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Last Lecture: Debrief
Detailed Feedback

Things you did not like:
d this lecture should have

come earlier

Things you did not understand:
d from LU to Cholesky
d complexity of various solves

Things you enjoyed:
d scipy.linalg references
d LAPACK intro
d behind-the-scenes of

linalg.solve

d different types of
matrices and their
properties

d blackboard
d history
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0 Introduction Learning is Computation, Computation is Learning
1 Mathematical Background Gaussian and Least-Squares Inference
2 Integration — Quadrature Integration is Regression
3 Integration — Bayesian Quadrature Regression for Integration
4 Integration — Monte Carlo I Randomness is a flawed concept
5 Integration — Monte Carlo II Markov Chains to Explore and Exploit
6 Integration – Monte Carlo III Efficient Markov Chains
7 Linear Algebra — Direct Methods Solving Linear Systems by Bookkeeping

8 Special Lecture The Climate Impact of Computing and AI
9 Linear Algebra — Iterative Methods Solving Linear Systems as Optimization

10 Optimization — Basic Methods Minimizing Smooth Multivariate Functions
11 Optimization — Quasi-Newton Curvature can be Learnt
12 Bayesian Optimization Optimization of Empirical Functions
13 Revision
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Why this Lecture?
https://lecturesforfuture.org Data: Mauna Loa Observatory, National Oceanic and Atmospheric Administration, 26 September 2018
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This Is Unprecedented
Source: Foster, Royer & Lunt, Nat. Comms. 14845 (2017)

Numerics of Machine Learning — P. Hennig, SS 2019 — Lecture 08: Energy Impact of Computing and AI/ML 5



This Can Not Go On
Source: IPCC 2018, Summary for Policymakers, https://report.ipcc.ch/sr15/pdf/sr15_spm_final.pdf

60

50 3 000

2 000

1 000

40

30

20

10

0 0

3

2

1

0

Cumulative emissions of CO2 and future non-CO2 radiative forcing determine 
the probability of limiting warming to 1.5°C

Billion tonnes CO2 per year (GtCO2/yr) Billion tonnes CO2 (GtCO2) Watts per square metre (W/m2)
b) Stylized net global CO2 emission pathways d) Non-CO2 radiative forcing pathways

c) Cumulative net CO2 emissions

a) Observed global temperature change and modeled 

responses to stylized anthropogenic emission and forcing pathways

Observed monthly global 
mean surface temperature

Estimated anthropogenic 
warming to date and 
likely range

Faster immediate CO2 emission reductions 
limit cumulative CO2 emissions shown in 
panel (c).

Maximum temperature rise is determined by cumulative net CO2 emissions and net non-CO2 
radiative forcing due to methane, nitrous oxide, aerosols and other anthropogenic forcing agents.

Global warming relative to 1850-1900 (°C)

CO2 emissions 
decline from 2020 
to reach net zero in 
2055 or 2040

Cumulative CO2 
emissions in pathways 
reaching net zero in 
2055 and 2040

Non-CO2 radiative forcing 
reduced after 2030 or 
not reduced after 2030
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Likely range of modeled responses to stylized pathways

      Faster CO2 reductions (blue in b & c) result in a higher 
probability of limiting warming to 1.5°C 

      No reduction of net non-CO2 radiative forcing (purple in d) 
results in a lower probability of limiting warming to 1.5°C 

      Global CO2 emissions reach net zero in 2055 while net 
non-CO2 radiative forcing is reduced after 2030 (grey in b, c & d)

SPM

Summary for Policymakers

8

Figure SPM.1 | Panel a: Observed monthly global mean surface temperature (GMST, grey line up to 2017, from the HadCRUT4, GISTEMP, Cowtan–Way, and 
NOAA datasets) change and estimated anthropogenic global warming (solid orange line up to 2017, with orange shading indicating assessed likely range). Orange 
dashed arrow and horizontal orange error bar show respectively the central estimate and likely range of the time at which 1.5°C is reached if the current rate 
of warming continues. The grey plume on the right of panel a shows the likely range of warming responses, computed with a simple climate model, to a stylized 
pathway (hypothetical future) in which net CO2 emissions (grey line in panels b and c) decline in a straight line from 2020 to reach net zero in 2055 and net non-
CO2 radiative forcing (grey line in panel d) increases to 2030 and then declines. The blue plume in panel a) shows the response to faster CO2 emissions reductions 
(blue line in panel b), reaching net zero in 2040, reducing cumulative CO2 emissions (panel c). The purple plume shows the response to net CO2 emissions declining 
to zero in 2055, with net non-CO2 forcing remaining constant after 2030. The vertical error bars on right of panel a) show the likely ranges (thin lines) and central 
terciles (33rd – 66th percentiles, thick lines) of the estimated distribution of warming in 2100 under these three stylized pathways. Vertical dotted error bars in 
panels b, c and d show the likely range of historical annual and cumulative global net CO2 emissions in 2017 (data from the Global Carbon Project) and of net 
non-CO2 radiative forcing in 2011 from AR5, respectively. Vertical axes in panels c and d are scaled to represent approximately equal effects on GMST. {1.2.1, 1.2.3, 
1.2.4, 2.3, Figure 1.2 and Chapter 1 Supplementary Material, Cross-Chapter Box 2 in Chapter 1}
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Action must be Ubiquitious and Universal
Source: IPCC 2018, Summary for Policymakers, https://report.ipcc.ch/sr15/pdf/sr15_spm_final.pdf
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Figure SPM.1 | Panel a: Observed monthly global mean surface temperature (GMST, grey line up to 2017, from the HadCRUT4, GISTEMP, Cowtan–Way, and 
NOAA datasets) change and estimated anthropogenic global warming (solid orange line up to 2017, with orange shading indicating assessed likely range). Orange 
dashed arrow and horizontal orange error bar show respectively the central estimate and likely range of the time at which 1.5°C is reached if the current rate 
of warming continues. The grey plume on the right of panel a shows the likely range of warming responses, computed with a simple climate model, to a stylized 
pathway (hypothetical future) in which net CO2 emissions (grey line in panels b and c) decline in a straight line from 2020 to reach net zero in 2055 and net non-
CO2 radiative forcing (grey line in panel d) increases to 2030 and then declines. The blue plume in panel a) shows the response to faster CO2 emissions reductions 
(blue line in panel b), reaching net zero in 2040, reducing cumulative CO2 emissions (panel c). The purple plume shows the response to net CO2 emissions declining 
to zero in 2055, with net non-CO2 forcing remaining constant after 2030. The vertical error bars on right of panel a) show the likely ranges (thin lines) and central 
terciles (33rd – 66th percentiles, thick lines) of the estimated distribution of warming in 2100 under these three stylized pathways. Vertical dotted error bars in 
panels b, c and d show the likely range of historical annual and cumulative global net CO2 emissions in 2017 (data from the Global Carbon Project) and of net 
non-CO2 radiative forcing in 2011 from AR5, respectively. Vertical axes in panels c and d are scaled to represent approximately equal effects on GMST. {1.2.1, 1.2.3, 
1.2.4, 2.3, Figure 1.2 and Chapter 1 Supplementary Material, Cross-Chapter Box 2 in Chapter 1}
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Action must be Ubiquitious and Universal
Source: IPCC 2018, Summary for Policymakers, https://report.ipcc.ch/sr15/pdf/sr15_spm_final.pdf

SPM

 Summary for Policymakers

15

as well as substantial risks and institutional and social constraints to deployment related to governance, ethics, and impacts 
on sustainable development. They also do not mitigate ocean acidification. (medium confidence) {4.3.8, Cross-Chapter 
Box 10 in Chapter 4}
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Emissions of non-CO2 forcers are also reduced 
or limited in pathways limiting global warming 
to 1.5°C with no or limited overshoot, but 
they do not reach zero globally. 

Non-CO2 emissions relative to 2010

Billion tonnes of CO2/yr

Global emissions pathway characteristics

General characteristics of the evolution of anthropogenic net emissions of CO2, and total emissions of 
methane, black carbon, and nitrous oxide in model pathways that limit global warming to 1.5°C with no or 
limited overshoot. Net emissions are defined as anthropogenic emissions reduced by anthropogenic 
removals. Reductions in net emissions can be achieved through different portfolios of mitigation measures 
illustrated in Figure SPM.3b.

Global total net CO2 emissions
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Four illustrative model pathways

no or limited overshoot,

In pathways limiting global warming to 1.5°C 
with no or limited overshoot as well as in 
pathways with a higher overshoot, CO2 emissions 
are reduced to net zero globally around 2050.

P1
P2

P3

P4

Pathways with higher overshoot

Pathways limiting global warming below 2°C
(Not shown above) 

Pathways limiting global warming to 1.5°C with no or limited overshootTiming of net zero CO2
Line widths depict the 5-95th 
percentile and the 25-75th 
percentile of scenarios

Figure SPM.3a | Global emissions pathway characteristics. The main panel shows global net anthropogenic CO2 emissions in pathways limiting global warming 
to 1.5°C with no or limited (less than 0.1°C) overshoot and pathways with higher overshoot. The shaded area shows the full range for pathways analysed in this 
Report. The panels on the right show non-CO2 emissions ranges for three compounds with large historical forcing and a substantial portion of emissions coming 
from sources distinct from those central to CO2 mitigation. Shaded areas in these panels show the 5–95% (light shading) and interquartile (dark shading) ranges 
of pathways limiting global warming to 1.5°C with no or limited overshoot. Box and whiskers at the bottom of the figure show the timing of pathways reaching 
global net zero CO2 emission levels, and a comparison with pathways limiting global warming to 2°C with at least 66% probability. Four illustrative model pathways 
are highlighted in the main panel and are labelled P1, P2, P3 and P4, corresponding to the LED, S1, S2, and S5 pathways assessed in Chapter 2. Descriptions and 
characteristics of these pathways are available in Figure SPM.3b. {2.1, 2.2, 2.3, Figure 2.5, Figure 2.10, Figure 2.11}
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Action must be Ubiquitious and Universal
Source: IPCC 2018, Summary for Policymakers, https://report.ipcc.ch/sr15/pdf/sr15_spm_final.pdf
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SPM

Breakdown of contributions to global net CO2 emissions in four illustrative model pathways 

P1:  A scenario in which social, 

business and technological innovations 

result in lower energy demand up to 

2050 while living standards rise, 

especially in the global South. A 

downsized energy system enables 

rapid decarbonization of energy supply. 

Afforestation is the only CDR option 

considered; neither fossil fuels with CCS 

nor BECCS are used.

P2:  A scenario with a broad focus on 

sustainability including energy 

intensity, human development, 

economic convergence and 

international cooperation, as well as 

shifts towards sustainable and healthy 

consumption patterns, low-carbon 

technology innovation, and 

well-managed land systems with 

limited societal acceptability for BECCS.

P3:  A middle-of-the-road scenario in

which societal as well as technological 

development follows historical 

patterns. Emissions reductions are 

mainly achieved by changing the way in 

which energy and products are 

produced, and to a lesser degree by 

reductions in demand.

P4:  A resource- and energy-intensive 

scenario in which economic growth and 

globalization lead to widespread 

adoption of greenhouse-gas-intensive 

lifestyles, including high demand for 

transportation fuels and livestock 

products. Emissions reductions are 

mainly achieved through technological 

means, making strong use of CDR 

through the deployment of BECCS.

Fossil fuel and industry AFOLU BECCS
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Pathway classification

CO2 emission change in 2030 (% rel to 2010)

               in 2050 (% rel to 2010)

Kyoto-GHG emissions* in 2030 (% rel to 2010)  

               in 2050 (% rel to 2010) 

Final energy demand** in 2030 (% rel to 2010) 

               in 2050 (% rel to 2010)

Renewable share in electricity in 2030 (%)

               in 2050 (%)

Primary energy from coal in 2030 (% rel to 2010)

               in 2050 (% rel to 2010)

     from oil in 2030  (% rel to 2010)

                in 2050  (% rel to 2010)

     from gas in 2030  (% rel to 2010)

                in 2050  (% rel to 2010)

     from nuclear in 2030  (% rel to 2010)

                in 2050  (% rel to 2010)

     from biomass in 2030  (% rel to 2010)

                in 2050  (% rel to 2010) 

     from non-biomass renewables in 2030  (% rel to 2010)

                in 2050  (% rel to 2010)

Cumulative CCS until 2100 (GtCO2)

               of which BECCS (GtCO2)

Land area of bioenergy crops in 2050 (million km2)

Agricultural CH4 emissions in 2030 (% rel to 2010)

                in 2050  (% rel to 2010)

Agricultural N2O emissions in 2030 (% rel to 2010)

                in 2050  (% rel to 2010)
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Characteristics of four illustrative model pathways

Different mitigation strategies can achieve the net emissions reductions that would be required to follow a 
pathway that limits global warming to 1.5°C with no or limited overshoot. All pathways use Carbon Dioxide 
Removal (CDR), but the amount varies across pathways, as do the relative contributions of Bioenergy with 
Carbon Capture and Storage (BECCS) and removals in the Agriculture, Forestry and Other Land Use (AFOLU) 
sector. This has implications for emissions and several other pathway characteristics.

P1 P2 P3 P4

P1 P2 P3 P4 Interquartile range

Billion tonnes CO₂ per year (GtCO2/yr)

Global indicators

Billion tonnes CO₂ per year (GtCO2/yr) Billion tonnes CO₂ per year (GtCO2/yr) Billion tonnes CO₂ per year (GtCO2/yr)

NOTE: Indicators have been selected to show global trends identified by the Chapter 2 assessment. 
National and sectoral characteristics can differ substantially from the global trends shown above.

* Kyoto-gas emissions are based on IPCC Second Assessment Report GWP-100
** Changes in energy demand are associated with improvements in energy 
efficiency and behaviour change
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Today:
1. Where is this CO2 coming from?
2. How much of it is caused by computing, and where?
3. What can we do to reduce the CO2 emissions caused by computing and AI?
4. What can AI & ML do to mitigate the climate crisis?
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What is the status quo?
Annual CO2 production per person in Germany source: Umweltbundesamt — https://uba.co2-rechner.de/
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d public expenditure includes infrastructure (incl. waste and water),
education, social services, defense.

d 4.56 kWh for stuff≈ 370¤/month (but averaged over household)
d stuff is essentially CO2 produced by others during their work time
d 0.76t CO2 electricity= 1450 kWh/a= 166W
d Current electricity mix in Germany: ∼ 500 g CO2 / kWh
d heating assumes a mix of energy sources. Specific heat of water

0.00117kWh/l/°C. Showering at 40°C ·9 l/min = 0.3 kWh/min≜ 10 kg
CO2/h

d mobility: for intercontinental flights: 0,24t CO2 / h
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What is the status quo?
Annual CO2 production per person in Germany source: Umweltbundesamt — https://uba.co2-rechner.de/

avg.
0

2

4

6

8

10

12 11.61
0.76

1.64

2.18

1.74

4.56

0.73

to
nn

es
CO

2/
a

public
stuff
food

mobility
heating

electricity

d food: for the average German, 1.74 t/a. Changing habits would cause
changes to

d vegetarian: 1.29 t/a (26% reduction)
d vegan: 1.04 t/a (40% reduction)
d mixed food, but organic/regional/seasonal: 1.45 t/a (17% reduction)

d IPCC goal: zero net emissions by 2050. “Net emissions are defined as
anthropogenic emissions reduced by anthropogenic removals.”

d On the individual level, this might translate to about 3 t/a. Some this
can and must be achieved by political and societal changes and
regulation. But, voluntary or not, lifestyles will change.
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Some Misconceptions
before we even get to the numbers

Computing just needs electricity, which can be produced sustainably.

In the near future, virtually everything will have to run essentially on electricity. Reduction of existing
electricity usage is just as crucial as transition of currently non-electric power consumption.

“Professional” CO2 production doesn’t count

The CO2 produced in a professional setting effectively form the customers’ CO2 footprint under “stuff”.

Corporations are responsible for the majority of emissions.

There is a meaningful debate to be had about most effective regulation (carbon tax). But in the end,
CO2 is produced by humans. The required changes will affect our lifestyles, drastically.

Google runs very efficient data centers

It’s great when technology companies invest in clean electricity.
If they needed less energy, those ressources could still be used elsewhere, though.

Numerics of Machine Learning — P. Hennig, SS 2019 — Lecture 08: Energy Impact of Computing and AI/ML 11



Numbers in Context I: Running your Devices at Home
sources: apple, nvidia, sysGen, Dell, google, own measurements

At home:
d 30” LED screen: 50W
d 65” LED TV (Samsung LS03): 143W
d Mac mini: 6W (inactive) - 85W (max)
d intel Core i7 CPU∼ 100W (thermal design power)
d nvidia GeForce RTX 2080 Ti: 17W (idle) – 280W (max);
d o2 standard-issue wifi router: 10W
d Fridge/Freezer (Miele KF 37233 iD, A+++): 156 kWh/a = 18W

Mobile:
d Apple USB phone charger, no load: 0.012W.
d Apple iPhone X Battery capacity: 10,35 Wh (typical draw< 1W)

HPC:
d Tesla V100, NVlink: 300W (max)
d GPU hypervisor (8× Tesla V100, 36-core intel Xeon Skylake, 384 GB RAM, 2 SSD’s): ∼ 3kW (max)
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Numbers in Context I: Running your Devices at Home
sources: apple, nvidia, sysGen, Dell, google, own measurements

Thus
d forget about ‘unplugging your charger’. Actually, just forget about your phone’s energy use. Mobile

devices are among the most efficient users of electricity out there.
d if you’re running a desktop computer as a home server all day (∼ 60W = 525 kWh/a), that may be

about 30% of your total electricity consumption and adds about 0.26t CO2 to your annual
footprint. That’s roughly the difference between a standard diet and one exclusively on local,
organic, seasonal food. If you’ve got a monitor running on it continuously, double that.

d running your gaming PC at full load (600W, incl. 2 monitors) for 2h a day is similar to the above.
d your wifi router (10W) likely produces about 44kG of CO2 per year, a similar amount to your fridge!
d if you’re training a deep network on imagenet (1 hypervisor, 1 week), that’s about 0.25 t CO2, too.

Computing Devices at home are not the biggest source of your carbon footprint. But especially devices
that are plugged into mains and running for significant times of the day have a non-negligible impact.
Much of it can relatively easily be reduced with some discipline. Switch off your router when you’re not
home!
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Numbers in Context II: Making Your Stuff
Dimensions matter sources: apple, nvidia, sysGen, Dell, google

embodied CO2:
d Dell Latitude E6400 Laptop: 200kg CO2 for manufacturing & transport (May 2010, assumes

renewable electricity)
d iPhone 8 (report from September 2017): 56kg CO2 for manufacturing and transport

Thus
d These numbers are probably too small, because they come from the producers. Nevertheless:
d if you’re buying a new laptop every 3 years, the embodied CO2 might be about 20% of the total

emissions associated with the device.
d embodied CO2 is nontrivial, but likely smaller than that produced during use
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Numbers in Context III: The Cloud
Consumer devices seem to use the bulk of electric energy for computing. sources: Google, Deutsche Telekom, US Dept. of Energy

How much CO2 does your Internet use generate?
d 2009: “a single [Google] search accounts for about 0.2g of carbon”
d 2017: Google uses about 2.6GW of energy for their operations (all renewable). Note: This includes

youtube. (German electricity generation: ∼28GW). Google makes about 3% of their revenue in
Germany, so about 2.6 GW ·0.03/80 000 000 ≈ 1W for each German.

d Deutsche Telekom uses about 142kWh / TB in Germany.
d all US Datacentres jointly draw about 8GW of power (source: US Dept. of Energy), using 1,6% of all

US electricity (the US produces 480GW electricity on average).

d if you’re using 10GB/month, that’s∼ 17kWh, i.e. 8.5kg CO2 (kg!) per year for communication.
d If a third of your data comes from Google (youtube!), then producing that data in the cloud

probably uses about 26kWh of energy (3W) — less than your wifi router!
d the main energy consumption on the internet is probably not communication but computation.

Even that, though, probably amounts to only a few kG CO2 per person and year.
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Takeaways:
d your personal CO2 footprint from computing likely stems primarily from

d desktop computing
d embodied CO2 in devices

and not so much from data and communication
d but if you are a professional in charge of significant computing power, then computing efficiency

may be one of the most significant ways you can reduce CO2 emission.
At Google Deepmind, each Developer has personal access to about 8 GPUs. If you’re in control of a 8×
V100 hypervisor and keep it busy (3kW= 13.14 t CO2 / a), then thinking hard about how you train your
neural networks might be your biggest opportunity to reduce CO2 emissions.
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Today:
1. Where is this CO2 coming from?
2. How much of it is caused by computing, and where?
3. What can we do to reduce the CO2 emissions caused by computing and AI?
4. What can AI & ML do to mitigate the climate crisis?

Numerics of Machine Learning — P. Hennig, SS 2019 — Lecture 08: Energy Impact of Computing and AI/ML 16



Machine Learning is the Most Energy-Inefficient Kind of Computing
a typical workflow [data from Schneider, Balles, Hennig, ICLR 2019]
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In contrast to more established CS areas (like information retrieval, networks, compression, os), machine
learning, data analysis and AI are resource inefficient, and the market is currently willing to allow such
wastefulness. An individual developer can make a significant difference.
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The Dirty Secret of Academic Research
Conference Emissions

d The typical Machine Learning PhD student flies to about one international conference per year.
d AISTATS 2019: Okinawa, Japan
d ICLR 2019: New Orleans, USA
d NeurIPS 2019: Vancouver, Canada
d ICML 2019: Long Beach, California, USA

d a single intercontinental return flight FRA to LAX produces 5,73 t CO2. That’s like running that
hypervisor for 160 days! The biggest climate cost of a NeurIPS paper is not the computing, but
flying in to present it.
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Today:
1. Where is this CO2 coming from?
2. How much of it is caused by computing, and where?
3. What can we do to reduce the CO2 emissions caused by computing and AI?
4. What can AI & ML do to mitigate the climate crisis?
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Contributing Our Special Skills
https://arxiv.org/abs/1906.05433v1 (published 10 June 2019)
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Just a few Picks
many more ideas in the op.cit. https://arxiv.org/abs/1906.05433v1

d Mitigation, e.g.
d generation and demand forecasting and control in smart grids
d enabling control of nuclear fusion

d Transportation and Smart Cities, e.g.
d freight routing and consolidation
d improving shared and low-carbon options (bike sharing, electric scooters, public transport …)
d smart buildings (automatic shading, heating, appliances)

d Industry, Farming, Forestry, e.g.
d efficient supply chain management
d lightweight construction
d remote sensing of emissions
d automated and smart afforestation and precision agriculture

d Enabling Science, Society and Individuals, e.g.
d improving climate forecasting and biodiversity/ecosystem monitoring and modelling
d societal modelling for food security, migration, crises, disaster relief
d providig tools for individual and societal action
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Caveats
let’s not get ahead of ourselves

d This paper was written by people who don’t know ML, and people who don’t know the science
d Some of the ideas are very aspirational, high-risk, long-term (and the authos say so)
d ML can not solve these problems alone. In most cases, it is a supporting tool for scientific,

technological and societal advances. Computer scientists need to listen.
d The solutions have to be deployed, too. We don’t just need scientific advances, but people willing

to turn climate relief into a business opportunity.
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d computing is a significant, but not the dominant consumer of energy
d a large part of computing consumption happens at home, thus individual action matters
d but CS professionals also have significant leverage to affect resource efficiency through careful

software design
d AI and ML have the potential to help enable technological and societal change to mitigate the

climate crisis — in careful support of the corresponding core communities.

If you are passionate about a particular use of ML to mitigate climate change,
feel invited to propose your ownMasters thesis topic, apply for a PhD position, or startup seed funding!

Incidentally: There’s an open PhD position in CO2 soil-transport modeling available (with Thomas
Scholten, soil science) in my lab!
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