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The Toolbox

Framework:∫
p(x1, x2) dx2 = p(x1) p(x1, x2) = p(x1 | x2)p(x2) p(x | y) = p(y | x)p(x)

p(y)

Modelling:
▶ graphical models
▶ Gaussian distributions
▶ (deep) learnt representations
▶ Kernels
▶ Markov Chains
▶ Exponential Families / Conjugate Priors
▶ Factor Graphs & Message Passing

Computation:
▶ Monte Carlo
▶ Linear algebra / Gaussian inference
▶ maximum likelihood / MAP
▶ Laplace approximations
▶ EM (iterative maximum likelihood)
▶ variational inference / mean field

Probabilistic ML — P. Hennig, SS 2021 — Lecture 25: Customizing Probabilistic Models — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 1



Variational Inference
▶ is a general framework to construct approximating probability distributions q(z) to non-analytic

posterior distributions p(z | x) by minimizing the functional

q∗ = arg min
q∈Q

DKL(q(z)∥p(z | x)) = arg max
q∈Q

L(q)

▶ the beauty is that we get to choose q, so one can nearly always find a tractable approximation.
▶ If we impose the mean field approximation q(z) =

∏
i q(zi), get

log q∗j (zj) = Eq,i ̸=j(log p(x, z)) + const..

▶ for Exponential Family p things are particularly simple: we only need the expectation under q of
the sufficient statistics.

Variational Inference is an extremely flexible and powerful approximation method. Its downside is that
constructing the bound and update equations can be tedious. For a quick test, variational inference is
often not a good idea. But for a deployed product, it can be the most powerful tool in the box.
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Latent Dirichlet Allocation
Topic Models [Blei, D. M., Ng, A. Y. & Jordan, M. I. (2003) JMLR 3, 993–1022]

wdicdiπd θk
αd βk

i = [1, . . . , Id]
d = [1, . . . , D]

k = [1, . . . , K]

To draw Id words wdi ∈ [1, . . . , V] of document d ∈ [1, . . . ,D]:
▶ Draw K topic distributions θk over V words from p(Θ | β) =

∏K
k=1 D(θk;βk)

▶ Draw D document distributions over K topics from p(Π | α) =
∏D

d=1 D(πd;αd)

▶ Draw topic assignments cik of word wdi from p(C | Π) =
∏

i,d,k π
cdik
dk

▶ Draw word wdi from p(wdi = v | cdi,Θ) =
∏

k θ
cdik
kv

Useful notation: ndkv = #{i : wdi = v, cijk = 1}. Write ndk: := [ndk1, . . . , ndkV] and ndk· =
∑

v ndkv, etc.
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The Variational Approximation
closing the loop

q(πd) = D

πd; α̃dk :=

[
αdk +

Id∑
i=1

γ̃dik

]
k=1,...,K

 ∀d = 1, . . . ,D

q(θk) = D

θk; β̃kv :=

[
βkv +

D∑
d

Id∑
i=1

γ̃dikI(wdi = v)

]
v=1,...,V

 ∀k = 1, . . . , K

q(cdi) =
∏
k

γ̃cdik
dik , ∀d i = 1, . . . , Id

where γ̃dik = γdik/
∑

k γdik and (note that
∑

k α̃dk = const.)

γdik = exp
(
Eq(πdk)(logπdk) + Eq(θdi)(log θkwdi)

)
= exp

(
𝟋(α̃jk) +𝟋(β̃kwdi)−𝟋

(∑
v

β̃kv

))
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Building the Algorithm
updating and evaluating the bound

1 procedure LDA(W, α, β)
2 γ̃dik ^DIRICHLET_RAND(α) � initialize

3 L^−∞
4 while L not converged do
5 for d = 1, . . . ,D; k = 1, . . . , K do
6 α̃dk ^αdk +

∑
i γ̃dik � update document-topics distributions

7 end for
8 for k = 1, . . . , K; v = 1, . . . , V do
9 β̃kv ^βkv +

∑
d,i γ̃dikI(wdi = v) � update topic-word distributions

10 end for
11 for d = 1, . . . ,D; k = 1, . . . , K; i = 1, . . . , Id do
12 γ̃dik ^ exp(𝟋(α̃dk) +𝟋(β̃kwdi)−𝟋(

∑
v β̃kv)) � update word-topic assignments

13 γ̃dik ^ γ̃dik/γ̃di·
14 end for
15 L^ BOUND(γ̃,w, α̃, β̃) � update bound

16 end while
17 end procedure
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Exponential Family Approximations
The connection to EM is not accidental

▶ What has happened here? Why the connection to EM?
▶ Consider an exponential family joint distribution

p(x, z | η) =
N∏

n=1

exp (η⊺ϕ(xn, zn)− log Z(η))

with conjugate prior p(η | ν, v) = exp (η⊺v− ν log Z(η)− log F(ν, v))

▶ and assume q(z, η) = q(z) · q(η). Then q is in the same exponential family, with

log q∗(z) = Eq(η)(log p(x, z | η)) + const. =
N∑

n=1

Eq(η)(η)
⊺ϕ(xn, zn)

q∗(z) =
∏
n=1

exp (E(η)⊺ϕ(xn, zn)− log Z(E(η))) (note induced factorization)
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Exponential Family Approximations
The connection to EM is not accidental

▶ What has happened here? Why the connection to EM?
▶ Consider an exponential family joint distribution

p(x, z | η) =
N∏

n=1

exp (η⊺ϕ(xn, zn)− log Z(η))

with conjugate prior p(η | ν, v) = exp (η⊺v− ν log Z(η)− log F(ν, v))

▶ and assume q(z, η) = q(z) · q(η). Then q is in the same exponential family, with

log q∗(η) = log p(η | ν, v) + Ez(log p(x, z | η)) + const.

= −ν log Z(η) + η⊺v+
N∑

n=1

− log Z(η) + η⊺Ez(ϕ(xn, zn)) + const.

q∗(η) = exp

(
η⊺
(
v+

N∑
n=1

Ez(ϕ(xn, zn))

)
− (ν + N) log Z(η)− const.

)
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Even, and especially if, you consider variational approximations,
using conjugate exponential family priors can make life much easier.
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Reminder: Collapsed Gibbs Sampling
It pays off to look closely at the math! T. L. Griffiths & M. Steyvers, Finding scientific topics, PNAS 101/1 (4/2004), 5228–5235

Recall Γ(x+ 1) = x · Γ(x) ∀x ∈ R+

p(C,Π,Θ,W) =

( D∏
d=1

Γ(
∑

k αdk)∏
k Γ(αdk)

K∏
k=1

παdk−1+ndk·
dk

)
·

( K∏
k=1

Γ(
∑

v βkv)∏
v Γ(βkv)

V∏
v=1

θβkv−1+n·kv
kv

)

=

( D∏
d=1

B(αd + nd:·)
B(αd)

D(πd;αd + nd:·)

)
·

( K∏
k=1

B(βk + n·k:)
B(βk)

D(θk;βk + n·k:)

)

p(C,W) =

( D∏
d=1

B(αd + nd:·)
B(αd)

)
·

( K∏
k=1

B(βk + n·k:)
B(βk)

)

=

(∏
d

Γ(
∑

k′ αdk′)

Γ(
∑

k′ αdk′ + ndk′·)
∏

k
Γ(αdk+ndk·)

Γ(αdk)

)(∏
k

Γ(
∑

v βkv)

Γ(
∑

v βkv + n·kv)
∏

v
Γ(βkv+n·kv)

Γ(βkv)

)

p(cdik = 1 | C\di,W) =
(αdk + n\didk·)(βkwdi + n\di·kwdi

)(
∑

v βkv + n\di·kv)
−1∑

k′(αdk′ + n\didk′·) ·
∑

w′(βkw′ + n\di·kw′) ·
∑

v′(βkv′ + n\di·kv′)
−1
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A Collapsed Gibbs Sampler for LDA
It pays off to look closely at the math! T. L. Griffiths & M. Steyvers, Finding scientific topics, PNAS 101/1 (4/2004), 5228–5235

p(C,W) =

(∏
d

Γ(
∑

k αdk)

Γ(
∑

k αdk + ndk·)
∏

k
Γ(αdk+ndk·)

Γ(αdk)

)(∏
k

Γ(
∑

v βkv)

Γ(
∑

v βkv + n·kv)
∏

v
Γ(βkv+n·kv)

Γ(βkv)

)

A collapsed sampling method can converge much faster by eliminating the latent variables that mediate
between individual data.

1 procedure LDA(W, α, β)
2 γdkv ^ 0 ∀d, k, v � initialize counts

3 while true do
4 for d = 1, . . . ,D; i = 1, . . . , Id do � can be parallelized

5 cdi ∝ (αdk + n\didk·)(βkwdi + n\di·kwdi
)(
∑

v βkv + n\di·kv)
−1 � sample assignment

6 n^UPDATECOUNTS(cdi) � update counts (check whether first pass or repeat)

7 end for
8 end while
9 end procedure
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Can we do the same for variational inference?
Why don’t we use the mean field in our variational bound? Yee Whye Teh, David Newman & Max Welling, NeurIPS 2017

▶ Deriving our variational bound, we previously imposed the factorization

q(Π,Θ, C) = q(Π,Θ) ·
∏
di

q(cdi), but can we get away with less? Like,

q(Π,Θ, C) = q(Θ,Π | C) ·
∏
di

q(cdi)

▶ Note p(C,Θ,Π | W) = p(Θ,Π | C,W)p(C | W). So when we minimize

DKL(q(Π,Θ, C)∥p(Π,Θ, C | W)) =

∫
q(Π,Θ | C)q(C) log

(
q(Π,Θ|C)q(C)

p(Π,Θ | C,W)p(C | W)

)
dC dΠ dΘ

=

∫
q(Π,Θ | C)q(C)

[
log
(

q(Π,Θ | C)
p(Π,Θ | C,W)

)
+ log

(
q(C)

p(C | W)

)]
dC dΠ dΘ

= DKL(q(Π,Θ | C)∥p(Π,Θ | C,W)) + DKL(q(C)∥p(C | W))

we will just get q(Θ,Π) = p(Θ,Π | C,W) and the bound will be tight in Π,Θ.
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A Collapsed Variational Bound
Why don’t we use the mean field in our variational bound? Yee Whye Teh, David Newman & Max Welling, NeurIPS 2007

p(C,W) =

(∏
d

Γ(
∑

k αdk)

Γ(
∑

k αdk + ndk·)
∏

k
Γ(αdk+ndk·)

Γ(αdk)

)(∏
k

Γ(
∑

v βkv)

Γ(
∑

v βkv + n·kv)
∏

v
Γ(βkv+n·kv)

Γ(βkv)

)

▶ The remaining collapsed variational bound (ELBO) becomes

L(q) =
∫

q(C) log p(C,W) dC+H(q(C))

▶ because we make strictly less assumptions about q than before, we will get a strictly better
approximation to the true posterior!

▶ The bound is maximized for cdi if

log q(cdi) = Eq(C\di)(log p(C,W)) + const.
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Constructing the Algorithm
Why didn’t we do this earlier?

▶ Note that cdi ∈ {0; 1}K and
∑

k cdik = 1. So q(cdi) =
∏

k γdik with
∑

k γdik = 1
▶ Also: Γ(α+ n) =

∏n−1
ℓ=0(α+ ℓ), thus logΓ(α+ n) =

∑n−1
ℓ=0 log(α+ ℓ)

p(C,W) =

(∏
d

Γ(
∑

k αdk)

Γ(
∑

k αdk + ndk·)
∏

k
Γ(αdk+ndk·)

Γ(αdk)

)(∏
k

Γ(
∑

v βkv)

Γ(
∑

v βkv + n·kv)
∏

v
Γ(βkv+n·kv)

Γ(βkv)

)
log q(cdi) = Eq(C\di)(log p(C,W)) + const.
log γdik = log q(cdik = 1)

= Eq(C\di)

[
logΓ(αdk + ndk·) + logΓ(βkwdi + n·kwdi)− logΓ

(∑
v

βkv + n·kv

)]
+ const.

= Eq(C\di)

[
log(αdk + n\didk·) + log(βkwdi + n\di·kwdi

)− log

(∑
v

βkv + n\di·kv

)]
+ const.

(note all terms in p(C,W) that don’t involve cdik can be moved into the constant, as can all sums over k.
We can also add terms to const., such as

∑n\di−1
ℓ=0 log(α+ ℓ), effectively cancelling terms in logΓ)
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A Complication
Ah, that’s why!

γdik ∝ exp

(
Eq(C\di)

[
log(αdk + n\didk·) + log(βkwdi + n\di·kwdi

)− log

(∑
v

βkv + n\di·kv

)])

▶ Under q(C) =
∏

di cdi, the counts ndk· are sums of independent Bernoulli variables (i.e. they have a
multinomial distribution). Computing their expected logarithm is tricky (O(n2d··)):

H(q(ndk·)) = E[log ndk·] = − log(Id!) − Id
K∑
k

γdk· log(γdk·) +

K∑
k=1

Id∑
ndk·=1

(
Id
ndk·

)
γ
ndk·
dk· (1 − γdk·)

Id−ndk· log(ndk·!)

▶ That’s likely why the original paper (and scikit-learn) don’t do this.
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If arithmetic doesn’t work, try creativity!
Yee Whye Teh, David Newman & Max Welling, NeurIPS 2007

Yee Whye Teh
image: Oxford U

Max Welling
image: U v Amsterdam

γdik ∝ exp

(
Eq(C\di)

[
log(αdk + n\didk·) + log(βkwdi + n\di·kwdi

)− log

(∑
v

βkv + n\di·kv

)])
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Statistics for the rescue
recall Lecture 3 Yee Whye Teh, David Newman & Max Welling, NeurIPS 2007

The probability measure of R =
∑N

i xi with discrete xi of
probablity f is

P(R = r | f,N) = N!
(N− r)! · r!

· f r · (1− f)N−r

=

(
N
r

)
· f r · (1− f)N−r

≈ N (r;Nr,Nr(1− r))

0 5 10

0

5 · 10−2

0.1

0.15

0.2

0.25

r

p(
r)

f = 1/3, N = 10
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If arithmetic doesn’t work, try creativity!
Yee Whye Teh, David Newman & Max Welling, NeurIPS 2007

Yee Whye Teh
image: Oxford U

Max Welling
image: U v Amsterdam

but the CLT applies! So a Gaussian approximation should be good:

p(n\didk·) ≈ N (n\didk·;Eq[n
\di
dk·], varq[n

\di
dk·]) with Eq[n

\di
dk·] =

∑
j ̸=i

γdkj, varq[n
\di
dk·] =

∑
j ̸=i

γdkj(1− γdkj)
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If arithmetic doesn’t work, try creativity!
Yee Whye Teh, David Newman & Max Welling, NeurIPS 2007

Yee Whye Teh
image: Oxford U

Max Welling
image: U v Amsterdam

log(α+ n) ≈ log(α+ E(n)) + (n− E(n)) · 1
α+ E(n)

− 1
2
(n− E(n))2 · 1

(α+ E(n))2

Eq[log(αdk + n\didk·)] ≈ log(αdk + Eq[n
\di
dk·])−

varq[n
\di
dk·]

2(αdk + Eq[n
\di
dk·])

2
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Approximate Approximate Inference
probabilistic machine learning often involves creative tweaks

γdik ∝ exp

(
Eq(C\di)

[
log(αdk + n\didk·) + log(βkwdi + n\di·kwdi

)− log

(∑
v

βkv + n\di·kv

)])

Eq[log(αdk + n\didk·)] ≈ log(αdk + Eq[n
\di
dk·])−

varq[n
\di
dk·]

2(αdk + Eq[n
\di
dk·])

2

γdik ∝ (αdk + E[n\didk·])(βkwdi + E[n\di·kwdi
])

(∑
v

βkv + E[n\di·kv ]

)−1

· exp

(
−

varq[n
\di
dk·]

2(αdk + Eq[n
\di
dk·])

2
−

varq[n
\di
·kwdi

]

2(βkwdi + Eq[n
\di
·kwdi

])2
+

varq[n
\di
·k· ]

2(
∑

v βkv + Eq[n
\di
·kv ])

2

)
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Complexity
The algorithm

γdik ∝ (αdk + E[n\didk·])(βkwdi + E[n\di·kwdi
])

(∑
v

βkv + E[n\di·kv ]

)−1

· exp

(
−

varq[n
\di
dk·]

2(αdk + Eq[n
\di
dk·])

2
−

varq[n
\di
·kwdi

]

2(βkwdi + Eq[n
\di
·kwdi

])2
+

varq[n
\di
·k· ]

2(
∑

v βkv + Eq[n
\di
·kv ])

2

)

Note that γdik doesn’t depend on i ∈ 1, . . . , Id, it’s the same for all wdi in d with wdi = v!
▶ memory requirement: O(DKV), since we have to store γdik for each value of i ∈ 1, . . . , V and

▶ E[ndk·], var[ndk·] ∈ RD×K

▶ E[n·kv], var[n·kv] ∈ RK×V

▶ E[n·k·], var[n·k·] ∈ RK

▶ computational complexity: O(DKV)We can loop over V rather than Id (good for long documents!)
Often, a document will be sparse in V, so iteration cost can be much lower.
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Because machine learning involves real-world data, every problem is unique.
Thinking hard about both your model and your algorithm

can make a big difference in predictive and numerical performance.
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Some Output
can we be happy with this?
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Can we be happy with this model?
Have we described all we know about the data?

wdicdiπd θk

αd βk

i = [1, . . . , Id]
d = [1, . . . , D]

k = [1, . . . , K]

p(C,Π,Θ,W) =

( D∏
d=1

D(πd;αd)

)
︸ ︷︷ ︸

p(Π|α)

·

( D∏
d=1

Id∏
i=1

(∏K
k=1(πdkθkwdi)

cdik
))

︸ ︷︷ ︸
p(W,C|Θ,Π)

·

( K∏
k=1

D(θk;βk)

)
︸ ︷︷ ︸

p(Θ|β)
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Meta-Data
It’s right there!

Adams_1797.txt Cleveland_1887.txt Grant_1873.txt Johnson_1964.txt Obama_2010.txt Roosevelt_1942.txt
Adams_1798.txt Cleveland_1888.txt Grant_1874.txt Johnson_1965.txt Obama_2011.txt Roosevelt_1943.txt
Adams_1799.txt Cleveland_1893.txt Grant_1875.txt Johnson_1966.txt Obama_2012.txt Roosevelt_1944.txt
Adams_1800.txt Cleveland_1894.txt Grant_1876.txt Johnson_1967.txt Obama_2013.txt Roosevelt_1945.txt
Adams_1825.txt Cleveland_1895.txt Harding_1921.txt Johnson_1968.txt Obama_2014.txt Taft_1909.txt
Adams_1826.txt Cleveland_1896.txt Harding_1922.txt Johnson_1969.txt Obama_2015.txt Taft_1910.txt
Adams_1827.txt Clinton_1993.txt Harrison_1889.txt Kennedy_1962.txt Obama_2016.txt Taft_1911.txt
Adams_1828.txt Clinton_1994.txt Harrison_1890.txt Kennedy_1963.txt Pierce_1853.txt Taft_1912.txt
Arthur_1881.txt Clinton_1995.txt Harrison_1891.txt Lincoln_1861.txt Pierce_1854.txt Taylor_1849.txt
Arthur_1882.txt Clinton_1996.txt Harrison_1892.txt Lincoln_1862.txt Pierce_1855.txt Truman_1946.txt
Arthur_1883.txt Clinton_1997.txt Hayes_1877.txt Lincoln_1863.txt Pierce_1856.txt Truman_1947.txt
Arthur_1884.txt Clinton_1998.txt Hayes_1878.txt Lincoln_1864.txt Polk_1845.txt Truman_1948.txt
Buchanan_1857.txt Clinton_1999.txt Hayes_1879.txt Madison_1809.txt Polk_1846.txt Truman_1949.txt
Buchanan_1858.txt Clinton_2000.txt Hayes_1880.txt Madison_1810.txt Polk_1847.txt Truman_1950.txt
Buchanan_1859.txt Coolidge_1923.txt Hoover_1929.txt Madison_1811.txt Polk_1848.txt Truman_1951.txt
Buchanan_1860.txt Coolidge_1924.txt Hoover_1930.txt Madison_1812.txt Reagan_1982.txt Truman_1952.txt
Buren_1837.txt Coolidge_1925.txt Hoover_1931.txt Madison_1813.txt Reagan_1983.txt Truman_1953.txt
Buren_1838.txt Coolidge_1926.txt Hoover_1932.txt Madison_1814.txt Reagan_1984.txt Trump_2017.txt
Buren_1839.txt Coolidge_1927.txt Jackson_1829.txt Madison_1815.txt Reagan_1985.txt Trump_2018.txt
Buren_1840.txt Coolidge_1928.txt Jackson_1830.txt Madison_1816.txt Reagan_1986.txt Tyler_1841.txt
Bush_1989.txt Eisenhower_1954.txt Jackson_1831.txt McKinley_1897.txt Reagan_1987.txt Tyler_1842.txt
Bush_1990.txt Eisenhower_1955.txt Jackson_1832.txt McKinley_1898.txt Reagan_1988.txt Tyler_1843.txt
Bush_1991.txt Eisenhower_1956.txt Jackson_1833.txt McKinley_1899.txt Roosevelt_1901.txt Tyler_1844.txt
Bush_1992.txt Eisenhower_1957.txt Jackson_1834.txt McKinley_1900.txt Roosevelt_1902.txt Washington_1790.txt
Bush_2001.txt Eisenhower_1958.txt Jackson_1835.txt Monroe_1817.txt Roosevelt_1903.txt Washington_1791.txt
Bush_2002.txt Eisenhower_1959.txt Jackson_1836.txt Monroe_1818.txt Roosevelt_1904.txt Washington_1792.txt
Bush_2003.txt Eisenhower_1960.txt Jefferson_1801.txt Monroe_1819.txt Roosevelt_1905.txt Washington_1793.txt
Bush_2004.txt Eisenhower_1961.txt Jefferson_1802.txt Monroe_1820.txt Roosevelt_1906.txt Washington_1794.txt
Bush_2005.txt Fillmore_1850.txt Jefferson_1803.txt Monroe_1821.txt Roosevelt_1907.txt Washington_1795.txt
Bush_2006.txt Fillmore_1851.txt Jefferson_1804.txt Monroe_1822.txt Roosevelt_1908.txt Washington_1796.txt
Bush_2007.txt Fillmore_1852.txt Jefferson_1805.txt Monroe_1823.txt Roosevelt_1934.txt Wilson_1913.txt
Bush_2008.txt Ford_1975.txt Jefferson_1806.txt Monroe_1824.txt Roosevelt_1935.txt Wilson_1914.txt
Carter_1978.txt Ford_1976.txt Jefferson_1807.txt Nixon_1970.txt Roosevelt_1936.txt Wilson_1915.txt
Carter_1979.txt Ford_1977.txt Jefferson_1808.txt Nixon_1971.txt Roosevelt_1937.txt Wilson_1916.txt
Carter_1980.txt Grant_1869.txt Johnson_1865.txt Nixon_1972.txt Roosevelt_1938.txt Wilson_1917.txt
Carter_1981.txt Grant_1870.txt Johnson_1866.txt Nixon_1973.txt Roosevelt_1939.txt Wilson_1918.txt
Cleveland_1885.txt Grant_1871.txt Johnson_1867.txt Nixon_1974.txt Roosevelt_1940.txt Wilson_1919.txt
Cleveland_1886.txt Grant_1872.txt Johnson_1868.txt Obama_2009.txt Roosevelt_1941.txt Wilson_1920.txt
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What about the hyperparameters?
EM-style point estimates from the ELBO

wdicdiπd θk
αd βk

i = [1, . . . , Id]
d = [1, . . . , D]

k = [1, . . . , K]

log p(W | α, β) = L(q, α, β) + DKL(q∥p(C | W, α, β))

L(q, α, β) =
∫

q(C,Θ,Π) log
(
p(W,Π,Θ, C | α, β)

q(C,Θ,Π)

)
log p(α, β | W) ≥ L(q, α, β) + log p(α, β)

∇α,β log p(α, β | W) = ∇α,βL(q, α, β) +∇α,β log p(α, β) +∇α,βDKL(q∥p(C | W, α, β))︸ ︷︷ ︸
≈0
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The ELBO
useful for monitoring / bug-fixing

p(C,Π,Θ,W) =

( D∏
d=1

Γ(
∑

k αdk)∏
k Γ(αdk)

K∏
k=1

παdk−1+ndk·
dk

)
·

( K∏
k=1

Γ(
∑

v βkv)∏
v Γ(βkv)

V∏
v=1

θβkv−1+n·kv
kv

)

We need

L(q,W) = Eq(log p(W, C,Θ,Π)) +H(q)

=

∫
q(C,Θ,Π) log p(W, C,Θ,Π) dC dΘ dΠ−

∫
q(C,Θ,Π) log q(C,Θ,Π) dC dΘ dΠ

=

∫
q(C,Θ,Π) log p(W, C,Θ,Π) dC dΘ dΠ+

∑
k

H(D(θk β̃k)) +
∑
d

H(D(πd α̃d)) +
∑
di

H(γ̃di)
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Adding more Information
a model for document metadata

wdicdiπd θk

βk
αd

ϕd

doc topic dist. word topic word topic word dist.

metadata

topic prior
i = [1, . . . , Id]

d = [1, . . . , D]

k = [1, . . . , K]
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The Price of Packaged Solutions
Toolboxes speed up development, but also make it brittle

https://github.com/scikit-learn/scikit-learn/blob/fd237278e/sklearn/decomposition/_lda.py#L134

▶ toolboxes are extremely valuable for quick early development. Use them to your advantage!
▶ but their interface often enforces and restricts model design decisions
▶ to really solve a probabilistic modelling task, build your own craftware
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A Generalized Linear Model
Latent Topic Dynamics

wdicdiπd θk

βk
αd

ϕdh
kernel

f

latent function transf. doc topic dist. doc topic dist. word topic word topic word dist.

metadata

topic prior
i = [1, . . . , Id]

d = [1, . . . , D]

k = [1, . . . , K]

To generate the wordsW of documents d = 1, . . . ,D with features ϕd ∈ F:
▶ draw function f : F_RK from p(f | h) = GP(f; 0, h)
▶ draw document topic distribution πd fromD(αd = exp(f(ϕd)))
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A Generalized Linear Model
Latent Topic Dynamics

wdicdiπd θk

βk
αd

ϕdh
kernel

f

latent function transf. doc topic dist. doc topic dist. word topic word topic word dist.

metadata

topic prior
i = [1, . . . , Id]

d = [1, . . . , D]

k = [1, . . . , K]

To generate the wordsW of documents d = 1, . . . ,D with features ϕd ∈ F:
▶ draw topic-word distributions p(Θ | β) =

∏K
k=1 D(θk, βk)

▶ draw each word’s topic p(Cd:: | Π) =
∏D

d=1
∏Id

i=1
∏

k π
cdik
dk

▶ draw the word wdi with probability θcdikkwdi
.
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A change in prior
EM-style point estimates from the ELBO

wdicdiπd θk

βk
αd

ϕdh
kernel

f

latent function transf. doc topic dist. doc topic dist. word topic word topic word dist.

metadata

topic prior
i = [1, . . . , Id]

d = [1, . . . , D]

k = [1, . . . , K]

log p(α, β | W) ≥ L(q, α, β) + log p(α, β)
∇α,β log p(α, β | W) = ∇α,βL(q, α, β) +∇α,β log p(α, β) +∇α,βDKL(q∥p(C | W, α, β))︸ ︷︷ ︸

≈0

log p(f = logα) = −1
2
∥fd∥2k = −1

2
f⊺d k

−1
DD fd
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A GP prior on topics
Lectures 3 – 13

k(xa, xb) = θ2
(
1+

(xa − xb)2

2αℓ2

)−α

·

{
1.00 if president(xa) = president (xb)
γ otherwise

θ = 5 ℓ = 10years α = 0.5 γ = 0.9
s
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Results
Kernel Topic Models [Hennig, Stern, Herbrich, Graepel. Kernel Topic Models. AISTATS 2012]

America,
American, people

world, peace, free

labor

men,

war,

war, national, economic

war, spain

work

good,

law,

energy, cut, oil

made, business

public, commerce

war, constitution, union

1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000
0

0.2

0.4

0.6

0.8

1

year

⟨π
k
|ϕ

⟩
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The Topics of American History
1897

The most important problem with
which this Government is now called
upon to deal pertaining to its for-
eign relations concerns its duty toward
Spain and the Cuban insurrection.

(William McKinley, 1897)
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The Topics of American History
1980

Three basic developments have helped
to shape our challenges: the steady
growth and increased projection of
Soviet military power beyond its own
borders; the overwhelming depen-
dence of the Western democracies
on oil supplies from the Middle East;
and the press of social and religious
and economic and political change in
the many nations of the developing
world, exemplified by the revolution
in Iran. (Jimmy Carter, 1980)
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Can we do even better?
Intra-Document Structure! Bags of Bags of Words

Mr. Speaker, Mr. Vice President, Members of Congress, my fellow Americans:

We are 15 years into this new century. Fifteen years that dawned with terror touching our shores, that unfolded with a new generation
fighting two long and costly wars, that saw a vicious recession spread across our Nation and the world. It has been and still is a hard
time for many.

But tonight we turn the page. Tonight, after a breakthrough year for America, our economy is growing and creating jobs at the fastest
pace since 1999. Our unemployment rate is now lower than it was before the financial crisis. More of our kids are graduating than ever
before. More of our people are insured than ever before. And we are as free from the grip of foreign oil as we’ve been in almost 30
years.

Tonight, for the first time since 9/11, our combat mission in Afghanistan is over. Six years ago, nearly 180,000 American troops served
in Iraq and Afghanistan. Today, fewer than 15,000 remain. And we salute the courage and sacrifice of every man and woman in this 9/11
generation who has served to keep us safe. We are humbled and grateful for your service.

America, for all that we have endured, for all the grit and hard work required to come back, for all the tasks that lie ahead, know
this: The shadow of crisis has passed, and the State of the Union is strong.

Barack H. Obama, 2015

Each document is actually pre-structured into sequential sub-documents, typically of one topic each.
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Designing a probabilistic machine learning method:
1. get the data

1.1 try to collect as much meta-data as possible
2. build the model

2.1 identify quantities and datastructures; assign names
2.2 design a generative process (graphical model)
2.3 assign (conditional) distributions to factors/arrows (use exponential families!)

3. design the algorithm
3.1 consider conditional independence
3.2 try standard methods for early experiments
3.3 run unit-tests and sanity-checks
3.4 identify bottlenecks, find customized approximations and refinements

Packaged solutions can give great first solutions, fast.
Building a tailormade solution requires creativity and mathematical stamina.
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