic numerical ODE Solvers

Non-probabilistic numerical ODE solvers approximates an ODE solution iteratively.
Most non-probabilistic numerical ODE solvers for first-order IVPs fall into one of
three categories: Taylor series methods, Runge–Kutta methods, and Linear mul-
tistep methods. Most of the content in this subsection is adapted from (Griffiths
and Higham, 2010). Hence, we do not cite repeatedly.

Taylor series method

The idea of Taylor series method is to predict the ODE solution in the near future
based on the current ODE solution and its derivative information. We use TS(q) to
denote the Taylor series method of the order q. Applying TS(q), we can compute
the ODE solution as follows:

y(t+ h) =

q∑
k=0

hky(k)(t)

k!
+O(hq+1), (2.8)

where h denotes the step size, y(k)(t) represents the k-th derivative of the ODE
solution y at the time point t. According to this definition, the Euler’s method:

y(t+ h) = y(t) + hy′(t) (2.9)

can be treated as the first-order Taylor series method, i.e., TS(1).
As discussed in Griffiths and Higham (2010), increasing the order of Taylor series

method could improve the performance of the solver drastically. However, Taylor
series methods with an order larger than two are not widely used in complicated
systems due to the requirement of higher-order differentiability.

Runge–Kutta method

Runge–Kutta (RK) methods are one-step multi-stage methods: In each step, RK
computes the weighted average of the slopes (evaluations of vector field f) of several
nearby points (stages) and then predicts the solution at tn+1 using this averaged
slope. According to this definition, Euler’s method can be seen as the special case
of RK methods with only one stage. The general RK method is summarized as
follows:

yn+1 = yn + h

s∑
i=1

biki, (2.10)

where the ki are computed from the function f :

ki = f(ti + cih, xn + h
s∑
j=1

ai,jkj), i = 1 : s. (2.11)

7



Chapter 2 Foundations

Linear multietstep method

The Linear multistep methods (LLMs) share the same idea as the Taylor series
methods but employing some mathematical tricks to avoid the exact computation of
higher-order derivatives. Instead, LLMs approximates the higher-order derivatives
based on the “history”, with the constraint that the approximation error will not
exceed the reminder error O(hq). Formally, the k-step LLMs can be summarized
as:

yn+k + αk−1yn+k−1 + ...+ α0yn = h(βkfn+k + βk−1fn+k−1 + ...+ β0fn), (2.12)

where fn denotes the corresponding vector field of yn. {αi}s and {βi}s are coef-
ficients. The k-step LLM is considered explicit if βk = 0; otherwise implicit. An
overview of Linear multistep methods is given in Table 2.1:

Table 2.1: Summary of LLM methods, adapted from Griffiths and Higham (2010).

k p Method Name
1 1 xn+1 − xn = hfn Euler
1 1 xn+1 − xn = hfn+1 Backward Euler
1 2 xn+1 − xn = 1/2h(fn+1 + fn) trapezoidal
2 2 xn+2 − xn+1 = 1/2h(3fn+1 − fn) two-step Adams-Bashforth
2 2 xn+2 − xn+1 = 1/12h(5fn+1 + 8fn+1 − fn) twp-step Adams-Moulton
2 4 xn+2 − xn = 1/3h(fn+2 + 4fn+1 + fn) Simpson’s rule
2 3 xn+2 + 4xn+1 − 5xn = h(4fn+1 + 2fn) Dahlquist

2.2.2 Probabilistic numerical ODE solvers

Probabilistic numerical ODE solvers treat IVP as an inference problem. One par-
ticular family among the probabilistic solvers applies Gaussian process regression
(GPR) to solve the IVP (Hennig and Hauberg, 2014; Schober et al., 2014). Since
inference on GP is of cubic complexity, Kersting and Hennig (2016), Schober et al.
(2019) sped up this process by assigning a Gauss-Markov prior to the state-space
model; thus, the GPR can be reformulated as a Bayesian filtering/smoothing prob-
lem, which can be solved efficiently in linear time (Särkkä, 2013). Such filtering-
based ODE solvers are proven to be able to converge with polynomial order (Ker-
sting et al., 2020; Tronarp et al., 2021).

Another class of probabilistic numerical ODE solvers (see Chkrebtii et al., 2016;
Teymur et al., 2016; Conrad et al., 2017; Lie et al., 2019; Teymur et al., 2018;
Abdulle and Garegnani, 2020) represents the probability distribution over the ODE
solutions with a set of sampling paths. Hence, this class of solvers is capable of
representing more expressive, non-Gaussian posteriors. An intersection of these

8



2.2 ODE Solvers

two lines of work is provided in Tronarp et al. (2019), where a particle ODE filter
is proposed as a sampling-based filtering method.

While the above-mentioned sampling-based solvers can return more statistically
expressive posteriors, the algorithm suffers from high computational cost. By con-
trast, filtering-based solvers enjoy fast computation of Bayesian filtering/smoothing
and scale linearly. Since the primary purpose of this thesis is to compute the pos-
teriors of interest efficiently, we will work with the filtering-based ODE solvers and
refer to these solvers as PN ODE solvers. A brief review of such probabilistic
methods is given below.

The inference problem

We assume the q-times integrated Wiener Process prior y(t), where y(t) represents
a state-space model:

y(t) =
[
(y(0)(t))ᵀ, (y(1)(t))ᵀ, ..., (y(q)(t))ᵀ

]ᵀ
. (2.13)

The prior y(t) satisfies the following stochastic differential equation:

y(0) ∼ N (µ0,Σ0), (2.14a)

dy(i)(t) = y(i+1)dt, (2.14b)

dy(1)(t) = Γ
1/2dW (t), (2.14c)

where W (t) is a standard wiener process, Γ1/2 is the diffusion terms, which is the
symmetric square root of some positive semi-definite matrix Γ ∈ Rd×d with d de-
noting the dimension of y(0)(t) (Bosch et al., 2021).

ẏ(t)− f(y(t), t) = 0 (2.15)

represents the inherent condition that comes with an ODE. Based on this condition,
we can construct the observation model as follows:

h(y(t), t) := y(1)(t)− f(y(0)(t), t). (2.16)

The realization of h(y(t), t)) are zeros at the true ODE solution, which is known a
priori. Under this circumstance, the inference problem can be represented as

p(y(t)|{zn}Nn=1), (2.17)

where zn = 0 are the realizations of the measurement h(y(t), t) on a given time
grid {tn}Nn=1 (Tronarp et al., 2019; Bosch et al., 2021).

9



Chapter 2 Foundations

The inference scheme: Extended Kalman Filter

Since inference problem with a non-linear measurement function is analytically
intractable, we consider the approximated Bayesian inference problem using Ex-
tended Kalman Filter (EKF), which linearizes the measurement model using Taylor-
series expansion and assumes Gaussianity of the state y(t) and the observation
{zn}Nn=1 (see Särkkä, 2013, Section 5.2). This gives rise to Gaussian approxima-
tions of the prediction, filtering, and smoothing densities, as well as the likelihood:

p(y(tn)|{zi}n−1
i=1 ) ≈ N (µPn ,Σ

P
n ), (2.18a)

p(y(tn)|{zi}ni=1) ≈ N (µFn ,Σ
F
n ), (2.18b)

p(y(tn)|{zi}Ni=1) ≈ N (µSn,Σ
S
n), (2.18c)

p(zn|{zi}n−1
i=1 ) ≈ N (ẑn, Sn). (2.18d)

The filtering density can be efficiently computed by processing the predict and
update steps iteratively, as described in Särkkä (2013):

• Prediction:

µPn = A(hn−1)µFn−1, (2.19a)

ΣP
n = A(hn−1)ΣF

n−1A(hn−1)ᵀ +Q(hn−1), (2.19b)

• Update:

ẑn = E1µ
P
n − f(E0µ

P
n , tn), (2.20a)

Sn = HnΣP
nH

ᵀ
n, (2.20b)

Kn = ΣP
nH

ᵀ
nS
−1
n , (2.20c)

µFn = µPn +Kn(zn − ẑn), (2.20d)

ΣF
n = ΣP

n −KnSnK
ᵀ
n, (2.20e)

where Hn can be either Hn := E1 for a zero-th order approximation, or Hn :=
E1 − Jf (tn, E0µn)E0 for a first order approximation, with E0 := eᵀ0 ⊗ I and E1 :=
eᵀ1 ⊗ I (Tronarp et al., 2019).

The approximated full posterior conditioned on all of the measurements (see
Equation 2.17) can be computed by the Extended Kalman Smoother (EKS), through
a backward recursion:

Gn = ΣF
nA(hn)(ΣP

n+1)−1, (2.21a)

µSn = µFn +Gn(µSn+1 − µPn+1), (2.21b)

ΣS
n = ΣF

n −Gn(ΣS
n+1 − ΣP

n+1)Gᵀ
n. (2.21c)

10



2.3 Integration Methods

Connection to non-probabilistic numerical ODE solvers

Although several probabilistic models are proposed to solve the initial value prob-
lem (e.g. Skilling, 1992; Chkrebtii et al., 2016), there lacks analytical guarantees
about the desirable output of the probabilistic solvers. Since no clear connection
was established to the non-probabilistic algorithms, the extensive numerical anal-
ysis on the IVP cannot be applied in the probabilistic case. Hence, considerable
interest has emerged in the connection and equivalence between the point estimates
returned by the non-probabilistic numerical solvers and the posterior mean given by
the probabilistic numerical solver. After Hennig and Hauberg (2014) pointed out
that the linear extrapolation steps in Runge–Kutta methods can be emulated by a
Gaussian process regression, Schober et al. (2014) firstly constructed probabilistic
ODE solver whose posterior mean exactly matches the Runge–Kutta mean, of the
order 1, 2, and 3 respectively. Teymur et al. (2016) extended the Adams-Bashforth
and Adams-Moulton family of the linear multistep methods to their probabilistic
versions, with the probabilistic formulation coinciding with the classical determin-
istic method in the limit. Later, Schober et al. (2019) conducted a more exhaustive
study between ODE solvers and the probabilistic regression methods. They pre-
sented a new class of probabilistic solvers and showed whose posterior mean can be
interpreted as a multistep method in Nordsieck representation. Also, a summary
of evaluation on the existing probabilistic solvers according to a list of desiderata
can be found in Schober et al. (2019, Table 1).

2.3 Integration Methods

Quadrature, also termed integration, is a historical mathematical term that means
“finding a square equal in area to a given area” (Merriam-Webster, nd). Integra-
tion arises in many fields related to machine learning. Especially in the field of
probabilistic inference, where one needs to compute the evidence Z to infer some
parameter θ:

p(θ|D) =
p(D|θ)p(θ)

Z
,

where

Z =

∫
p(D|θ)p(θ)dθ,

and D denotes the data given to the model. Unfortunately, computing the ana-
lytical solution by finding the antiderivative is almost impossible due to the high
complexity of the integrand function. In most cases, we only know about the
function at a finite number of locations, possibly with some noise. Under this
circumstance, one has to approximate the integral. There are two families of in-
tegral approximation methods: non-probabilistic numerical integration methods or
probabilistic numerical integration, also called Bayesian Quadrature or Cubature.

11



Chapter 2 Foundations

While non-probabilistic numerical methods pay more attention to the point esti-
mate of the desired integral, probabilistic numerical integration methods take the
numerical uncertainty into consideration and aim to provide a reliable error bar on
top of accurate integral approximations. This section introduces both numerical
quadrature rules and the probabilistic numerical integration methods and discusses
the connection between both families of approaches.

2.3.1 Non-probabilistic numerical integration

Traditional non-probabilistic numerical integration approximates an integral us-
ing numerical techniques. The term “numerical quadrature” (abbrev. Quadra-
ture) was often considered as a synonym of numerical integration until Ueberhuber
(1997) explicitly used the word “Quadrature” to refer to the uni-variate integral
and “Cubature” as multidimensional integral. In general, the idea of numerical
integration is to combine evaluations of the integrand function to approximate the
true integral. Since quadrature can be treated as a “one-dimensional” cubature,
in the scope of this thesis, we use “cubature” to denote both one-dimensional and
multidimensional integration.

Quadrature

The numerical methods for one-dimensional integrals can be roughly separated into
two families, distinguished by whether the integration points are equally spaced or
not. The choice of the interval space is determined by our prior knowledge about
the integrand function. In most cases, if the function is known analytically (which
means we can evaluate it at any location), methods with varying space would
be a better choice (e.g., Gaussian Quadrature) because they are typically more
accurate. Nonetheless, if the integrand function values are only given at equally
spaced locations, then the Newton-Coates formulas would be an adequate solution.
Most content from this subsection refers (Press et al., 1992), so we do not cite
repeatedly.

Newton-Cotes formulas The general idea of the Newton-Coates algorithm is
to integrate simple functions piece-wise to approximate the true area. These simple
functions are termed interpolation functions. A common choice of such interpolat-
ing function is polynomials. The Newton-Coates formulas can be constructed with
many different explicit rules, depending on the polynomial degree. Since polyno-
mials with a high degree often lack stability, low degree polynomials like linear
functions are more widely used. This section introduces quadrature rules w.r.t.
various degrees of polynomials and their convergence rates, respectively.

Assume f(x) is continuous over [a, b]. Let n ∈ N and h = b−a/n. Divide the
interval [a, b] into n sub-intervals with length h and endpoints {x1, ..., xn}.

12



2.3 Integration Methods

Midpoint rule Midpoint rule (or rectangle rule) corresponds to the Newton-
Cotes formulas with a constant interpolating function. The integral can then be
approximated as: ∫ x2

x1

f(x)dx = hf

(
x1 + x2

2

)
+O(h3f ′′). (2.22)

Trapezoidal rule Trapezoidal rule employs the linear function (polynomial
with degree 1), the closed formula is shown below:∫ x2

x1

f(x)dx = h

(
1

2
f(x1) +

1

2
f(x2)

)
+O(h3f ′′). (2.23)

Simpson’s rule Simpson’s rule is based on a polynomial of order 2, which can
be summarized as:∫ x3

x1

f(x)dx = h

(
1

3
f(x1) +

4

3
f(x2) +

1

3
f(x3)

)
+O(h5f (4)). (2.24)
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Figure 2.1: Midpoint and Trapezoidal rules for the function f(x) = 1/x2+1 on [0, 5]

Gaussian quadrature Gaussian Quadrature provides freedom not only in con-
structing weight coefficients for the function evaluations but also in choosing the
locations to be evaluated. In general, the computation of Gaussian quadrature rules
comprises of two distinct phases (Press et al., 1992):

1. Compute the orthogonal polynomials p0(x), ..., pN(x).

2. Determine the zeros of pN(x) and compute the associated weights.

The most commonly used Gaussian quadrature rules are listed in (Press et al., 1992,
Section 4.5), including the Gauss-Legendre, Gauss-chebyshev, Gauss-Lauguerre and
Gauss-Hermite.

13



Chapter 2 Foundations

Cubature

Cubature (or multidimensional integration) could be solved iteratively by apply-
ing Fubini’s theorem; however, the required number of function evaluations grows
exponentially with the dimension (Hinrichs et al., 2014). Several approaches are
available to alleviate this issue:

Monte Carlo As mentioned before, Monte Carlo methods are the most simple
and robust option. In low dimensional case, MC might not be the best option due to
the slow convergence rate. However, when dealing with high dimensional problems,
Monte Carlo might be the only remaining choice, since MC converges dimension-
independently, with a rate of O(N−1/2). Acceleration of MC can be obtained by
using quasi-random sequences, this approach is termed quasi -Monte Carlo with a
convergence rate of O(log(N)kN−1) (Caflisch, 1998).

Sparse grid Sparse grids, firstly proposed by Sergey A. Smolyak, approximate
multidimensional integrals based on individual quadrature rules and sparse ten-
sor product construction. One of the most commonly used sparse grids methods
is Smolyak’s rule, which recursively computes the high dimensional integral. A
summary of sparse grid methods can be found in (Zenger, 1991; Garcke, 2013).

Adaptive quadrature/cubature

Apart from the basic integration rules mentioned above, some algorithms compute
the integrals of interest adaptively (Rice, 1975; de Boor and Rice, 1979). The
h-adaptive integration recursively refines subdivisions of the region of integration
until the estimated error becomes lower than the pre-defined tolerance value. In
each subinterval of the region of integration, the same static integration algorithms
(e.g., the Simpson’s rule) are applied to approximate the integrand function (Genz
and Malik, 1980; Berntsen et al., 1991). On the other hand, the p-adaptive inte-
gration repeatedly doubles the degree of the static quadrature rules until conver-
gence is achieved. This algorithm is based on a tensor product of Clenshaw–Curtis
quadrature. While h-adaptive integration is well-suited for functions that have lo-
calized sharp features. p-adaptive integration performs better in integrating smooth
functions (infinitely differentiable, ideally analytic) in low dimensions (ideally 1 or
2) (Johnson, 2020).

2.3.2 Probabilistic numerical integration

This subsection reviews the probabilistic numerical integration method: Bayesian
Cubature, followed by a non-exhaustive discussion about connection between the
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2.3 Integration Methods

non-probabilistic numerical integration methods and the corresponding Bayesian
approaches.

Bayesian cubature

As stated before, numerical methods for integration comes with unknown uncer-
tainties. The PN solution to integration is Bayesian Cubature (BC ) (Diaconis
(1988a), O’Hagan (1991), Kennedy (1998), Rasmussen and Ghahramani (2003),
Minka (2000), Briol et al. (2019)). Assume our target integral F =

∫
Ω
f(x)ν(x)

with f : Ω → R is analytically intractable, BC approximates the integrand func-
tion f with a Gaussian process GP(f ;m, k) with a mean function m : Ω→ R and
a covariance kernel k : Ω × Ω → R. GP is a stochastic process such that every
finite collection of those random variables fGP (x1, ..., xn) for any n ∈ N is Gaussian
distributed.

Mathematically, we can formulate BC as follows: Without loss of generality, we
model the function of interest f with a zero-mean Gaussian process, GP(f ; 0, k).
Assume a noise-free setting where the evaluation of function f is exact. After
evaluated the function f at locations X := {xi}Ni=1, we obtain fX = {f(xi)}Ni=1,
and the joint distribution of fX and the integral F yields:

p

([
fX
F

])
= N

([
0
0

]
,

[
KXX IK
IᵀK I2

K

])
, (2.25)

where

Kernel mean : IK(x) =

∫
Ω

k(x, x′)dν(x′),

Initial error : I2
K =

∫
Ω

∫
Ω

k(x, x′)dν(x)dν(x′).

(2.26)

After applying the Gaussian conditioning rules, the posterior can be summarized
as:

p(F |fX) = N (F ;mF , VF ), (2.27)

where

mF = IᵀKK
−1
XXfX , (2.28a)

VF = I2
K − I

ᵀ
KK

−1
XXIK . (2.28b)

BC requires that the kernel mean and the initial errors (see Equation 2.26) are
analytically tractable. However, not all kernel-distribution pairs satisfy this condi-
tion. Table 2.2 lists some of the kernel-distribution pairs which provides closed-form
kernel mean and initial values.

For other distributions which are not listed in Table 2.2, it is possible to apply
the importance re-weighting trick: ν

q
· q (where q offers closed-form solution given

the pre-defined kernel in a particular problem) such that the integration against
any probability measure becomes feasible (Gunter et al., 2014).
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Table 2.2: A non-exhaustive list of kernel-distribution pair (k, ν) which provide closed
form for the kernel mean and initial errors (see Equation 2.26). “TP” stands for tensor
product of one-dimensional kernels. Adapted from Briol et al. (2019).

X ν k Reference
[0, 1]d Unif(X ) Wendland TP Oates et al. (2016)
[0, 1]d Unif(X ) Matérn Weighted TP Briol et al. (2019)
[0, 1]d Unif(X ) Exponential Quadratic Use of error function
Rd Mixt. of Gauss. Exponential Quadratic Kennedy (1998)
Sd Unif(X ) Gegenbauer Briol et al. (2019)

Arbitrary Unif(X )/Mixt. of Gauss. Trigonometric Integration by parts
Arbitrary Unif(X ) Splines Wahba (1990)
Arbitrary Known moments Polynomial TP Briol et al. (2015)
Arbitrary Known ∂ log ν(x) Gradient-based Kernel Oates et al. (2019, 2017)

Connection to numerical integration methods

The connection between the numerical integration method and the Bayesian in-
tegration rules has been discussed for decades (see Larkin, 1970; Diaconis, 1988b;
O’Hagan, 1991; Minka, 2000; Särkkä et al., 2016; Prüher and Särkkä, 2016). Di-
aconis (1988b) showed that some non-probabilistic quadrature rules coincide with
the posterior mean from BQ when employing the (integrated) Wiener process ker-
nel. Särkkä et al. (2016) provides the relation between the quadrature/cubature
rules used in the Kalman Filter in the nonlinear case and Bayesian integration rules
with certain GP kernel of polynomial form. More recently, Karvonen and Särkkä
(2017) investigated the equivalence of classical polynomial-based Quadrature and
Bayesian Quadrature rules with suitable covariance kernels. The authors showed
that any classical quadrature rule can be interpreted as a Bayesian quadrature rule
if the kernel is an orthogonal polynomial kernel of the form given in Karvonen
and Särkkä (2017, Eq 5.) with a suitable degree p. Analogously, correspondence
is found between the polynomial interpolants and the kernel interpolant for the
increasing flat stationary kernels (in the limit), as summarized in Karvonen (2019,
Sec 5.4).
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Chapter 3

Approaches

Figure 3.1 outlines the general work flow to compute the expected value and the
variation of ODE solutions, w.r.t. an uncertain initial value. It is observable that
there are two stages where one can decide whether to take numerical uncertainties
into consideration or not: Firstly, when solving the ODEs and secondly, when
computing the integrals. As a result, there are four combinations of methods, as
given in the Figure 3.1. This chapter discusses and compares these approaches.
Furthermore, we provide a detailed derivation of a novel fully probabilistic method,
where both sources of uncertainties are quantified.

Figure 3.1: Overview of the working pipeline to compute the expected ODE solution
and the uncertainty propagation.

3.1 The non-PN approach

Gerlach et al. (2020) provided solution for the non-probabilistic numerical approach,
which is denoted by Non-PN solver & NC in Figure 3.1. This approach is termed
Koopman Expectation in Gerlach et al. (2020). By utilizing the Koopman operator
and its adjoint property, Gerlach et al. showed that it is feasible to compute the
central moments of the ODE solutions with a stacked computation pipeline of non-
PN ODE solvers and non-PN numerical integration rules.

Since non-PN solvers output point estimates for an IVP, denoted by y(y0, t) ∈
Rd, ∀t ∈ [0, T ], one can directly integrate the ODE solution against the pre-defined
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distribution of p(y0). Hence, the expected ODE solution yields

Ey0∼p(y0)[y(y0, t)] =

∫
y(y0, t)p(y0)dy0. (3.1)

Analogously, for the variance of the ODE solutions we have:

Vy0∼p(y0)[y(y0, t)] = Ey0∼p(y0)[y
2(y0, t)]− Ey0∼p(y0)[y(y0, t)]

2 (3.2)

The non-probabilistic numerical algorithms discretize the problem: For example,
when computing the integrals, the domain of interest is divided into sub-intervals,
and the area of these sub-intervals are approximated (see Figure 2.1). Such dis-
cretization gives rise to discretization errors. However, since the Koopman Expec-
tation only returns point estimates without uncertainty estimation, such discretiza-
tion errors are neglected. Therefore, Section 3.2 and 3.3 introduce methods based
on the idea of probabilistic numerics to quantify the computational uncertainties.

3.2 Partially probabilistic approach

This section summarizes the approaches which calibrate numerical uncertainties
from either solving ODEs or integration. As shown in Figure 3.1, there are two
approaches where numerical uncertainties are partially considered. We begin with
the combination of PN ODE solvers and non-PN integration approaches, followed
by a method that implements vanilla BC on the non-PN ODE solution.

3.2.1 PN ODE solver & non-PN Cubature

Opposite to non-probabilistic numerical ODE solvers, PN ODE solvers assign a
posterior measure to the solution.

p(y(t)|y0, {zi}Ni=1) = N (µS(y0, t),Σ
S(y0, t)) (3.3)

denotes the posterior given by a PN solver, where p(y(t)|y0, {zi}Ni=1) represents the
full posterior conditioned on the synthetic measurements {zi}Ni=1. As introduced
in Chapter 2, PN ODE solvers return a Gaussian distribution, which is character-
ized by the posterior mean µS(y0, t) and the posterior covariance matrix ΣS(y0, t).
According to the law of total expectation, the expected ODE solution yields

Ey0∼p(y0)[y(y0, t)] = Ey0(Ey(t)[y(t)|y0, {zi}Ni=1]) = Ey0 [µS(y0, t)] (3.4)

This solution turns out to be the same as in Equation 3.1. In both cases, we
integrate over the point estimates of the ODE solution, which is y(y0, t) for non-PN
solvers and µS(y0, t) for PN-solvers.
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3.2 Partially probabilistic approach

Similarly, the variance of the ODE solutions can be computed using the law of
total variance, as summarized below:

Vy0∼p(y0)[y(y0, t)] = Ey0(Vy(t)[y(t)|y0, {zi}Ni=1)]) + Vy0(Ey(t)[y(t)|y0, {zi}Ni=1])

= Ey0 [ΣS(y0, t)] + Vy0 [µ
S(y0, t)],

(3.5)

where the numerical uncertainty from the ODE solver Ey0 [ΣS(y0, t)] and the vari-
ance originating from the initial values Vy0 [µ

S(y0, t)] are additive to each other.
In summary, this approach takes the numerical uncertainty in the ODE solver

into account by representing the ODE solution as a posterior distribution. However,
the discretization error during the integral computation is neglected.

3.2.2 Non-PN ODE solver & Bayesian Cubature

Bayesian Cubature infers the integral based on a finite number of function evalua-
tions. In this scenario, the available information is the point estimates of the ODE
solutions, w.r.t. the initial values Y0 := {(y0)i}Mi=1 ∈ RM×d over the discretized
timespan T := {tj}Nj=1 ∈ TN , where M denotes the number of ODE solves (aka the
number of initial values), d the dimensionality of the ODE and N denotes the num-
ber of timestamps. Given the ODE solutions returned by a non-PN ODE solver,
this problem reduces to applying the vanilla BC with Kronecker product-structured
kernel. Mathematical details are presented below.

Within the framework of PN, the following probability distributions are of special
interest:

p(Ey0 [y(y0, t)]|D) = N (µE(t),ΣE(t)), (3.6a)

p(Vy0 [y(y0, t)]|D) = N (µV(t),ΣV(t)), (3.6b)

where D denotes data. In this context, the data consists of the input grid X := Y0×
T and the ODE solutions y(Y0, T ) with yij(Y0, T ) = y((y0)i, tj) ∀i = 1, ...,M, j =
1, ..., N . We consider the Gaussian process with a zero-mean function:

y ∼ GP(0, k(·, ·)). (3.7)

Let kt denote the α + 1 times integrated Wiener process (IWP) kernel over time
and ks denote the RBF kernel for the spatial dimension. The product kernel is
defined as:

k((y0, t), (y
′
0, t
′)) = ks(y0, y

′
0) · kt(t, t′). (3.8)

We assume that the output dimensions (f1, . . . , fd) of the GP are mutually inde-
pendent. For the output dimension fi, we have the temporal and spatial kernel
given as:

kt(t, t
′) =

α∑
m=0

tm1
m!

tm2
m!

+
α∑

m=0

(
α +m

m

)
|t1 − t2|α−m

(α−m)!

(t1 ∧ t2)α+m+1

(α +m+ 1)!
, (3.9a)

ks(y0, y
′
0) = vi · exp

(
−1/2(y0 − y′0)ᵀΛ−1

i (y0 − y′0)
)
, (3.9b)

19



Chapter 3 Approaches

which means we employ the same IWP kernel for each output dimension, in partic-
ular, with the same degree α. For the RBF kernel, varying kernel parameters are
allowed, including the outputscale vi and the kernel lengthscale Λi.

As shown in Subsection 2.3.2, the two essential quantities to compute the poste-
rior for the integral are the kernel mean and initial error. Without loss of generality,
we assume the initial values are Gaussian distributed: y0 ∼ N (m0,Σ0). Note that
other analytical solvable kernel-distribution pairs can be found in Table 2.2.

Kernel mean For the i-th output dimension, we have:

IKi(t?, t, y0) =

∫
ks(y0, y0?) · kt(t, t?) · N (y0?;m0,Σ0)dy0?

=

∫
kt(t, t?) · vi exp

(
−1/2(y0 − y0?)

ᵀΛ−1
i (y0 − y0?)

)
· N (y0?;m0,Σ0)dy0?

= vi(2π)
d
2 |Λi|

1
2kt(t, t?) ·

∫
N (y0?; y0,Λi)N (y0?;m0,Σ0)dy0

= vi(2π)
d
2 |Λi|

1
2kt(t, t?) · N (y0;m0,Λi + Σ0).

(3.10)

Initial error According to Fubini’s theorem, one can compute the initial error
as follows:

I2
Ki(t?, t)

=

∫ ∫
ks(y0, y0?)kt(t, t?) · N (y0;m0,Σ0)N (y0?;m0,Σ0)dy0y0?

=

∫ ∫
kt(t, t?) · vi exp(−1/2(y0 − y0?)

ᵀΛ−1
i (y0 − y0?))N (y0;m0,Σ0)N (y0?;m0,Σ0)dy0y0?

= vi(2π)
d
2 |Λi|

1
2kt(t?, t?) ·

∫ (∫
N (y0; y0?,Λi)N (y0;m0,Σ0)dy0

)
N (y0?;m0,Σ0)dy0?

= vi(2π)
d
2 |Λi|

1
2kt(t, t?) ·

∫
N (y0?;m0,Σ0 + Λi)N (y0?;m0,Σ0)dy0?

= vi(2π)
d
2 |Λi|

1
2kt(t, t?) · N (m0;m0, 2Σ0 + Λi)

=
vi|Λi|

1
2

|2Σ0 + Λi|
1
2

kt(t, t?).

(3.11)
The covariance matrix of the input grid X yield

KXX = ks(Y0, Y0)⊗ kt(T, T ) (3.12)

With the kernel mean and initial error in closed form, we can derive the posterior
distribution of interest given in Equation 3.6 as follows:
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• Expected ODE solution Ey0 [y(y0, t)]:

µE(t) = Iᵀ(t, T, Y0)K−1
XX(y(Y0, T )), (3.13a)

ΣE(t) = I2
Ki(t, T )− Iᵀ(t, T, Y0)K−1

XXI(t, T, Y0). (3.13b)

• Variance of the ODE solutions Vy0 [y(y0, t)]:

µV(t) = Iᵀ(t, T, Y0)K−1
XX(y(Y0, T )− µE(T ))2, (3.14a)

ΣV(t) = I2
Ki(t, T )− Iᵀ(t, T, Y0)K−1

XXI(t, T, Y0), (3.14b)

where we enforce the squared deviation (y(y0, t)− µE(t))2 to be Gaussian for
tractability.

3.3 Fully probabilistic approach

This section provides a fully probabilistic approach that takes uncertainties from
both ODE solving and integration into account. We begin with a linear ODE and
represent a single probabilistic ODE solve as a Gaussian process regression (GPR)
in the temporal dimension. Then we extend this GPR into the spatio-temporal
scenario where multi initial values are considered. Thereafter, we generalize the
idea onto the non-linear cases and discuss the possibility of utilizing Bayesian fil-
tering/smoothing to preserve the linear complexity in the temporal dimension.

3.3.1 Linear ODE

We consider a linear vector field:

f(y(t), t) = a(t) · y(t) + b(t) (3.15)

and the state-space vector y(t) = (y(t), ẏ(t))ᵀ. The measurement model introduced
in Subsection 2.2.2 is defined as:

h(y(t), t) = ẏ(t)− f(y(t), t) = L(t)y(t)− b(t), (3.16)

where L(t) = [−a(t), 1]. As mentioned in Subsection 2.2.2, Bayesian smooth-
ing computes the full posterior, conditioned on all of the synthetic measurements
{zi}Ni=1 (see Equation 2.17). Since the measurement model h(y(t), t) is a linear map
of the state-space vector y(t), one can reformulate the Extended Kalman Smooth-
ing (in this case, the EKS reduces to exact Kalman Smoothing due to the linear
vector field) in the PN solver as a Gaussian process regression with a Markovian
kernel. In this section, for the sake of simplicity, we only consider one-dimensional
ODE; however, under the assumption that the output dimensions of the GP are
mutually independent, one could easily generalize the mathematical derivations
into the multi-dimensional case.
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Temporal GP regression model

In the language of Gaussian process regression, we consider

y(t) ∼ GP(m(·), k∇(·, ·)), (3.17)

where k∇(·, ·) is defined via the IWP kernel given in Equation 3.9, along with its
derivatives:

k∇t (t1, t2) :=

[
kt(t1, t2) ∂t1kt(t1, t2)
∂t2kt(t1, t2) ∂2kt(t1, t2)

]
. (3.18)

Given the timestamps T = {tj}Nj=1 ∈ TN , we define the stacked state-space vectors
and the observations on this given time grid as:

y(T ) := [y(tj)]
N
j=1 ∈ R2N (3.19a)

z(T ) := [z(tj)]
N
j=1 = 0 ∈ RN (3.19b)

Correspondingly, the measurement function for theses given timestamps is charac-
terized by L(T ) and b(T ), which are defined as follows:

L(T ) :=


L(t1)

L(t2)
. . .

L(tN)

 = diag (L(t1), · · · , L(tN)) ∈ RN×2N (3.20a)

(3.20b)

b(T ) :=
[
b(t1) · · · b(tN)

]ᵀ ∈ RN

To improve readability, in the following sections, we refer to L(T ) as L and b(T ) as
B. For a location within the timespan t ∈ [0, T ], the posterior distribution yields

p(y(t)|z(T )) = N (µ(t),Σ(t)), (3.21)

with

µ(t) = m(t) +KtTL
ᵀ(LKTTL

ᵀ)−1(0− (Lm(T )−B))

= m(t)−KtTL
ᵀ(LKTTL

ᵀ)−1(Lm(T )−B), (3.22a)

and

Σ(t) = Ktt −KtTL
ᵀ(LKTTL

ᵀ)−1LKTt. (3.22b)

Spatio-temporal GP regression model

We extend the temporal GPR to the spatio-temporal variant by incorporating mul-
tiple initial values, where the state-space vector y(y0, t) = (y(y0, t), ẏ(y0, t))

ᵀ is
modeled as follows:

y(y0, t) ∼ GP(m(·), k(·, ·)). (3.23)
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3.3 Fully probabilistic approach

We define the input grid as Y0 × T where Y0 := {(y0)i}Mi=1 with M denoting the
number of initial values and T := {tj}Nj=1 with N denoting the number of times-
tamps. As the data are given in the form of a grid, the kernel can be factorized as
Kronecker-product:

k((Y0, T ), (Y0, T )) = ks(Y0, Y0)⊗ k∇t (T, T )

Note that the spatial kernel ks is given in Equation 3.9b and the differentiated
temporal kernel k∇t is shown in Equation 3.18. In the spatio-temporal setting, we
define the spatially stacked state-space vectors and the observations as follows:

y(Y0, T ) := [y(tj)]
N
j=1 ∈ R2MN (3.24a)

z(Y0, T ) := [z(tj)]
N
j=1 = 0 ∈ RMN (3.24b)

Consequently, the measurement model on the grid is also extended with the spatial
dimension, we have

z(Y0, T ) = L̃(T )y(Y0, T )− b̃(T ), (3.25)

where

L̃(T ) :=


L(T )

L(T )
. . .

L(T )

 = IM ⊗ L ∈ RMN×2MN (3.26a)

(3.26b)

b̃(T ) :=

b(t1) . . . b(tN)
...

. . .
...

b(t1) . . . b(tN)

 = [Bᵀ]Mi=1 ∈ RM×N

For the sake of readability, we denote L̃(T ) as L̃ and b̃(T ) as B̃. Analogous as in
the temporal GPR, the full posterior for t ∈ T, y0 ∈ Rd yields

p(y(y0, t)|z(Y0, T )) = N (µ(y0, t),Σ(y0, t)), (3.27)

where

µ(y0, t) = m(y0, t)− (Ky0Y0 ⊗KtT )L̃ᵀ(L̃(KY0Y0 ⊗KTT )L̃ᵀ)−1(L̃m(Y0, T )− B̃),
(3.28a)

Σ(y0, t) = (Ky0y0 ⊗Ktt)− (Ky0Y0 ⊗KtT )L̃ᵀ(L̃(KY0Y0 ⊗KTT )L̃ᵀ)−1L̃(KY0y0 ⊗KTt).
(3.28b)

Since calculating the inverse (L̃(KY0Y0 ⊗ KTT )L̃ᵀ)−1 in this spatio-temporal GP
regression model is of complexity O(M3N3), we seek approaches to solve this GPR
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more efficiently. Recall that the linear map L̃ can be factorized as the Kronecker
product of IM ⊗ L. Using the calculation rules of the Kronecker product, we can
further simplify the posterior mean and covariance as follows:

µ(y0, t) = m(y0, t)− (Ky0Y0 ⊗KtT )(IM ⊗ L)ᵀ

((IM ⊗ L)(KY0Y0 ⊗KTT )(IM ⊗ L)ᵀ)−1(L̃m(Y0, T )− B̃)

= m(y0, t)− (Ky0Y0 ⊗KtTL
ᵀ)(KY0Y0 ⊗ (LKTTL

ᵀ))−1(L̃m(Y0, T )− B̃)

= m(y0, t)− ((Ky0Y0K
−1
Y0Y0

)︸ ︷︷ ︸
=:Cs∈R1×M

⊗ (KtTL
ᵀ(LKTTL

ᵀ)−1)︸ ︷︷ ︸
=:Ct∈R1×N

) [Lm((y0)i, T )−B]Mi=1︸ ︷︷ ︸
∈RMN

?
= m(y0, t)−

M∑
i=1

(Cs)i(Ct(Lm((y0)i, T )−B))

= m(y0, t)−
M∑
i=1

(Cs)i(m((y0)i, t)− µ((y0)i, t)),

(3.29)
where

? : Ct(Lm((y0)i, T )−B) = m((y0)i, t)− µ((y0)i, t)

according to Equation 3.22a. As for the posterior covariance, we have:

Σ(y0, t) = (Ky0y0 ⊗Ktt)− (Ky0Y0 ⊗KtT )(IM ⊗ L)ᵀ

((IM ⊗ L)(KY0Y0 ⊗KTT )(IM ⊗ L)ᵀ)−1

(IM ⊗ L)(KY0y0 ⊗KTt)

= (Ky0y0 ⊗Ktt)− (Ky0Y0 ⊗KtTL
ᵀ)

(KY0Y0 ⊗ LKTTL
ᵀ)−1

(KY0y0 ⊗ LKTt)

= (Ky0y0 ⊗Ktt)− (Ky0Y0 ⊗KtTL
ᵀ)

(K−1
Y0Y0
⊗ (LKTTL

ᵀ)−1)

(KY0y0 ⊗ LKTt)

= (Ky0y0 ⊗Ktt)− (Ky0Y0K
−1
Y0Y0

KY0y0)⊗ (KtTL
ᵀ(LKTTL

ᵀ)−1LKTt)
?
= (Ky0y0 ⊗Ktt)− (Ky0Y0K

−1
Y0Y0

KY0y0)⊗ (Ktt − Σ(t))

= (Ky0y0 ⊗Ktt)− (Ky0Y0K
−1
Y0Y0

KY0y0)⊗Ktt + (Ky0Y0K
−1
Y0Y0

KY0y0)⊗ Σ(t)

= (Ky0y0 −Ky0Y0K
−1
Y0Y0

KY0y0)⊗Ktt + (Ky0Y0K
−1
Y0Y0

KY0y0)⊗ Σ(t)

= (Ky0y0 −Ky0Y0K
−1
Y0Y0

KY0y0) ·Ktt + (Ky0Y0K
−1
Y0Y0

KY0y0) · Σ(t)
(3.30)

where
? : KtTL

ᵀ(LKTTL
ᵀ)−1LKTt = Ktt − Σ(t)
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according to Equation 3.22b. We use Σ(t) to denote the smoothing variance at
time t because Σ((y0)it) remains the same for all (y0)i. Notice that after such
simplification, the time complexity for computing posterior reduces from O(M3N3)
to O(max(M3,MN)), which is significantly cheaper.

3.3.2 Non-linear ODE

Unlike the linear ODE, one cannot directly solve the non-linear ODE using a GPR
with the synthetic measurements {z}M,N

i,j=1 since the observation model cannot be
characterized in the form of a linear map. In this case, we need to introduce further
assumptions to approximate the posterior. We consider a two-step procedure:

p(y(y0, t)|z(Y0, T )) =

∫
p(y(y0, t)|y(Y0, t)) · p(y(Y0, t)|z(Y0, T ))dy(Y0, t), (3.31)

where the first term p(y(y0, t)|y(Y0, t)) represents the interpolation in the spatial
dimension and the second term p(y(Y0, t)|z(Y0, T )) denotes interpolation in the
temporal dimension, within the spatio-temporal GPR model.

Interpolation in time For a non-linear ODE, the second term p(y(Y0, t)|z(Y0, T ))
becomes intractable; hence, we approximate this term in two steps: Firstly, we omit
the correlation in the spatial dimension, which means

p(y(Y0, t)|z(Y0, T )) ≈
M∏
i=1

p(y((y0)i, t)|z((y0)i, T )). (3.32)

One may notice that the i-th factorized term p(y((y0)i, t)|z((y0)i, T )) is indeed the
full posterior returned by a single ODE solve, regarding the initial value (y0)i. This
fact leads to our second approximation: Computing the individual posteriors using
Extended Kalman Smoother (EKS). In this case, the posterior p(y((y0)i, t)|z((y0)i, T ))
is approximated by:

p(y((y0)i, t)|z((y0)i, T )) ≈ N (µS((y0)i, t),Σ
S((y0)i, t)), (3.33)

where µS((y0)i, t) and ΣS((y0)i, t) denote the smoothing mean and covariance, re-
spectively. This give rise to the approximation of the p(y(Y0, t)|z(Y0, T )):

p(y(Y0, t)|z(Y0, T )) ≈ N (µS(Y0, t),Σ
S(Y0, t)), (3.34)

where µS(Y0, t) = [µS((y0)i, t)]
M
i=1 and ΣS(Y0, t) = diag({ΣS((y0)i, t)}Mi=1) are the

stacked smoothing means and covariances.
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Interpolation in space After resolving the issue in the temporal dimension, we
still need to find the closed-form representation of the spatial interpolation:

p(y(y0, t)|y(Y0, t)) = N (µs(y0, t),Σs(y0, t)). (3.35)

For this, we consider the same GP as given in Subsection 3.2.2. The posterior is
characterized by the following mean and covariance:

µs(y0, t) = (Ky0Y0 ⊗Ktt)(KY0Y0 ⊗Ktt)
−1y(Y0, t), (3.36a)

Σs(y0, t) = (Ky0y0 ⊗Ktt)− (Ky0Y0 ⊗Ktt)(KY0Y0 ⊗Ktt)
−1(KY0y0 ⊗Ktt). (3.36b)

Applying the Kronecker-product calculation rules, we have:

µs(y0, t) = (Ky0Y0 ⊗Ktt)(K
−1
Y0Y0
⊗K−1

tt )y(Y0, t)

= ((Ky0Y0K
−1
Y0Y0

)⊗KttK
−1
tt︸ ︷︷ ︸

1

)y(Y0, t)

= Ky0Y0K
−1
Y0Y0

y(Y0, t), (3.37a)

Σs(y0, t) = (Ky0y0 ⊗Ktt)− (Ky0Y0 ⊗Ktt)(K
−1
Y0Y0
⊗K−1

tt )(KY0y0 ⊗Ktt)

= (Ky0y0 ⊗Ktt)− (Ky0Y0K
−1
Y0Y0

KY0y0)⊗Ktt

= (Ky0y0 −Ky0Y0K
−1
Y0Y0

KY0y0)⊗Ktt

= (Ky0y0 −Ky0Y0K
−1
Y0Y0

KY0y0) ·Ktt. (3.37b)

Posterior inference In summary, the posterior in Equation 3.31 can be approx-
imated as:

p(y(y0, t)|z(Y0, T )) ≈ N (µ̂(y0, t), Σ̂(y0, t))

=

∫
N (y(y0, t);µs(y0, t),Σs(y0, t))

· N (y(Y0, t);µ
S(Y0, t),Σ

S(Y0, t))dy(Y0, t),

(3.38)

where

µ̂(y0, t) = Ky0Y0K
−1
Y0Y0

µS(Y0, t), (3.39a)

Σ̂(y0, t) = (Ky0y0 −Ky0Y0K
−1
Y0Y0

KY0y0) ·Ktt +Ky0Y0K
−1
Y0Y0

ΣS(Y0, t)K
−1
Y0Y0

KY0y0 .

(3.39b)

It is noteworthy that for the linear ODE, we would arrive at the same expression
for the posterior mean if we employ the zero-mean function in Equation 3.29 since
the GPR posterior coincides with the smoothing posterior computed by EKS:

µ(y0, t) =
M∑
i=1

(Cs)iµ((y0)i, t) = Ky0Y0K
−1
Y0Y0

µ(Y0, t)︸ ︷︷ ︸
=µS(Y0,t)

, (3.40)
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3.3 Fully probabilistic approach

which means this approximated posterior mean is loss-free for linear ODEs. How-
ever, the expression for the posterior covariance of the approximate version differs
from the exact posterior covariance. Recall that the exact posterior covariance is:

Σ(y0, t) = (Ky0y0 −Ky0Y0K
−1
Y0Y0

KY0y0) ·Ktt + (Ky0Y0K
−1
Y0Y0

KY0y0) · Σ(t).

While the first term remains the same, the second term is different compared to
Σ̂(y0, t) given in Equation 3.39b. This approximation loss and its effect will be
further discussed in Chapter 4.

3.3.3 Integral inference

Recall that the objects of interest are

p(Ey0 [y(y0, t)]|D) = N (µE(t),ΣE(t)) and p(Vy0 [y(y0, t)]|D) = N (µV(t),ΣV(t)).

With the exact and approximated posterior for p(y(y0, t)|z(Y0, T )), we present the
posteriors for the expected value and variance of the ODE solutions.

Expected ODE solution and its estimated error

We compute the posterior for the expected ODE solution, which is characterized
by its posterior mean and covariance.

Exact inference for linear ODE We begin with the exact posterior inference
for linear ODEs. For the sake of simplicity, we employ the zero-mean function.
Recall that posterior mean and covariance in the linear case are in the form:

µ(y0, t) = Ky0Y0K
−1
Y0Y0

µ(Y0, t), (3.41a)

Σ(y0, t) = (Ky0y0 −Ky0Y0K
−1
Y0Y0

KY0y0) ·Ktt + (Ky0Y0K
−1
Y0Y0

KY0y0) · Σ(t). (3.41b)

Integrating the posterior mean and covariance against p(y0) over Rd, we have:

µE(t) = Iᵀk (Y0)K−1
Y0Y0

µ(Y0, t), (3.42a)

ΣV(t) = (I2
k − I

ᵀ
k (Y0)K−1

Y0Y0
Ik(Y0)) ·Ktt + Iᵀk (Y0)K−1

Y0Y0
Ik(Y0) · Σ(t), (3.42b)

where

Ik(Y0) =

∫
KY0y0p(y0)dy0, (3.43a)

and

I2
k =

∫ ∫
ks(y0, y

′
0)p(y0)p(y′0)dy0dy

′
0 (3.43b)

are the kernel mean and initial error, respectively.
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Approximated inference for non-linear ODE The approximated posterior
is given by:

µ̂(y0, t) = Ky0Y0K
−1
Y0Y0

µ̂(Y0, t),

Σ̂(y0, t) = (Ky0y0 −Ky0Y0K
−1
Y0Y0

KY0y0) ·Ktt +Ky0Y0K
−1
Y0Y0

Σ̂(Y0, t)K
−1
Y0Y0

KY0y0 ,

which give rise to

µE(t) = Iᵀk (Y0)K−1
Y0Y0

µ̂(Y0, t), (3.45a)

ΣE(t) = (I2
k − I

ᵀ
k (Y0)K−1

Y0Y0
Ik(Y0)) ·Ktt + Iᵀk (Y0)K−1

Y0Y0
Σ̂(Y0, t)K

−1
Y0Y0

Ik(Y0), (3.45b)

Variance of ODE solutions and its estimated error

The probability distribution of the variance (see Equation 3.6b) is computed analo-
gously to the expected ODE solution. Although the posterior will not be a GP, but
instead a non-central χ2−process, we imposed the Gaussianity into the variance
for tractability. As shown in Equation 3.5, the resulted variance is composed of
two resources: The local smoothing variance for each time point and the global
variance among all of the smoothing means. Inspired by this fact, we design our
observations as

µ̂V (Y0, t) := Σ̂(Y0, t) + (µ̂(Y0, t)− µE(t))2. (3.46)

Therefore, the corresponding posterior mean for V(t) is summarized as:

µV(t) = Iᵀk (Y0)K−1
Y0Y0

µ̂V (Y0, t). (3.47)

Since the posterior covariance in BC is invariant to the observations, the estimated
error for the variance ΣV(t) has the same form as the posterior variance given in
Equation 3.42b and 3.45b, for both linear and non-linear cases.

We name this fully probabilistic spatio-temporal factorized Bayesian Cubature
STFBC. In this thesis, we refer to the exact approach for linear ODEs as e-STFBC.
For the non-linear ODEs, we derived an approximate version which is termed a-
STFBC.

3.3.4 Pre-defined integration points

By default, one chooses the integration locations, in our context, the initial values,
randomly. Inspired by the design of classic numerical integration rules, we question
whether our STFBC benefits from the pre-defined integration locations (aka sigma
points). To answer this question, we apply the design rule of sigma points in
spherical cubature integration (Särkkä, 2013, Section 6.5) into our setting:
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3.3 Fully probabilistic approach

The unit sigma points are computed as:

ξi =

{√
dei i = 1, . . . , d

−
√
dei−d i = d+ 1, . . . , 2d

(3.48)

where ei denotes the unit vector in the direction of coordinate axis i. The effect of
the use of pre-defined sigma points will be shown in Chapter 4.
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Chapter 4

Experiments and Analysis

This chapter presents the results and analysis of different experiments. We first
evaluate the performance of our fully probabilistic STFBC approaches on various
types of ODEs. Next, we compare how the number of ODE solves affects the
residual error returned by Koopman Expectation (Gerlach et al., 2020) and STFBC.
Afterward, we focus on the internal characteristics of the STFBC algorithm and
provide qualitative analysis for the uncertainty calibration.

4.1 Implementation details

As shown in Chapter 3, both non-PN and PN approaches to compute the expected
value and variation of the ODE solutions require an ODE solver and integration
tools. The ODE solvers used in this thesis are taken from ProbNum1. By de-
fault, we employ the WrappedScipyRungeKutta as the non-PN ODE solver and
ExtendedKalmanSmoother(“EK1”) with order 2 as our PN-solver. In terms of in-
tegration rules, we chose the Cubature2 method for the non-PN case, and build our
PN integration methods based on NumPy.

For all experiments shown in this Chapter, the root-mean-square error (RMSE) is
computed between the point estimates from the algorithms above and the empirical
mean from ODE solutions w.r.t. 105 Monte Carlo samples of initial values. We refer
to these MC results as baselines.

4.2 Performance evaluation

This section evaluates the performance of STFBC based on various ODEs. We first
show the results computed by e-STFBC on a time-invariant linear ODE. Then we
solve non-linear systems with a-STFBC and present the outputs, compared to a
baseline given by Monte Carlo.

1ProbNum: https://github.com/probabilistic-numerics
2Cubature: https://github.com/saullocastro/cubature
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Chapter 4 Experiments and Analysis

Linear ODE

We begin with a time-invariant linear ODE, as defined in Chapter 1. Figure 4.1a
shows the results computed by the e-STFBC, where we choose a = b = −1,m0 =
1, σ2

0 = 0.1. The step size of the PN solver is fixed with h = 0.05. Note that both
the integral mean and the error bar approximate the analytical solution well.
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Figure 4.1: Left : Results given by e-STFBC on the time-invariant linear ODE. Right :
Comparison of the numerical uncertainties returned by e-STFBC and a-STFBC, regard-
ing different step sizes.

In addition to the performance, we question what kind of information loss was
caused by the approximation in a-STFBC. As discussed in Section 3.3, the posterior
mean given by a-STFBC is loss-free, when we employ a zero-mean prior function
in e-STFBC. The only difference lies in the estimated numerical uncertainties in
the computation, namely the covariance ΣE(t) in the posterior distribution:

Ey0 [y(y0, t)] ∼ N (µE(t),ΣE(t)).

Figure 4.1b compares the estimated numerical uncertainties of both exact and ap-
proximate approaches, concerning various time steps. As can be seen, the estimated
uncertainty given by a-STFBC is lower than that from e-STFBC, for all step sizes
h = 0.01, 0.1, 0.5, 1.0. Although the magnitude of the difference between the two
estimated uncertainties remains similar from a relative angle, the absolute discrep-
ancy could be reduced by selecting smaller step sizes.

Non-linear ODEs

This part presents the performance evaluation of the a-STFBC on different dy-
namical systems. Table 4.1 summarizes the details of these ODEs, including the
corresponding vector fields, the distribution of the initial value, and the parameter
setting. The values in the parameter tuples are ordered alphabetically (a, b, . . . ).

32



4.3 Data efficiency

For the ODE solver, we employed a constant step size h = 0.05 for the logistic
equation and Lotka-Volterra system, and h = 0.1 for Fitzhugh-Nagumo and Van
der Pol.

Table 4.1: Details about the ODEs: Including the vector fields, distribution of the initial
values and the parameter settings. Id denotes the identity matrix of dimension d.
ODE Vector field p(y0) parameters
Logistic f(t, y) = ay(1− y/b) N (0.05, 10−4) (3, 3)

Fitzhugh-Nagumo f(t, y) =

[
y1 − 1/3y3

1 − y2 + a
1/d(y1 + b− cy2)

]
N ([0.5, 1]ᵀ, 0.1 · I2) (0, 0.08, 0.07, 1.25)

Lokta-Volterra f(t, y) =

[
ay1 − by1y2

−cy2 + dy1y2

]
N ([5, 5]ᵀ, 0.3 · I2) (5, 0.5, 5, 0.5)

Van der Pol f(t, y) =

[
y2

a · (1− y2
1)y2 − y1

]
N ([5, 5]ᵀ, 2 · I2) (0.05)

Figure 4.2 depicts the estimated mean of the ODE solutions µ and the 95%-
confidence interval (±1.96σ) over time, given an uncertain initial value. We com-
puted the empirical mean and standard deviation from 105 Monte Carlo samples
as the baseline (displayed by ). The counterpart (denoted by ) represents the
output from our a-STFBC. As can be seen, for all ODEs, our approach produces
considerably accurate integral mean estimates, and the error bar of a-STFBC also
reflects the ground truth variation reasonably well. This fact indicates that the
performance of a-STFBC is insensitive to the choice of ODEs.

4.3 Data efficiency

Computing the expected value requires multiple solves regarding various initial val-
ues, which may introduce drastic computational overhead. Therefore, efficient inte-
gral approximation with possibly fewer data points is desirable. First, we compare
the performance of our probabilistic numerical STFBC and the non-PN Koopman
Expectation approach concerning different numbers of integration points. After
that, we investigate the possible improvement to STFBC introduced by the use of
pre-defined sigma points (see Equation 3.48).

Convergence rate concerning the number of integration points

To investigate the data efficiency of STFBC and Koopman Expectation, we provide
the convergence rates regarding the number of integration points of both approaches
in Figure 4.3. The convergence rate is displayed by the drop of the root mean
squared error (RMSE) of the expected ODE solution w.r.t. the number of ODE
solves. The setting for step sizes follows that from Section 4.2. Since Koopman
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Figure 4.2: Performance of a-STFBC. Expected ODE solution and the propagated
uncertainty computed by a-STFBC ( ), compared to the Monte Carlo baseline ( )
from 105 sample solves

Expectation utilizes the classic integration rule hcubrature()3, where the number
of integration points cannot be freely chosen, observations are only available at
limited locations. One can see in Figures 4.3a and 4.3b that Koopman Expectation
marginally surpassed STFBC in the one-dimensional case. However, when dealing
with multi-dimensional ODEs, STFBC outperformed Koopman Expectation, as
shown in Figures 4.3c and 4.3d.

Pre-defined integration points

This section investigates the effect of using pre-defined integration points (sigma
points) on the performance of STFBC instead of using randomly sampled integra-
tion locations. We experiment on both one-dimensional (Logistic Equation) and
multi-dimensional (Fitzhugh-Nagumo) ODEs. Figure 4.4 shows the superiority of

3http://ab-initio.mit.edu/wiki/index.php/Cubature_(Multi-dimensional_

integration)
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4.4 Error trade-off
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Figure 4.3: Comparison of convergence rates of STFBC and Koopman Expectation. The
plot shows the averaged RMSEs over five independent runs with different seeds, with an
error bar representing the standard deviation.

the use of pre-defined sigma points compared to the random locations of integra-
tion. The RMSE, when integrating over the pre-defined sigma points, turns out to
be a lower bound of the RMSEs with the same number of randomly chosen solves
(i.e., using 2d integration points where d denotes the dimensionality).

4.4 Error trade-off

In the context of PN, numerical uncertainties are represented by posterior covari-
ances. For the expected ODE solution, this is given by:

ΣE(t) = ((I2
k − I

ᵀ
k (Y0)K−1

Y0Y0
Ik(Y0)) ·Ktt︸ ︷︷ ︸

uncertainty from integration

) + Iᵀk (Y0)K−1
Y0Y0

Σ̂(Y0, t)K
−1
Y0Y0

Ik(Y0)︸ ︷︷ ︸
uncertainty from ODE solver

, (4.1)

where Ik, I
2
k denotes the kernel mean and initial error in the spatial dimension,

respectively (see Equation 3.43). We define the estimated error as the square-root
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Figure 4.4: Comparison of qualitative effectiveness of pre-defined sigma points and the
same number of randomly chosen integration locations using STFBC. The boxplots are
constructed from ten independent runs.

of the posterior covariance:
σE(t) :=

√
ΣE(t). (4.2)

As can be seen, the estimated error of the expected value is decomposed into two
sources of computational errors: Errors from the integration, which is introduced
from the Bayesian cubature, and errors from the ODE solver, which originates from
the Extended Kalman Smoothing. For the error from integration, the number of
ODE solves plays a central role, whereas the step size affects the accuracy of the
error from ODE solver directly. This section explores the underlying error trade-off
within the STFBC approach, given different numbers of solves n and step sizes h.

The experiments are performed on the Lotka-Volterra system. Figure 4.5 displays
the heat map of the RMSE and estimated numerical errors σE of the expected ODE
solution. The number of solves ranges from 5 to 45, and the step sizes are equally
distanced between 0.05 and 0.15. Although the a-STFBC tends to underestimate
the RMSE globally, similar patterns can be observed from both plots: In general,
the error declines with increasing numbers of solves and decreasing step sizes. When
the number of solves is not sufficient (e.g., n = 5, ..., 10), the error does not decrease
further despite smaller step sizes. Similar observations can be made at a large step
size h = 0.15, where the RMSE arrived at its lowest level with around 17 solves;
adding more integration points does not improve the error. To conclude, when
there is only a limited number of solves available (this case could happen in solving
highly complex ODEs due to limited computational budget), we anticipate the
error from integration would dominate the error from ODE solver. In this case,
using extremely small step sizes to solve ODEs might not be helpful to improve the
accuracy of the approach but produces more computational overhead.

To further investigate how the previously mentioned error sources constitute the
overall error, we visualize the RMSE and the estimated error across a subset of step
sizes and numbers of solves. As can be seen in Figure 4.6, for all number of solves
n, the RMSE drops linearly w.r.t. the step size when the magnitude of the step
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size is relatively large. Since the plot is shown in the log-log space, this indicates
that the RMSE converges in polynomial rate, which coincides with the property
of filtering-based ODE solvers (Kersting et al., 2020; Krämer and Hennig, 2020;
Tronarp et al., 2021). However, the RMSE saturates at some point. We assume
this is where the error from integration starts to contribute an overwhelming part
to the overall error, compared to the error from the ODE solver. A similar effect
can also be observed in the estimated errors, as shown in the right subfigure.

4.5 Uncertainty calibration

Under the frame of probabilistic approaches, we are primarily interested in how
well the uncertainty is calibrated; in other words, to which extent can the output
variance reflect the deviation of the point estimates from the ground truth. In this
section, we concentrate on the estimated uncertainty around the expected ODE
solution (see Equation 4.1).

To measure the quality of the calibrated uncertainties, we employ the χ2-statistics
(Bar-Shalom et al., 2004):

χ2 =
1

N
(Ey0(y(y0, t))− µE(t))ᵀΣE(t)−1(Ey0(y(y0, t))− µE(t)), (4.3)

where Ey0(y(y0, t)) denotes the baseline of the expected ODE solution, µE(t),ΣE(t)
the posterior mean and covariance returned by STFBC. N denotes the size of the
time grid. For well-calibrated models, it holds that χ2 ≈ d, where d denotes the
dimensionality of the ODE. When χ2 � d, the calibration is considered to be
overconfident, which means the actual error is much higher than the estimated
error. χ2 � d indicates that the model is underconfident.

Figure 4.7 visualizes the fitness of the uncertainty calibration and the actual
RMSEs across different configurations. These values are computed by the a-STFBC
approach with pre-defined sigma points, regarding step sizes ranging from 0.005 to
1.0 for the Logistic Equation and from 0.005 to 0.15 for the Lotka-Volterra system.
The step sizes are also reflected by the size of the markers in the plots.

As can be seen, our a-STFBC approach calibrates the uncertainties reasonably
well for both one-dimensional (Logistic Equation) and multi-dimensional (Lotka-
Volterra) ODEs, when the step sizes are chosen adequately. For both ODEs, the
model tends to be overconfident when the step sizes are extremely large. When the
error from the ODE solver outweighs the error from integration by a factor of ×10
(depicted as green), our plots show similar behavior as the uncertainty calibration
of PN solver (see Bosch et al., 2021, Appendix). However, while Bosch et al. (2021)
showed that the χ2-statistics decrease further with smaller step sizes, these values
returned by a-STFBC do not seem to reflect this (see the orange dots). As one can
observe, the χ2-statics of the orange dots show a slight tendency to grow when the
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Figure 4.7: Uncertainty calibration cross configurations. Experiments are conducted on
the Logistic equation and Lotka-Volterra system. Results are computed by a-STFBC
using pre-defined sigma points concerning various step sizes, which are reflected by the
marker size. Configurations with χ2 inside the 95% confidence interval are considered
well-calibrated ( ). Orange dots denotes where the estimated error from integration
outweighs that from ODE solver and the green dots describes the other case.

step size further decreases. The reason for this phenomenon lies in the trade-off
between estimated errors from the ODE solver and integration: When the step
size gets smaller, the contribution of estimated error from the ODE solver to the
overall estimated error diminishes gradually. However, since the estimated error
from integration is invariant to step sizes, this value remains stable even when
the step size further decreases. As a result, the overall estimated error drops to a
comparable level as the error from integration. At the same time, the actual RMSE
does not change a lot due to the limited number of integration points. Therefore,
the χ2-statistics slowly rises.
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Chapter 5

Conclusion and Future Work

This thesis dealt with the expected ODE solutions and the uncertainty propagation
over time, given uncertainties in initial values or parameters. We begin with an
existing approach where only point estimates are considered: Gerlach et al. (2020)
leverages the Koopman operator and employs non-PN integration algorithms with
non-PN ODE solver as the integrand to compute the desired output. However, this
approach ignores the discretization error from both solving ODEs and computing
integrals. To take the computational uncertainty in the ODE solver into consider-
ation, one could combine the PN ODE solver with the non-PN integration rules. If
only a limited number of integration points (solves) are available, it might be a good
choice to apply the Bayesian integration tools to quantify the discretization errors.
However, none of these approaches captures the total epistemic uncertainties pro-
duced during the computation of the expected ODE solution and the uncertainty
propagation. Thus, in this thesis, we proposed a novel fully probabilistic approach
with the assumption of gaussianity for most of the objects in our computational
pipeline.

For the derivation of the fully probabilistic approach, we start with a linear ODE.
For such ODEs, we can reformulate a single ODE solve with a fixed initial value as
a Gaussian process regression, as remarked by Schober et al. (2019); Tronarp et al.
(2021). Afterward, we extend this temporal GPR into a spatio-temporal case,
where multiple initial values are considered simultaneously. Unfortunately, the
spatio-temporal GPR introduces prohibitive computational cost because it consid-
ers an input grid of M initial values and N time stamps, which requires O(M3N3)
for inverting the kernel covariance matrix. Therefore, we explored and discussed
possibilities to alleviate such computational overhead. To take advantage of the
individual probabilistic ODE solves, which only takes linear time complexity, we
exploit the calculation rules from the Kronecker product to reuse the posterior mean
and covariance given by the PN ODE solver. Based on the Kronecker product rules,
we derived the closed-form solution for linear ODEs. We name this approach e-
STFBC. However, when confronting a non-linear ODE, one cannot directly solve
the ODE with a GPR due to the non-linearity in the measurement model; thus, the
e-STFBC does not apply. As a result, we need to approximate the object of interest:
Considering a two-step factorization with interpolation in time and space, omitting
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the correlation in the given initial value grid, and utilizing the Extended Kalman
Smoothing from PN solver, we successfully arrived at an approximated posterior
for the expected ODE solution Ey0 [y(y0, t)]. We refer to this approximate approach
as a-STFBC. As for the posterior of the propagated uncertainty Vy0 [y(y0, t)], we
enforced this quantity to be Gaussian for tractability. There are several ways to
improve STFBC, potentially from both perspectives of mathematical explainability
and performance. For instance, Gunter et al. (2014) offered a square-root trans-
formed BQ approximation using linearization and moment-matching; Prüher and
Straka (2017) provided a closed-form solution of moment transform based on the
law of total variance. Integrating these methods into the current framework to
compute the closed-form posterior for the variance Vy0 [y(t)] might be interesting
for future work.

We showed the usefulness of the e-STFBC approach on a linear ODE and dis-
cussed the information loss introduced by the approximated version. It was proven
that the posterior mean given by a-STFBC coincides with the posterior mean of e-
STFBC; both approaches only differ in the estimated numerical uncertainties. We
compared the numerical uncertainties returned by e-STFBC and a-STFBC using
various step sizes. It is shown that the discrepancy in the estimated error diminishes
with decreasing step sizes in an absolute sense.

To evaluate and analyze the STFBC approaches, we compare the returned point
estimates to the Monte Carlo baseline, computed using 105 sampled ODE solutions.
STFBC turns out to be able to produce considerably accurate point estimates for
the expected ODE solution and reasonably good fits for the variance over time.
Next, we visualize the convergence rates of STFBC and Koopman Expectation
regarding the number of integration points. The empirical results showed that
STFBC outperformed Koopman Expectation in the multivariate case. In addition,
we explored other possibilities of improving the data efficiency of STFBC: Instead of
randomly choosing the integration points, one could solve the ODEs at pre-defined
integration locations (aka sigma points), which are given in spherical cubature
integration (Särkkä, 2013). We showed that the performance with sigma points
generally surpasses the method that uses randomly chosen integration points.

Since our computation process consists of ODE solving and integration, we need
to consider the numerical uncertainties from both aspects. Of particular interest is
the trade-off between errors from ODE solving and errors from integration. There-
fore, we visualized the development of the RMSE and the estimated uncertainties
returned by a-STFBC regarding a grid of different numbers of solves n and step
sizes h. Our results show that RMSE and estimated errors decrease when the step
sizes are relatively large but saturate as the step sizes get smaller. This fact hints
that when only a limited number of ODE solves are available, it might not be help-
ful to choose extremely small step sizes of the ODE solver because the error from
integration will dominate and cannot be reduced by smaller step sizes.

To access the quality of the uncertainty returned by a-STFBC, we calculated
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the χ2-statistics for various configurations, regrading different step sizes. Exper-
iments are conducted on both one-dimensional (the logistic equation) and multi-
dimensional (Lotka-Volterra system) ODEs. In both cases, the uncertainties seem
to be well-calibrated for adequate step sizes. Besides, we discovered that when the
step sizes are large, the behavior of a-STFBC aligns with the observation about
the PN solver in Bosch et al. (2021) since the error from the ODE solver dominates
over the error from integration. On the other hand, when the step sizes are small,
the overall estimated error would gradually fall to the same magnitude as the error
from integration, which results in a slight rise in the χ2-statistics.
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Abbreviations

PN Probabilistic numerics/numerical
ODE Ordinary Differential Equation
IVP Initial value problem
GP Gaussian Process
GPR Gaussian Process Regression
BQ Bayesian Quadrature
BC Bayesian Cubature
NC Numerical Cubature
EKF Extended Kalman Filter
EKS Extended Kalman Smoothing
RK Runge-Kutta
TS Taylor series
RMSE Root-mean-square error
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