
Probabilistic Inference and Learning
Lecture 05

Markov Chain Monte Carlo

Philipp Hennig
03 May 2021

Faculty of Science
Department of Computer Science
Chair for the Methods of Machine Learning

https://youtu.be/1MRY6Ruu6RU?list=TLPQMDQwNTIwMjAo-GBORSobsw

date content Ex # date content Ex

1 20.04. Introduction 1 14 09.06. Logistic Regression 8
2 21.04. Reasoning under Uncertainty 15 15.06. Exponential Families
3 27.04. Continuous Variables 2 16 16.06. Graphical Models 9
4 28.04. Monte Carlo 17 22.06. Factor Graphs
5 04.05. Markov Chain Monte Carlo 3 18 23.06. The Sum-Product Algorithm 10
6 05.05. Gaussian Distributions 19 29.06. Example: Topic Models
7 11.05. Parametric Regression 4 20 30.06. Mixture Models 11
8 12.05. Understanding Deep Learning 21 06.07. EM
9 18.05. Gaussian Processes 5 22 07.07. Variational Inference 12

10 19.05. An Example for GP Regression 23 13.07. Example: Topic Models
11 25.05. Understanding Kernels 6 24 14.07. Example: Inferring Topics 13
12 26.05. Gauss-Markov Models 25 20.07. Example: Kernel Topic Models

13 08.06. GP Classification 7 26 21.07. Revision

Probabilistic ML — P. Hennig, SS 2021 — Lecture 05: Markov Chain Monte Carlo— © Philipp Hennig, 2021 CC BY-NC-SA 3.0 1

https://youtu.be/1MRY6Ruu6RU?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=14

F :=

∫
f(x)p(x) dx ≈ 1

N

N∑
i=1

f(xi) =: F̂ if xi ∼ p

Ep(F̂) = F varp(F̂) =
varp(f)

N
Recap from last lecture:
▶ Random numbers can be used to estimate integrals _ Monte Carlo algorithms
▶ although the concept of randomness is fundamentally unsound, Monte Carlo algorithms are

competitive in high dimensional problems (primarily because the advantages of the alternatives
degrade rapidly with dimensionality)

Probabilistic ML — P. Hennig, SS 2021 — Lecture 05: Markov Chain Monte Carlo— © Philipp Hennig, 2021 CC BY-NC-SA 3.0 2

https://youtu.be/1MRY6Ruu6RU?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=71

But in High Dimensions, Sampling isn’t Easy, Either!
Sampling is harder than global optimization

To produce exact samples:
▶ need to know cumulative density everywhere
▶ need to know regions of high density (not just local maxima!)
▶ a global description of the entire function

Practical Monte Carlo Methods aim to construct samples from

p(x) =
p̃(x)
Z

assuming that it is possible to evaluate the unnormalized density p̃ (but not p) at arbitrary points.
Typical example: Compute moments of a posterior

p(x | D) = p(D | x)p(x)∫
p(D, x) dx

as Ep(x|D)(xn) ≈
1
S
∑
s

xni with xi ∼ p(x | D)

Probabilistic ML — P. Hennig, SS 2021 — Lecture 05: Markov Chain Monte Carlo— © Philipp Hennig, 2021 CC BY-NC-SA 3.0 3

https://youtu.be/1MRY6Ruu6RU?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=258

Rejection Sampling
a simple method [Georges-Louis Leclerc, Comte de Buffon, 1707–1788]

−4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

▶ for any p(x) = p̃(x)/Z (normalizer Z not required)
▶ choose q(x) s.t. cq(x) ≥ p̃(x)
▶ draw s ∼ q(x), u ∼ Uniform[0, cq(s)]
▶ reject if u > p̃(s)

Probabilistic ML — P. Hennig, SS 2021 — Lecture 05: Markov Chain Monte Carlo— © Philipp Hennig, 2021 CC BY-NC-SA 3.0 4

https://youtu.be/1MRY6Ruu6RU?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=298

The Problem with Rejection Sampling
the curse of dimensionality [MacKay, §29.3]

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

x

p(
x)

p(x)
cq(x)

Example:
▶ p(x) = N (x; 0, σ2

p)

▶ q(x) = N (x; 0, σ2
q)

▶ σq > σp

▶ optimal c is given by

c =
(2πσ2

q)
D/2

(2πσ2
p)D/2

=

(
σq

σp

)D

= exp
(
D ln

σq

σp

)
▶ acceptance rate is ratio of volumes: 1/c
▶ rejection rate rises exponentially in D
▶ for σq/σp = 1.1, D = 100, 1/c < 10−4

Probabilistic ML — P. Hennig, SS 2021 — Lecture 05: Markov Chain Monte Carlo— © Philipp Hennig, 2021 CC BY-NC-SA 3.0 5

https://youtu.be/1MRY6Ruu6RU?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=345

Importance Sampling
a slightly less simple method

▶ computing p̃(x), q(x), then throwing them away seems wasteful
▶ instead, rewrite (assume q(x) > 0 if p(x) > 0)

ϕ =

∫
f(x)p(x) dx =

∫
f(x)

p(x)
q(x)

q(x) dx

≈ 1
S
∑
s

f(xs)
p(xs)
q(xs)

=:
1
S
∑
s

f(xs)ws if xs ∼ q(x)

▶ this is just using a new function g(x) = f(x)p(x)/q(x), so it is an unbiased estimator
▶ ws is known as the importance (weight) of sample s
▶ if normalization unknown, can also use p̃(x) = Zp(x)∫

f(x)p(x) =
1
Z
1
S
∑
s

f(xs)
p̃(xs)
q(xs)

dx

=
1
S
∑
s

f(xs)
p̃(xs)/q(xs)

1
S
∑

s′ 1p̃(xs)/q(xs)
=:

∑
s

f(xs)w̃s

▶ this is consistent, but biased
Probabilistic ML — P. Hennig, SS 2021 — Lecture 05: Markov Chain Monte Carlo— © Philipp Hennig, 2021 CC BY-NC-SA 3.0 6

https://youtu.be/1MRY6Ruu6RU?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=372

What’s wrong with Importance Sampling?
the curse of dimensionality, revisited

▶ recall that var ϕ̂ = var(f)/S — importance sampling replaces var(f) with var(g) = var
(
f pq
)

▶ var
(
f pq
)
can be very large if q ≪ p somewhere. In many dimensions, usually all but everywhere!

▶ if p has “undiscovered islands”, some samples have p(x)/q(x)_∞

−2 0 2 4 6 8
x

p(x)
q(x)
w(x)

−20 0 20 40 60 80 100
0

1

2

3

4

f(x), g(x)
lo
g 1

0
sa

m
pl
e
co

un
t

Probabilistic ML — P. Hennig, SS 2021 — Lecture 05: Markov Chain Monte Carlo— © Philipp Hennig, 2021 CC BY-NC-SA 3.0 7

https://youtu.be/1MRY6Ruu6RU?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=413

Summary: Simple Practical Monte Carlo Methods
1. Producing exact samples is just as hard as high-dimensional integration. Thus, practical MC

methods sample from a unnormalized density p̃(x) = Z · p(x)
2. even this, however, is hard. Because it is hard to build a globally useful approximation to the

integrand

Probabilistic ML — P. Hennig, SS 2021 — Lecture 05: Markov Chain Monte Carlo— © Philipp Hennig, 2021 CC BY-NC-SA 3.0 8

https://youtu.be/1MRY6Ruu6RU?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=570

Markov-Chain Monte Carlo
random walks drawing random numbers

▶ problem of importance sampling: samples generated independently, requires q good
approximation to p everywhere.

▶ instead: generate samples iteratively, approximation q only needs to be good locally

Definition (Markov Chains)

A joint distribution p(X) over a sequence of random variabels X := [x1, . . . , xN] is said to have the
Markov property if

p(xi | x1, x2, . . . , xi−1) = p(xi | xi−1).

The sequence is then called aMarkov chain.

x1 x2 x3 x4

Probabilistic ML — P. Hennig, SS 2021 — Lecture 05: Markov Chain Monte Carlo— © Philipp Hennig, 2021 CC BY-NC-SA 3.0 9

https://youtu.be/1MRY6Ruu6RU?list=TLPQMDQwNTIwMjAo-GBORSobsw&t=681

An analogy
optimization

assume we wanted to find the maximum of p̃(x)
▶ given current estimate xt
▶ draw proposal x′ ∼ q(x′ | xt)
▶ evaluate

a =
p̃(x′)
p̃(xt)

▶ if a ≥ 1, accept: xt+1 ^ x′

▶ else stay: xt+1 ^ xt

Usually, throw away estimates at the end, only keep “best guess”. But the estimates do contain
information about the shape of p̃!

Probabilistic ML — P. Hennig, SS 2021 — Lecture 05: Markov Chain Monte Carlo— © Philipp Hennig, 2021 CC BY-NC-SA 3.0 10

https://youtu.be/1MRY6Ruu6RU?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=933

The Metropolis-Hastings∗ Method
∗ Authorship controversial. Likely inventors: M. Rosenbluth, A. Rosenbluth & E. Teller, 1953

we want to find representers (samples) of p̃(x)
▶ given current sample xt
▶ draw proposal x′ ∼ q(x′ | xt) (for example, q(x′ | xt) = N (x′; xt, σ2))
▶ evaluate

a =
p̃(x′)
p̃(xt)

q(xt | x′)
q(x′ | xt)

▶ if a ≥ 1, accept: xt+1 ^ x′

▶ else
▶ accept with probability a: xt+1 ^ x′
▶ stay with probability 1− a: xt+1 ^ xt

Usually, assume symmetry q(xt | x′) = q(x′ | xt) (the Metropolis method)
▶ no rejection. Every sample counts!
▶ like optimization, but with a chance to move downhill

Probabilistic ML — P. Hennig, SS 2021 — Lecture 05: Markov Chain Monte Carlo— © Philipp Hennig, 2021 CC BY-NC-SA 3.0 11

https://youtu.be/1MRY6Ruu6RU?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=1174

Metropolis-Hastings in pictures
t = 1

−1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

x

p,
q

p(x)
q(x)

a =
p̃(x′)
p̃(xt)

q(xt | x′)
q(x′ | xt)

accept with p = min(1, a)

Probabilistic ML — P. Hennig, SS 2021 — Lecture 05: Markov Chain Monte Carlo— © Philipp Hennig, 2021 CC BY-NC-SA 3.0 12

https://youtu.be/1MRY6Ruu6RU?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=1453

Metropolis-Hastings in pictures
t = 2

−1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

x

p,
q

p(x)
q(x)

a =
p̃(x′)
p̃(xt)

q(xt | x′)
q(x′ | xt)

accept with p = min(1, a)

Probabilistic ML — P. Hennig, SS 2021 — Lecture 05: Markov Chain Monte Carlo— © Philipp Hennig, 2021 CC BY-NC-SA 3.0 12

https://youtu.be/1MRY6Ruu6RU?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=1568

Metropolis-Hastings in pictures
t = 3

−1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

x

p,
q

p(x)
q(x)

a =
p̃(x′)
p̃(xt)

q(xt | x′)
q(x′ | xt)

accept with p = min(1, a)

Probabilistic ML — P. Hennig, SS 2021 — Lecture 05: Markov Chain Monte Carlo— © Philipp Hennig, 2021 CC BY-NC-SA 3.0 12

https://youtu.be/1MRY6Ruu6RU?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=1652

Metropolis-Hastings in pictures
t = 4

−1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

x

p,
q

p(x)
q(x)

a =
p̃(x′)
p̃(xt)

q(xt | x′)
q(x′ | xt)

accept with p = min(1, a)

Probabilistic ML — P. Hennig, SS 2021 — Lecture 05: Markov Chain Monte Carlo— © Philipp Hennig, 2021 CC BY-NC-SA 3.0 12

https://youtu.be/1MRY6Ruu6RU?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=1693

Metropolis-Hastings in pictures
t = 5

−1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

x

p,
q

p(x)
q(x)

a =
p̃(x′)
p̃(xt)

q(xt | x′)
q(x′ | xt)

accept with p = min(1, a)

Probabilistic ML — P. Hennig, SS 2021 — Lecture 05: Markov Chain Monte Carlo— © Philipp Hennig, 2021 CC BY-NC-SA 3.0 12

https://youtu.be/1MRY6Ruu6RU?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=1710

Metropolis-Hastings in pictures
t = 300

−1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

x

p,
q

p(x)
q(x)

a =
p̃(x′)
p̃(xt)

q(xt | x′)
q(x′ | xt)

accept with p = min(1, a)

Probabilistic ML — P. Hennig, SS 2021 — Lecture 05: Markov Chain Monte Carlo— © Philipp Hennig, 2021 CC BY-NC-SA 3.0 12

https://youtu.be/1MRY6Ruu6RU?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=1718

Visualization
by Chi Feng https://github.com/chi-feng

https://chi-feng.github.io/mcmc-demo/app.html#RandomWalkMH

Probabilistic ML — P. Hennig, SS 2021 — Lecture 05: Markov Chain Monte Carlo— © Philipp Hennig, 2021 CC BY-NC-SA 3.0 13

https://youtu.be/1MRY6Ruu6RU?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=1803

Why is this a Monte Carlo Method?
MH draws from p(x) in the limit of∞ samples

Theorem (convergence of Metropolis-Hastings, simplified)

If q(x′ | xt) > 0 ∀(x′, xt), then, for any x0, the distribution of xt approaches p(x) as t_∞.

proof (sketch) existence of stationary distribution: detailed balance
▶ MH satisfies detailed balance

p(x)T(x_ x′) = p(x) · q(x′ | x)min
[
1,

p(x′)q(x | x′)
p(x)q(x′ | x)

]
= min[p(x)q(x′ | x), p(x′)q(x | x′)]

= p(x′) · q(x | x′)min
[
p(x)q(x′ | x)
p(x′)q(x | x′)

, 1
]

= p(x′)T(x′ _ x)

▶ Markov Chains satisfying detailed balance have at least one stationary distribution∫
p(x)T(x_ x′) dx =

∫
p(x′)T(x′ _ x) dx = p(x′)

∫
T(x′ _ x) dx = p(x′)

Probabilistic ML — P. Hennig, SS 2021 — Lecture 05: Markov Chain Monte Carlo— © Philipp Hennig, 2021 CC BY-NC-SA 3.0 14

https://youtu.be/1MRY6Ruu6RU?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=1984

Why is this a Monte Carlo Method?
MH draws from p(x) in the limit of∞ samples

proof (sketch) uniqueness of stationary distribution:

Definition (Ergodicity)

A sequence {xt}t∈N is called ergodic if it
1. is a-periodic (contains no recurring sequence)
2. has positive recurrence: xt = x∗ implies there is a t′ > t such that p(xt′ = x∗) > 0

_ for MH, {xt}t∈N is ergodic (by definition)
▶ ergodic Markov Chains have at most one stationary distribution

Theorem (convergence of Metropolis-Hastings, simplified)

If q(x′ | xt) > 0 ∀(x′, xt), then, for any x0, the density of {xt}t∈N approaches p(x) as t_∞.

▶ this is not a statement about convergence rate!

Probabilistic ML — P. Hennig, SS 2021 — Lecture 05: Markov Chain Monte Carlo— © Philipp Hennig, 2021 CC BY-NC-SA 3.0 15

https://youtu.be/1MRY6Ruu6RU?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=2327

Metropolis-Hastings performs a (biased) random walk
hence diffusesO(s1/2)

−2 0 2

−2

0

2

Rule of Thumb: [MacKay, (29.32)]
▶ typical use-case: high-dimensional D problem of largest

length-scale L, smallest ε, isotropic proposal distribution
▶ have to set width of q to≈ ε, otherwise acceptance rate

r will be very low.
▶ then Metropolis-Hastings does a random walk in D

dimensions, moving a distance of√
E[∥xt − x0∥2] ∼ ϵ

√
rt

▶ so, to create one independent draw at distance L, MCMC
has to run for at least

t ∼ 1
r

(
L
ϵ

)2

iterations. In practice (e.g. if the distribution has islands),
the situation can be much worse.

Probabilistic ML — P. Hennig, SS 2021 — Lecture 05: Markov Chain Monte Carlo— © Philipp Hennig, 2021 CC BY-NC-SA 3.0 16

https://youtu.be/1MRY6Ruu6RU?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=2651

Metropolis-Hastings performs a (biased) random walk
estimating the mean of a correlated Gaussian

100 101 102 103 104 105
−2

−1

0

1

2

samples

x̂

exact
MH

100 101 102 103 104 105

10−3

10−2

10−1

100

101

samples

|̂x
−

x|

Probabilistic ML — P. Hennig, SS 2021 — Lecture 05: Markov Chain Monte Carlo— © Philipp Hennig, 2021 CC BY-NC-SA 3.0 17

https://youtu.be/1MRY6Ruu6RU?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=2903

Summary: Practical Monte Carlo Methods
1. Producing exact samples is just as hard as high-dimensional integration. Thus, practical MC

methods sample from a unnormalized density p̃(x) = Z · p(x)
2. even this, however, is hard. Because it is hard to build a globally useful approximation to the

integrand
3. Markov Chain Monte Carlo circumvents this problem by using local operations. It only converges

well on the scale in which the local models cover the global problem. Thus the local behaviour has
to be tuned.

Probabilistic ML — P. Hennig, SS 2021 — Lecture 05: Markov Chain Monte Carlo— © Philipp Hennig, 2021 CC BY-NC-SA 3.0 18

https://youtu.be/1MRY6Ruu6RU?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=2987

Gibbs Sampling
Preparation for Exercise Sheet [D. & S. Geman, 1984]

▶ xt ^ xt−1; xti ∼ p(xti | xt1, xt2, . . . , xt(i−1), xt(i+1), . . .)

▶ a special case of Metropolis-Hastings:
▶ q(x′ | xt) = δ(x′\i − xt,\i)p(x′i | xt,\i)
▶ p(x′) = p(x′i | x′\i)p(x′\i) = p(x′i | xt,\i)p(xt,\i)
▶ acceptance rate:

a =
p(x′)
p(xt)

· q(xt | x
′)

q(x′ | xt)
=

p(x′i | xt,\i)p(xt,\i)
p(xti | xt,\i)p(xt,\i)

· q(xt | x′)
δ(x′\i − xt,\i)p(x′i | xt,\i)

=
q(xt | x′)

p(xti | xt,\i)δ(x′\i − xt,\i)
= 1

Probabilistic ML — P. Hennig, SS 2021 — Lecture 05: Markov Chain Monte Carlo— © Philipp Hennig, 2021 CC BY-NC-SA 3.0 19

https://youtu.be/1MRY6Ruu6RU?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=3060

Visualization
by Chi Feng https://github.com/chi-feng

https://chi-feng.github.io/mcmc-demo/app.html#GibbsSampling,banana

Probabilistic ML — P. Hennig, SS 2021 — Lecture 05: Markov Chain Monte Carlo— © Philipp Hennig, 2021 CC BY-NC-SA 3.0 20

https://youtu.be/1MRY6Ruu6RU?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=3536

Proceed with Confidence!
and don’t worry, it’ll be fine …

▶ you don’t need to understand the following slides
▶ but a good engineer knows their tools

Probabilistic ML — P. Hennig, SS 2021 — Lecture 05: Markov Chain Monte Carlo— © Philipp Hennig, 2021 CC BY-NC-SA 3.0 21

https://youtu.be/1MRY6Ruu6RU?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=3746

Hamiltonian Monte Carlo
reduce randomness by smoothing [e.g. DJC MacKay, 2003, §30]

▶ consider Boltzmann distributions P(x) = Z−1 exp(−E(x))
▶ augment the state-space by auxiliary momentum variables p = ẋ. Define

Hamiltonian (“potential and kinetic energy”)

H(x, p) = E(x) + K(p) with, e.g. K(p) =
1
2
p⊺p

▶ do Metropolis-Hastings with p, x coupled by to Hamiltonian dynamics

ẋ :=
∂x
∂t

=
∂H
∂p

ṗ :=
∂p
∂t

= −∂H
∂x

nb: need to solve an ODE!

▶ note that, due to additive structure of Hamiltonian, this (asymptotically)
samples from the factorizing joint

PH(x, p) =
1
ZH

exp(−H(x, p)) =
1
ZH

exp(−E(x))·exp(−K(p)) with PH(x) =
∫

PH(x, p) dp = P(x)

William R Hamilton
1805 – 1865

(Dublin)

Probabilistic ML — P. Hennig, SS 2021 — Lecture 05: Markov Chain Monte Carlo— © Philipp Hennig, 2021 CC BY-NC-SA 3.0 22

https://youtu.be/1MRY6Ruu6RU?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=3822

Why does this improve things?
Hidden gems of Hamiltonian Monte Carlo

ẋ =
∂H
∂p

ṗ = −∂H
∂x

▶ If p(x) is locally flat, then after N steps, x has changed by x+ Nhp, soO(N), notO(
√
N) as for

Metropolis Hastings! Hamiltonian MC mixes faster than Metropolis-Hastings
▶ The Hamiltonian is a conserved quantity:

dH(p, x)
dt

=
∂H
∂x

∂x
∂t

+
∂H
∂p

∂p
∂t

=
∂H
∂x

· ∂H
∂p

− ∂H
∂p

· ∂H
∂x

= 0

So, if we have managed to simulate the dynamics well, then

δH = 0 ⇒ PH(x′, p′) = PH(x, p)

and the MH step will always be accepted!

a =
p̃(x′, p′)
p̃(xt, pt)

q(xt, pt | x′, p′)
q(x′, p′ | xt, pt)

=
exp(−H(x′, p′))
exp(−H(xt, pt))

q(xt, pt | x′, p′)
q(x′, p′ | xt, pt)

HMC is a way to construct really good MH proposals that are always accepted (up to numerical errors).
Probabilistic ML — P. Hennig, SS 2021 — Lecture 05: Markov Chain Monte Carlo— © Philipp Hennig, 2021 CC BY-NC-SA 3.0 23

https://youtu.be/1MRY6Ruu6RU?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=4376

Implementing Hamiltonian Monte Carlo …
Heun’s method for the Hamiltonian System

H(x, p) = E(x) +
1
2
p⊺p ẋ =

∂H
∂p

= p ṗ = −∂H
∂x

= −∇xE(x)

▶ We are trying to solve the ordinary differential equation

dz(t)
dt

= f(z(t)) such that z(t0) = z0 z(t) =
[
x(t)
p(t)

]
, f

(
x
p

)
=

[
p(t)

−∇E(x(t))

]
▶ Heun’s method:

z(ti + h) = zi +
h
2
(f(zi) + f(zi + hf(zi)))[

xi+1
pi+1

]
=

[
xi+1
pi+1

]
+

h
2

([
pi

−∇E(xi)

]
+ f

([
xi + hpi

pi − h∇E(xi)

]))
=

[
xi + h

2 (pi + pi − h∇E(xi))
pi + h

2 (−∇E(xi)−∇E(xi + hpi))

]
=

[
xi + hpi − h2

2 ∇E(xi))
pi − h

2 (∇E(xi) +∇E(xi + hpi))

]
Probabilistic ML — P. Hennig, SS 2021 — Lecture 05: Markov Chain Monte Carlo— © Philipp Hennig, 2021 CC BY-NC-SA 3.0 24

https://youtu.be/1MRY6Ruu6RU?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=4594

Hamiltonian Monte Carlo
moving with momentum

1 import numpy as np; from numpy.random import randn, rand
2 def HamiltonianMC(findE,gradE,L,Tau,h,x0):
3 x = x0 # initial sample
4 X = np.zeros([L,x.shape[0]]) # sample storage
5 X[0,:] = x # initialize storage
6 E = findE(x); g = gradE(x) # compute initial gradient and objective
7 for l in range(L): # loop L times
8 p = randn(x.shape[0]) # initial momentum is N(0,1)
9 H = p.T @ p / 2 + E; # evaluate H(x,p)

10 xnew = x; gnew = g # make temporary copy
11 for tau in range(Tau): # make Tau Heun steps
12 p = p - h/2 * gnew # make half-step in p
13 xnew = xnew + h * p # make step in x
14 gnew = gradE(xnew) # find new gradient
15 p = p - h/2 * gnew # make half-step in p
16 Enew = findE(xnew) # find new value of H
17 Hnew = p.T @ p / 2 + Enew
18 dH = Hnew - H # decide whether to accept
19 if dH < 0 or rand() < np.exp(-dH): accept = 1
20 else: accept = 0
21 if accept: g = gnew; x = xnew; E = Enew
22 X[l,:] = x
23 return X

Probabilistic ML — P. Hennig, SS 2021 — Lecture 05: Markov Chain Monte Carlo— © Philipp Hennig, 2021 CC BY-NC-SA 3.0 25

https://youtu.be/1MRY6Ruu6RU?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=4703

Visualization
by Chi Feng https://github.com/chi-feng

http://chi-feng.github.io/mcmc-demo/app.html#RandomWalkMH,banana

Probabilistic ML — P. Hennig, SS 2021 — Lecture 05: Markov Chain Monte Carlo— © Philipp Hennig, 2021 CC BY-NC-SA 3.0 26

https://youtu.be/1MRY6Ruu6RU?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=4846

How to set the Hyperparameters?
The state of the art in MCMC [Hoffman & Gelman, JMLR 15 (2014), pp. 1593–1623]

The No-U-Turn Sampler

The No-U-Turn Sampler: Adaptively Setting Path Lengths

in Hamiltonian Monte Carlo

Matthew D. Ho↵man mdhoffma@cs.princeton.edu

Department of Statistics
Columbia University
New York, NY 10027, USA

Andrew Gelman gelman@stat.columbia.edu

Departments of Statistics and Political Science

Columbia University

New York, NY 10027, USA

Abstract

Hamiltonian Monte Carlo (HMC) is a Markov chain Monte Carlo (MCMC) algorithm that
avoids the random walk behavior and sensitivity to correlated parameters that plague many
MCMC methods by taking a series of steps informed by first-order gradient information.
These features allow it to converge to high-dimensional target distributions much more
quickly than simpler methods such as random walk Metropolis or Gibbs sampling. However,
HMC’s performance is highly sensitive to two user-specified parameters: a step size ✏
and a desired number of steps L. In particular, if L is too small then the algorithm
exhibits undesirable random walk behavior, while if L is too large the algorithm wastes
computation. We introduce the No-U-Turn Sampler (NUTS), an extension to HMC that
eliminates the need to set a number of steps L. NUTS uses a recursive algorithm to build
a set of likely candidate points that spans a wide swath of the target distribution, stopping
automatically when it starts to double back and retrace its steps. Empirically, NUTS
perform at least as e�ciently as and sometimes more e�ciently than a well tuned standard
HMC method, without requiring user intervention or costly tuning runs. We also derive a
method for adapting the step size parameter ✏ on the fly based on primal-dual averaging.
NUTS can thus be used with no hand-tuning at all. NUTS is also suitable for applications
such as BUGS-style automatic inference engines that require e�cient “turnkey” sampling
algorithms.

Keywords: Markov chain Monte Carlo, Hamiltonian Monte Carlo, Bayesian inference,
adaptive Monte Carlo, dual averaging.

1. Introduction

Hierarchical Bayesian models are a mainstay of the machine learning and statistics com-
munities. Exact posterior inference in such models is rarely tractable, however, and so
researchers and practitioners must usually resort to approximate statistical inference meth-
ods. Deterministic approximate inference algorithms (for example, those reviewed by Wain-
wright and Jordan (2008)) can be e�cient, but introduce bias and can be di�cult to apply
to some models. Rather than computing a deterministic approximation to a target poste-
rior (or other) distribution, Markov chain Monte Carlo (MCMC) methods o↵er schemes for
drawing a series of correlated samples that will converge in distribution to the target distri-

1

ar
X

iv
:1

11
1.

42
46

v1
 [

st
at

.C
O

]
18

 N
ov

 2
01

1

Probabilistic ML — P. Hennig, SS 2021 — Lecture 05: Markov Chain Monte Carlo— © Philipp Hennig, 2021 CC BY-NC-SA 3.0 27

https://youtu.be/1MRY6Ruu6RU?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=5116

Visualization
by Chi Feng https://github.com/chi-feng

https://chi-feng.github.io/mcmc-demo/app.html#NaiveNUTS,banana

Probabilistic ML — P. Hennig, SS 2021 — Lecture 05: Markov Chain Monte Carlo— © Philipp Hennig, 2021 CC BY-NC-SA 3.0 28

https://youtu.be/1MRY6Ruu6RU?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=5147

Markov Chain Monte Carlo
▶ breaks down sampling into local dynamics
▶ samples correctly in the asymptotic limit
▶ avoiding random walk behaviour (achieving good asymptotic mixing) requires careful design
▶ Hamiltonian MCMC methods (like NUTS) are currently among the state of the art (sequantial MC

being an alternative).
▶ they require the solution of an ordinary differential equation (the Hamiltonian dynamics)
▶ their hyperparameters are tuned using elaborate subroutines
▶ this is typical of all good numerical methods!

▶ these methods are available in software packages

Reminder: Monte Carlo methods converge stochastically. This stochastic rate is an optimistic bound
for MCMC, because it has to be scaled by the mixing time. Monte Carlo methods are a powerful, well-
developed tool. But they are most likely not the final solution to integration.

Despite centuries of research, integration remains an open problem.

Probabilistic ML — P. Hennig, SS 2021 — Lecture 05: Markov Chain Monte Carlo— © Philipp Hennig, 2021 CC BY-NC-SA 3.0 29

https://youtu.be/1MRY6Ruu6RU?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=5423

Exercises
Computing with Probabilities, but without tools

▶ try to build an agent playing the game (with
multiple ships)

▶ Things to think about:
▶ how to deal with the combinatorial explosion
▶ How is it best implemented in practice (in python)
▶ how to build an autonomous agent?

Probabilistic ML — P. Hennig, SS 2021 — Lecture 05: Markov Chain Monte Carlo— © Philipp Hennig, 2021 CC BY-NC-SA 3.0 30

https://youtu.be/1MRY6Ruu6RU?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=5674

