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Last Lecture: Debrief

Detailed Feedback

Things you did not like: Things you did not understand: Things you enjoyed:

+ this lecture should have + from LU to Cholesky +
come earlier + complexity of various solves +

+
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scipy.linalg references
LAPACK intro
behind-the-scenes of
linalg.solve

different types of
matrices and their
properties
blackboard

history



EBERHARD KARLS

UNIVERSITAT

TUBINGEN
0 Introduction Learning is Computation, Computation is Learning
1 Mathematical Background Gaussian and Least-Squares Inference
2 Integration — Quadrature Integration is Regression
3 Integration — Bayesian Quadrature  Regression for Integration
4 Integration — Monte Carlo | Randomness is a flawed concept
5 Integration — Monte Carlo I Markov Chains to Explore and Exploit
6 Integration — Monte Carlo |l Efficient Markov Chains
7 Linear Algebra — Direct Methods Solving Linear Systems by Bookkeeping
8 Special Lecture The Climate Impact of Computing and Al
9 Linear Algebra — Iterative Methods  Solving Linear Systems as Optimization

10 Optimization — Basic Methods Minimizing Smooth Multivariate Functions

11 Optimization — Quasi-Newton Curvature can be Learnt

12 Bayesian Optimization Optimization of Empirical Functions

—
w

Revision
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Why this Lecture?
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Why this Lecture?
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Why this Lecture? o
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This Is Unprecedented
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This Can Not Go On

TUBINGEN
Source: IPC 8, Sun‘wmary for POH[Q‘;NTW{ ker //report.ipcc.ch/sr15/pdf/sr15_spm_final.pdf

Global warming relative to 1850-1900 (°C)
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Likely range of modeled responses to stylized pathways
Global CO2 emissions reach net zero in 2055 while net
non-CO: radiative forcing is reduced after 2030 (grey in b, c & d)
05 2017 \H [[JFaster COz reductions (blue inb & ¢) result in a higher

probability of limiting warming to 1.5°C

[INo reduction of net non-CO2 radiative forcing (purple in d)
results in a lower probability of limiting warming to 1.5°C
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Action must be Ubiquitious and Universal el

Source: IP ( "‘Lm‘\mary for P()H[Q},"mx report.ipcc.ch/sr15/pdf/sr15_spm_final.pdf

b) Stylized net global CO: emission pathways ¢) Cumulative net COz emissions d) Non-COz radiative forcing pathways
Billion tonnes CO2 per year (GtCO2/yr) Billion tonnes CO2 (GtCO2) Watts per square metre (W/m2)
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limit cumulative CO2 emissions shown in radiative forcing due to methane, nitrous oxide, aerosols and other anthropogenic forcing agents.
panel (c).
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Action must be Ubiquitious and Universal UNIVERST
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IPCC 201 8, Sun‘wmar'y for Poli C https://report.ipcc.ch/sr15/pdf/sr15_spm_final

Non-CO, emissions relative to 2010

Emissions of non-CO2 forcers are also reduced
or limited in pathways limiting global warming
to 1.5°C with no or limited overshoot, but
they do not reach zero globally.

Methane emissions

s In pathways limiting global warming to 1.5°C 1
- \ with no or limited overshoot as well as in

pathways with a higher overshoot, CO2 emissions

are reduced to net zero globally around 2050.
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Black carbon emissions

Four illustrative model pathways —J
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Line widths depict the 5-95th

percentile and the 25-75th — Pathways limiting global warming below 2°C
percentile of scenarios (Not shown above)
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Action must be Ubiquitious and Universal

IPCC 2018, Summary for Policyme

T
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r15/pdf/sr15_spm_final

/report.

Fossil fuel and industry AFOLU BECCS
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P1: Ascenario in which social,
business and technological innovations
result in lower energy demand up to
2050 while living standards rise,
especially in the global South. A
downsized energy system enables

rapid decarbonization of energy supply.
Afforestation is the only CDR option
considered; neither fossil fuels with CCS
nor BECCS are used.

P2: Ascenario with a broad focus on
sustainability including energy
intensity, human development,
economic convergence and
international cooperation, as well as
shifts towards sustainable and healthy
consumption patterns, low-carbon
technology innovation, and
well-managed land systems with
limited societal acceptability for BECCS.
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P3: Amiddle-of-the-road scenario in
which societal as well as technological
development follows historical
patterns. Emissions reductions are
mainly achieved by changing the way in
which energy and products are
produced, and to a lesser degree by
reductions in demand.

P4: Aresource- and energy-intensive
scenario in which economic growth and
globalization lead to widespread
adoption of greenhouse-gas-intensive
lifestyles, including high demand for
transportation fuels and livestock
products. Emissions reductions are
mainly achieved through technological
means, making strong use of CDR
through the deployment of BECCS.
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Today:
1. Where is this CO, coming from?
2. How much of it is caused by computing, and where?

3. What can we do to reduce the CO, emissions caused by computing and Al?
4. What can Al & ML do to mitigate the climate crisis?
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What is the status quo?

ce: Umweltbundesamt — https://uba.co2-rechner.de/

" food  + public expenditure includes infrastructure (incl. waste and water),
B mobility education, social services, defense.

ol | :elehci?iiintg + 4.56 kWh for stuff ~ 370 €/month (but averaged over household)
+ stuff is essentially CO, produced by others during their work time

6 = + 0.76t CO; electricity = 1450 kWh/a = 166W

+ Current electricity mix in Germany: ~ 500 g CO, / kWh

+ heating assumes a mix of energy sources. Specific heat of water
: 0.00117kWh/I/°C. Showering at 40°C -9 I/min = 0.3 kWh/min £ 10 kg
B | COy/h

+ mobility: for intercontinental flights: 0,24t CO, / h

tonnes CO,/a

4.56

avg.
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What is the status quo?

Annual CO, production per nin Germ

B public

B stuff

B food i )

/B mopiy + food: for the average German, 1.74 t/a. Changing habits would cause
B heating changes to

8 ~| M electricity + vegetarian: 1.29 t/a (26% reduction)
3 + vegan: 1.04 t/a (40% reduction)
% sl | + mixed food, but organic/regional/seasonal: 1.45 t/a (17% reduction)
5 + IPCC goal: zero net emissions by 2050. “Net emissions are defined as
4 | anthropogenic emissions reduced by anthropogenic removals.”
4.56 + On the individual level, this might translate to about 3 t/a. Some this
2+ - can and must be achieved by political and societal changes and
regulation. But, voluntary or not, lifestyles will change.
0 - .

avg.
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Today:
1. Where is this CO, coming from?
2. How much of it is caused by computing, and where?

3. What can we do to reduce the CO, emissions caused by computing and Al?
4. What can Al & ML do to mitigate the climate crisis?
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Some Misconceptions U EIAT

before we even get to the numbers

Computing just needs electricity, which can be produced sustainably.

In the near future, virtually everything will have to run essentially on electricity. Reduction of existing
electricity usage is just as crucial as transition of currently non-electric power consumption.

“Professional” CO, production doesn't count

The CO, produced in a professional setting effectively form the customers’ CO, footprint under “stuff”.

Corporations are responsible for the majority of emissions.

There is a meaningful debate to be had about most effective regulation (carbon tax). But in the end,
CO, is produced by humans. The required changes will affect our lifestyles, drastically.

Google runs very efficient data centers

It's great when technology companies invest in clean electricity.
If they needed /ess energy, those ressources could still be used elsewhere, though.
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Numbers in Context I: Running your Devices at Home

0 opl

At home:

+ 30" LED screen: 50W

+ 65" LED TV (Samsung LS03): 143W

+ Mac mini: 6W (inactive) - 85W (max)

+ intel Core i7 CPU ~ 100W (thermal design power)

+ nvidia GeForce RTX 2080 Ti: 17W (idle) = 280W (max);

+ 02 standard-issue wifi router: T0W

+ Fridge/Freezer (Miele KF 37233 iD, A+++): 156 kWh/a = 18W
Mobile:

+ Apple USB phone charger, no load: 0.072W.

+ Apple iPhone X Battery capacity: 10,35 Wh (typical draw < TW)
HPC:

+ Tesla V100, NViink: 300W (max)

+ GPU hypervisor (8 x Tesla V100, 36-core intel Xeon Skylake, 384 GB RAM, 2 SSD's): ~ 3kW (max)
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ple

+ forget about ‘unplugging your charger’. Actually, just forget about your phone’s energy use. Mobile
devices are among the most efficient users of electricity out there.

+ if you're running a desktop computer as a home server all day (~ 60W = 525 kWh/a), that may be
about 30% of your total electricity consumption and adds about 0.26t CO, to your annual
footprint. That's roughly the difference between a standard diet and one exclusively on local,
organic, seasonal food. If you've got a monitor running on it continuously, double that.

+ running your gaming PC at full load (600W, incl. 2 monitors) for 2h a day is similar to the above.
+ your wifi router (T0W) likely produces about 44kG of CO, per year, a similar amount to your fridge!
+ if you're training a deep network on imagenet (1 hypervisor, T week), that's about 0.25t CO,, too.

Computing Devices at home are not the biggest source of your carbon footprint. But especially devices
that are plugged into mains and running for significant times of the day have a non-negligible impact.

Much of it can relatively easily be reduced with some discipline. Switch off your router when you're not
home!

Numerics of Machine Learning — P. Hennig, SS 2019 — Lecture 08: Energy Impact of Computing and Al/ML 12
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Numbers in Context Il: Making Your Stuff UNIVERSITAT

Din atter De

embodied CO,:

+ Dell Latitude E6400 Laptop: 200kg CO, for manufacturing & transport (May 2010, assumes
renewable electricity)

+ iPhone 8 (report from September 2017): 56kg CO, for manufacturing and transport
Thus
+ These numbers are probably too small, because they come from the producers. Nevertheless:

+ if you're buying a new laptop every 3 years, the embodied CO, might be about 20% of the total
emissions associated with the device.

+ embodied COj, is nontrivial, but likely smaller than that produced during use
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Numbers in Context lll: The Cloud

Consum 0 use the bulk of ele y for computing

How much CO, does your Internet use generate?
+ 2009: “a single [Google] search accounts for about 0.2g of carbon”

+ 2017: Google uses about 2.6GW of energy for their operations (all renewable). Note: This includes
youtube. (German electricity generation: ~28GW). Google makes about 3% of their revenue in
Germany, so about 2.6 GW -0.03/80 000 000 ~ 1W for each German.

+ Deutsche Telekom uses about 142kWh / TB in Germany.

+ all US Datacentres jointly draw about 8GW of power (source: US Dept. of Energy), using 1,6% of all
US electricity (the US produces 480GW electricity on average).

+ if you're using 10GB/month, that's ~ 17kWh, i.e. 8.5kg CO, (kg!) per year for communication.
+ If a third of your data comes from Google (youtube!), then producing that data in the cloud

probably uses about 26kWh of energy (3W) — less than your wifi router!

+ the main energy consumption on the internet is probably not communication but computation.
Even that, though, probably amounts to only a few kG CO, per person and year.
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Takeaways:
+ your personal CO, footprint from computing likely stems primarily from

+ desktop computing
+ embodied CO; in devices

and not so much from data and communication

+ but if you are a professional in charge of significant computing power, then computing efficiency
may be one of the most significant ways you can reduce CO, emission.

At Google Deepmind, each Developer has personal access to about 8 GPUs. If you're in control of a 8 x
V100 hypervisor and keep it busy (3kW = 13.14 t CO, / a), then thinking hard about how you train your
neural networks might be your biggest opportunity to reduce CO, emissions.
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Today:
1. Where is this CO, coming from?
2. How much of it is caused by computing, and where?

3. What can we do to reduce the CO, emissions caused by computing and Al?
4. What can Al & ML do to mitigate the climate crisis?
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Machme Learnmg is the Most Energy-Inefficient Kind of Computmg LTUB]N

[data from Schneider, B

CIFAR 100 - ConvNet
6 T T

training loss

| | | |
0 50 100 150 200 250 300 350
epoch

In contrast to more established CS areas (like information retrieval, networks, compression, os), machine

learning, data analysis and Al are resource inefficient, and the market is currently willing to allow such
wastefulness. An individual developer can make a significant difference.
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The Dirty Secret of Academic Research

Conference Emissions

+ The typical Machine Learning PhD student flies to about one international conference per year.
AISTATS 2019: Okinawa, Japan

ICLR 2019: New Orleans, USA

NeurIPS 2019: Vancouver, Canada

ICML 2019: Long Beach, California, USA

+ a single intercontinental return flight FRA to LAX produces 5,73 t CO,. That's like running that
hypervisor for 160 days! The biggest climate cost of a NeurlPS paper is not the computing, but
flying in to present it.

+

+ o+ 4+
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Today:
1. Where is this CO, coming from?
2. How much of it is caused by computing, and where?

3. What can we do to reduce the CO, emissions caused by computing and Al?
4. What can Al & ML do to mitigate the climate crisis?

Numerics of Machine Learning — P. Hennig, SS 2019 — Lecture 08: Energy Impact of Computing and Al/ML



Contributing Our Special Skills a

https://arxiv.org/abs/1906.05433v1 (published 10 June 2019)

Tackling Climate Change with Machine Learning

David Rolnick!* Priya L. DontiZ, Lynn H. Kaack?®, Kelly Kochanski?*, Alexandre Lacoste®,
Kris Sankaran®”, Andrew Slavin Ross®, Nikola Milojevic-Dupont®!?, Natasha Jaques'!,
Anna Waldman-Brown!!, Alexandra Luccioni®”, Tegan Maharaj®”, Evan D. Sherwin?,
S. Karthik Mukkavilli®7, Konrad P. Kording®, Carla Gomes'2, Andrew Y. Ng'3,
Demis Hassabis'4, John C. Platt!®, Felix Creutzig'?, Jennifer Chayes', Yoshua Bengio®’

MUniversity of Pennsylvania, 2Carnegie Mellon University, >ETH Ziirich, *University of Colorado Boulder,
5Element Al ®Mila, “Université de Montréal, *Harvard University,
9Mercator Research Institute on Global Commons and Climate Change, °Technische Universitit Berlin,
'Massachusetts Institute of Technology, 12Cornell University, 13Stanford University,
14DeepMind, 1°Google AL, **Microsoft Research
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Just a fevv Picks

'TUBIN(_.EN
n the op.cit. https://arxiv.org/abs/1906.05433v1

+ Mitigation, e.q.
+ generation and demand forecasting and control in smart grids
+ enabling control of nuclear fusion

+ Transportation and Smart Cities, e.g.

+ freight routing and consolidation
+ improving shared and low-carbon options (bike sharing, electric scooters, public transport ...)
+ smart buildings (automatic shading, heating, appliances)

+ Industry, Farming, Forestry, e.g.

+ efficient supply chain management

+ lightweight construction

+ remote sensing of emissions

+ automated and smart afforestation and precision agriculture

+ Enabling Science, Society and Individuals, e.g.

+ improving climate forecasting and biodiversity/ecosystem monitoring and modelling
+ societal modelling for food security, migration, crises, disaster relief
+ providig tools for individual and societal action
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Caveats 'TLVI‘BIN(_.EN

let's not ge

+

This paper was written by people who don't know ML, and people who don't know the science
Some of the ideas are very aspirational, high-risk, long-term (and the authos say so)

ML can not solve these problems alone. In most cases, it is a supporting tool for scientific,
technological and societal advances. Computer scientists need to listen.

The solutions have to be deployed, too. We don't just need scientific advances, but people willing
to turn climate relief into a business opportunity.

+

+

+
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+ computing is a significant, but not the dominant consumer of energy
a large part of computing consumption happens at home, thus individual action matters

but CS professionals also have significant leverage to affect resource efficiency through careful
software design

Al'and ML have the potential to help enable technological and societal change to mitigate the
climate crisis — in careful support of the corresponding core communities.

+

+

+

If you are passionate about a particular use of ML to mitigate climate change,

feel invited to propose your own Masters thesis topic, apply for a PhD position, or startup seed funding!

Incidentally: There's an open PhD position in CO, soil-transport modeling available (with Thomas
Scholten, soil science) in my lab!
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