
COBOSLAB
Cognitive Bodyspaces: Learning and Behavior

COBOSLAB Report Y2009N001

October 23, 2009

Documentation of JavaXCSF

Patrick O. Stalph & Martin V. Butz

COBOSLAB, Psychologie III

University of Würzburg

Röntgenring 11

97070 Würzburg, Germany

http://www.coboslab.psychologie.uni-wuerzburg.de



Documentation of JavaXCSF

Patrick O. Stalph∗ Martin V. Butz†

Abstract

This report gives an overview of the JavaXCSF code and explains,
where to get the code. Furthermore, the settings and features are
described briefly. The document also explains how to use the code
and how to extend it. JavaXCSF is an implementation of the XCSF
Learning Classifier System that is used for function approximation.
The code contains four types of conditions, namely rectangular, ellip-
soidal, rotating rectangular, and rotating ellipsoidal conditions. In ad-
dition to a simple constant predictor based on the Widrow-Hoff rule,
implementations of a linear recursive least squares (RLS) prediction
and a quadratic RLS prediction are included. Eleven test functions
may serve as example problems. In order to adapt to current state of
the art CPU’s, which usually have more than one core, the code also
optionally supports parallelized matching to exploit the full power of
multicore CPU’s by using multiple parallel threads.

Keywords: Learning Classifier Systems, XCSF, Java, implementation,
function approximation

1 Introduction

Implementing a Learning Classifier System is a non-trivial task and debug-
ging such a complex system can take a large amount of time. The code
package described here is a recent implementation of the XCSF Learning
Classifier System in Java. It is freely available to the public.

Learning Classifier Systems were introduced by John H. Holland (Hol-
land, 1992) and strongly contribute to the field of genetics-based machine
learning, that is, machine learning techniques that make use of evolutionary
algorithms. The most prominent Learning Classifier System is XCS (Wilson,
1995, 1998). Recent research also emphasized the function approximation
variant, that is XCSF (Wilson, 2002; Butz, Lanzi, & Wilson, 2008).

The remainder of this report is organized as follows. Section 2 describes,
where the code can be downloaded and the requirements for running or
∗patrick.stalph@psychologie.uni-wuerzburg.de
†butz@psychologie.uni-wuerzburg.de

1



2 Getting Started

extending the code. Furthermore, a minimal example shows how to use the
code and the available settings are briefly explained. Going further into
the details, Section 3 lists the condition and prediction structures delivered
with this code package and Section 4 explains the visualization and logging
mechanisms that are available. Directions for developers, who wish to extend
the code, can be found in Section 5, where the structure of the package is
explained, and in Section 6, where details about the common interfaces are
given. The topic of parallelization is tackled in Section 7, where the one
parallelized class for matching is explained. Final comments conclude this
report.

2 Getting Started

The JavaXCSF code can be downloaded from:

http://www.coboslab.psychologie.uni-wuerzburg.de/code/

The zip file includes the source code, generated JavaDoc, an executable JAR
package and three text files to specify the XCSF setup, when running the the
main method. To run the JAR package, which starts examplary function
approximations, it is sufficient to have a recent version of Java installed.
Unpack the content and execute the following command.

java -jar xcsf.jar

The detailed prerequisites for the complete functionality of JavaXCSF are
described in the following paragraphs.

Java. In order to run the core funcionality of the code, it is sufficient to
have a recent version of Java (at least 1.5) installed. The Java Runtime En-
vironment (JRE) can be downloaded from http://java.com/. Developers
who want to implement their own learning problems or extend other parts
of the code need a recent version (at least 1.5) of the Java Development
Kit (JDK), which can be downloaded from http://java.sun.com/. Java
is sufficient for the core functionality, however, the code base also includes
classes for visualization and logging purposes that make use of Java 3D and
gnuplot. These classes are optional and the code will run without.

Optional: Java 3D. The visualization class for the condition structure
actually contains two visualizations. If the input space is two-dimensional,
the visualization is done using Java’s internal java.awt.Graphics2D pack-
age. However, if the input space is three-dimensional, the class checks for
Java 3D, which can be downloaded from https://java3d.dev.java.net/
and then starts the three-dimensional visualization. Users that want to

2



2.1 Basic Workflow

use the three-dimensional condition structure visualization require this ad-
ditional package—two-dimensional condition visualization runs nicely with-
out.

Optional: gnuplot. Gnuplot is a famous scientific plotting package for
two- and three-dimensional visualization of data. The free package can be
downloaded from http://www.gnuplot.info/ and the following four classes
make use of gnuplot.

• PredictionPlot.java plots the currently predicted function.

• PredictionErrorPlot.java plots the average prediction error.

• PerformanceWriter.java writes XCSF’s performance to a file (works
without gnuplot) and then plots the average prediction error, general-
ity and population size to a file.

• OutputWriter2D.java creates a snapshot of the two-dimensional con-
dition structure and plots the predicted function; both images are
written to the filesystem.

Calling an external program is a system-dependet task—the code was tested
on Windows as well as Linux and default executables are implemented for
these systems. On Windows, the gnuplot executable is expected to be found
at:

C:\<localized program files>\gnuplot\bin\pgnuplot.exe

where the exact name of the program files directory depends on the language
set for your OS. For Linux systems, the code expects the path to gnuplot
beeing set properly, such that calling gnuplot from anywhere suffices.

For other operating systems and differing installation directories, the
executable can be set in a public, static field before running XCSF.

xcsf.XCSFUtils.Gnuplot.executable = "foo/bar/executable";

2.1 Basic Workflow

For a detailed description of XCSF the interested reader is referred to (Wil-
son, 2002; Butz et al., 2008). The following pseudocode illustrates the basic
workflow of this implementation.

3



2.2 General Use Case

1: for n iterations do
2: x,y = function.nextSample()
3: ms = createMatchset(x)
4: if matchset is empty then
5: covering(x)
6: end if
7: p = ms.getWeightedPrediction(x)
8: ms.updateClassifiers(p, y)
9: evolution(ms)

10: end for

Supose, XCSF is approximating a function f : Rn → Rm. In each iteration
XCSF processes one sample, which consists of an n-dimensional input vec-
tor ~x and the corresponding m-dimensional function value ~y = f(~x). First,
the matchset for the current input ~x is created, that is, the set of all classi-
fiers, whose condition is satisfied by ~x. If no classifiers match, the covering
mechanism kicks in and creates a default classifier that matches the input.
During initial iterations this is often the case, because XCSF starts with an
empty population. The matchset is then used to predict the function value
at ~x and classifiers in the matchset are updated using the actual function
value ~y and the generated prediction ~p. Finally, the steady state genetic
algorithm reproduces and modifies two classifiers of the matchset.

2.2 General Use Case

The general use case for JavaXCSF consists of five steps:

1. Instantiate the function to be learned,

2. load the desired settings from a properties file,

3. instantiate the XCSF object,

4. optionally add listeners, and finally

5. start the experiment(s).

Using the sine function as an example (see the xcsf.examples package),
the corresponding java source code looks like this:

Function f = new Sine(1, 4, 0, 2);
XCSFConstants.load("xcsf.ini");
XCSF xcsf = new XCSF(f);
xcsf.addListener(new PerformanceGUI(true));
xcsf.runExperiments();

The listener concept in JavaXCSF realizes the observer design pattern and
thus clearly distinguishes between core functionality and visualization or

4



2.3 The Settings File

logging. This is extreemly useful when running the code on remote machines,
where no graphics are available at all. Listeners are informed about the
current progress at the end of every iteration and access to the population
and matchset is permitted.

2.3 The Settings File

Although optional, it is highly recommended to specify problem-dependent
settings for every function. The settings in JavaXCSF are usually loaded
from a properties file. The xcsf.ini file that comes with the code pack-
age is such a properties file and contains a complete list of options—all of
them well-documented. Alternatively, the XCSFConstants.java class may
be accessed directly, since all options are public and static. The following
list briefly describes the most important parameters.

maxLearningIterations specifies the number of iterations as an integer.

maxPopSize specifies the maximal population size as an integer.

epsilon 0 specifies the target error as a double.

conditionType specifies the condition class as a fully qualified binary
name.

predictionType specifies the prediction class as a fully qualified binary
name.

A “fully qualified binary class name” specifies the complete package hier-
archy and the full class name. Consequently a ClassLoader can load the
class and new implementations don’t have to change the classifier class it-
self. As an example, the rotating ellipsoidal condition class is located in the
xcsf.classifier package and the name is ConditionRotatingEllipsoid.
The correct binary class name is

xcsf.classifier.ConditionRotatingEllipsoid

The following section contains the correct binary class names for all imple-
mentations delivered with this code package.

3 Available Condition and Prediction Classes

Various condition and prediction types are discussed in the literature and
some of them are contained in the code base. Two n-dimensional geomet-
ric shapes are implemented, namely hyperrectangles and hyperellipsoids, of
which also rotating versions are available (Butz et al., 2008; Stalph, Butz,
Goldberg, & Llorà, 2009). For the predictions, the simplest implementation
is a constant prediction using the Widrow-Hoff rule for updates (Wilson,

5



4 Available Listener Implementations

2002). The linear predictor implements the recursive least squares algo-
rithm, which was found to yield good approximations fast (Drugowitsch &
Barry, 2008; Lanzi, Loiacono, Wilson, & Goldberg, 2006). Furthermore, a
quadratic recursive least squares implementation with mixed terms is in-
cluded. Thus, oblique quadratic subspaces can be approximated accurately.
However, the prediction complexity also grows quadratically in the num-
ber of dimensions for this predictor (Lanzi, Loiacono, Wilson, & Goldberg,
2005). Note that all condition classes implement the Condition.java in-
terface, while prediction classes implement the Prediction.java interface.

In order to use different condition or prediction types, their fully quali-
fied binary class name has to be specified in XCSF’s settings file or in the
XCSFConstants.java class. The following table contains the binary class
names required to use these conditions and predictions. However, if the code
is put in a different package, the names have to be adapted accordingly.

condition type fully qualified binary class name
rectangles xcsf.classifier.ConditionRectangle
ellipsoids xcsf.classifier.ConditionEllipsoid
rotating rectangles xcsf.classifier.ConditionRotatingRectangle
rotating ellipsoids xcsf.classifier.ConditionRotatingEllipsoid

prediction type fully qualified binary class name
constant xcsf.classifier.PredictionConstant
linear RLS xcsf.classifier.PredictionLinearRLS
quadratic RLS xcsf.classifier.PredictionQuadraticRLS

4 Available Listener Implementations

As mentioned before, the listener concept realizes the observer design pat-
tern to clearly distinguish between data processing and visualization or log-
ging. All listener classes implement the XCSFListener.java interface and
can be found in the xcsf.listener package. These classes can be registered
with the XCSF instance in order to get informations about XCSF’s progress
and current state after each iteration. Furthermore, they are notified about
new experiments, if more than one experiment is beeing run.

Various implementations are provided, including visualizations for the
condition structure in two- and three-dimensional input spaces and a visu-
alization for the predicted function surface for two-dimensional input spaces.
Furthermore, the package contains classes that store information about the
experiments to the filesystem, including XCSF’s performance and resulting
populations in a flat text format. The following sections summarize the
functionality of the included classes.

6



4.1 Visualizations

4.1 Visualizations

PerformanceGUI shows XCSF’s performance in several graphs. The user
can select the values that should be visualized using the button at
the bottom right. The class extends javax.swing.JPanel and thus
can be embedded into other graphical user interfaces. However, the
constructor can also be instructed to create an individual window for
this visualization.

ConditionsGUI2D3D realizes the visualization of two- and three-dimen-
sional condition structures. Conditions are colored according to their
fitness, where darker color indicates higher fitness. If the matchset is
shown, the matching conditions are colored differently and a red cross
indicates the current input.

PredictionPlot uses gnuplot to visualize the predicted function surface on
two-dimensional input spaces.

PredictionErrorPlot uses gnuplot to visualize the average prediction er-
ror of the classifiers on two-dimensional input spaces.

ProgressGUI is a small javax.swing.JPanel that shows a progress bar,
indicating when XCSF will finish the current run. This is especially
handy, when running XCSF from other graphical user interfaces and
the progress cannot be monitored on a console.

4.2 Logging and Storage

PerformanceWriter writes the XCSF’s performance (mean and sample
standard deviation over the experiments) to a tab-separated file. Fur-
thermore, if gnuplot is installed, a default plot including prediction
error, population size, and generality is created. Only the top bar for
the sample standard deviation is shown due to the log-scaling.

PopulationWriter writes XCSF’s population to a flat text file. These files
can be parsed by the Population.java class. This also works with
new condition or prediction implementations, if the required construc-
tor is specified. For details, see Section 6.

OutputWriter2D writes the final condition structure and predicted func-
tion surface to the filesystem, if the input space is two-dimensional.

5 Structure of the Source Code

JavaXCSF comes with four packages, of which two packages are optional.
The xcsf.listener package contains mostly visualization and performance

7



6 Extending the Code

logging classes and xcsf.examples contains various examplary function im-
plementations and a sophisticated main method to run experiments on these
functions. In the following, a brief description of all packages and short de-
scriptions of the most important classes are given. Detailed descriptions of
individual classes can be found in the generated JavaDoc API.

xcsf The core package contains the functionality of the Learning Classifier
System.

• XCSF.java represents the Learning Classifier System.

• XCSFConstants.java contains the settings and methods to load
settings from a file.

• Function.java is the general interface for all learning problems.

• StateDescriptor.java is used to abstract from input and out-
put of functions.

• XCSFListener.java is the general interface that realizes the ob-
server design pattern. This is especially useful for visualization
and logging purposes without changing the core functionality.

• Population.java is an efficient, specialized ArrayList-like imple-
mentation to hold the set of classifiers.

xcsf.classifier This mandatory package contains all classes linked to one
specific classifier, also including condition and prediction functionality.

• Classifier.java represents one classifier of XCSF. A classifier
consists of a prediction and a condition.

• Condition.java is the general interface for conditions. Some im-
plementations of this interface are also contained in the package.

• Prediction.java is the interface for prediction classes. Some
implementations are containted in the package.

xcsf.listener This optional package contains various implementations of
the XCSFListener interface, which is used for visualization and logging
purposes.

xcsf.examples The optional package depends on the xcsf.listener pack-
age and includes eleven test functions and a sophisticated main method
to run experiments on these functions. Furthermore, an example for
distributed online learning with parallel threads is included.

6 Extending the Code

The structure of the source code allows for easy extensions with respect
to new functions, condition and prediction structures, and listeners—four

8



6.1 Implementing Functions

interfaces allow for a straight-forward implementation with minimal func-
tionality requirements. The following sections explain some of the details
that implementations have to take care of.

6.1 Implementing Functions

Function.java is the general interface for XCSF that works in conjunction
with the StateDescriptor.java class. The most important method, that
is Function.nextProblemInstance(), produces the function samples for
the Learning Classifier System. In each iteration of XCSF, this is the first
method call that either samples a random input and computes the corre-
sponding output, or just loads a sample from a file. The resulting input
vector ~x and output vector ~y = f(~x) are stored in a StateDescriptor ob-
ject and handed over to XCSF. The xcsf.examples package contains eleven
implementations of this method. There is one important thing to notice: the
default conditions delivered with JavaXCSF expect the input space to be
confined to [0, 1]n, because the center of the conditions cannot lie outside
this space. Furthermore, the restricted search space simplifies calculations,
because the search space volume is always one.

Convenience Classes. Besides the standard interface, there are two ab-
stract convenience classes. Functions with one-dimensional output can ex-
tend the SimpleFunction.java class, which implements a uniformly sam-
pled n-dimensional function with gaussian noise. When XCSF shall be used
in a true online environment, where samples are produced by a different
thread, the communication has to be synchronized.

The BlockingFunction.java class realizes a simple sychronized pro-
ducer consumer sheme, where the producing thread adds samples to the
function object, while the XCSF thread tries to pull samples from the func-
tion. If no samples are available, the XCSF thread is put to sleep—if a new
sample is added, the thread is notified. If Integer.MAX_VALUE samples are
in the current queue, the producing thread is blocked, when adding another
sample, until XCSF processes samples.

Separated Inputs. The StateDescriptor.java class enables the sepa-
ration of condition and prediction inputs. Usually, the input for the con-
dition is also used for the predictions. However, when the conditions are
used to structure the context of the function to be learned, not the input
space itself, one state consists of three vectors: the condition input, the pre-
diction input, and the function value. For example, this technique is used
to learn the kinematic forward model of a multi-joint arm, where the con-
ditions structure the joint-angle space, while the predicted function maps
joint-angle changes to hand location changes (Butz & Herbort, 2008; Butz,
Pedersen, & Stalph, 2009; Stalph, Butz, & Pedersen, 2009).

9



6.2 Novel Conditions

6.2 Novel Conditions

The general interface for conditions is Condition.java. There is no ex-
plicit representation of the shape of a condition—two methods specify the
shape indirectly: doesMatch(double[]) and getActivity(double[]). In
the current code, conditions are required to have a center and a volume,
although this might hinder the implementation of more abstract conditions,
such as gene expression programming conditions. Furthermore, the gener-
ality of conditions has to be comparable in order to allow for subsumption.
Three methods are dedicated to the evolutionary algorithm for reproduc-
tion, crossover, and mutation. For new implementations, it is a good idea to
compare the code with the available implementations. Finally, the binary
class name specified in XCSF’s settings is the only thing that has to be
changed in order to use the new implementation.

Constructors. There is no way in Java to force a specific constructor
signature with an interface. However, in order to be compatible, implemen-
tations have to specify one constructor for covering with an explicitly given
signature. During covering, a constructor that takes a double array as an ar-
gument is required. If this constructor is not specified, the Classifier.java
class will throw an exception during covering.

For storing and parsing populations, another constructor is required.
This constructor takes a string array as its only argument, that is the de-
composed string that represents the condition. For implementation details
refer to the methods

• Condition.write(PrintStream, CharSequence) and

• Classifier.parse(String, String, String).

The second constructor is only necessary, if parsing of populations is used.

6.3 New Predictions

Prediction.java is the interface for any predictor implementation. Analo-
gously to the conditions, there is no explicit representation of the function.
The predict(double[]) method receives the current input vector and re-
turns the predicted function value(s). Predictions are trained by means of
the update(double[], double[]) method, which takes the prediction in-
put vector and the actual function value as arguments. Two methods are
dedicated to evolution, namely for reproduction and crossover. However, the
crossover method does not refer to standard crossover operators, but notifies
the prediction about the new context. Analogous to the condition interface,
implementations have to specify at least one constructor for covering, where

10



6.4 Writing Listeners

the following signature is required: (int, double[]). Optionally, a con-
structor with the signature (String[]) provides functionality for parsing
predictions from a file.

6.4 Writing Listeners

Implementations of the XCSFListener.java interface can be registered with
the XCSF instance using the XCSF.addListener(XCSFListener) method.
Registered classes are informed about the current state after each itera-
tion, including the current iteration, function sample, population, matchset,
and performance. This is done via the stateChanged(...) method. Some
listeners may be interested in the index of the current experiment or the
name of the function to be learned. This information is provided by the
nextExperiment(int, String) method, which is called once before each
experiment. Various implementations of the interface can be found in the
xcsf.listener package.

7 Support for Multicore Architectures

The most time consuming part of XCSF (or XCS in general) is the matching
procedure, since the whole population has to be scanned for matching clas-
sifiers. More elaborate conditions may realize complex geometric shapes,
further increasing the computational time needed to compute the match-
set. In order to adapt to the trend of multicore CPU’s, we implemented a
parallelized adaptive matching procedure that creates n threads, where

n = Runtime.getRuntime().availableProcessors()

is the number of processors available to the Java virtual machine. Since
there is a considerable overhead for synchonization in parallelized compu-
tations, the parallel matching is slower for small population sizes, but for
infinitely large populations the speedup by means of parallelization con-
verges to n. The question is, when to start using parallel matching. There
is no simple answer to this question, since it depends on (1) the current
architecture, (2) current work load, (3) number of available processors, (4)
condition complexity, and (5) population size. However, a simple adaptation
mechanism, which produces almost no overhead, can be used to estimate a
good threshold for each run anew. This way, the usual serial matching is
used for small population sizes and the parallel matching for large popu-
lations, consequently sqeezing the approximately best performance out of
the current system. Furthermore, the technique assures that the speedup is
never significantly smaller than one. The following paragraph describes the
adaptation sheme.

11



7 Support for Multicore Architectures

Automatic Adaptation to Arbitrary Architectures Given an un-
known problem on an unknown architecture, the only way to find out when
parallelization pays off is to actually measure the times for serial and paral-
lel code. However, comparing the matching time whenever the population
size changes results in a huge overhead, until the appropriate threshold is
found. In the present implementation, the measurements are not compared
directly on the same population size, but on consecutive iterations—thus
each matchset is computed only once. Furthermore, the measurement is
done maximally 25 times, while the population size increases, and not when-
ever the population size changed.

The algorithm starts with serial matching, when the population is empty.
If the population size increased more than N/25, where N is the maximum
population size, the time of the serial matching method is measured us-
ing System.nanoTime(). At the following iteration, the parallel matching
method is used and its CPU time is measured. Note that the population
size might be slightly higher, but the measurement is not very accurate,
anyways. Given the CPU time spent for serial and parallel matching, the
times are compared. If the parallelized version is faster, the current popula-
tion size serves as the fixed threshold for parallelization and the adaptation
mechanism is turned off. Whenever the population size succeeds the thresh-
old, the parallelized matching is used and the serial version otherwise. For
the next experiment on a possibly different function, the adaptation starts
anew. Due to infrequent and noisy measurements the threshold is an ap-
proximation. However, the differences in computational time close to the
threshold are marginal.

Reproducable Results It is important to notice that the results are not
exactly reproducable with parallelized matching, even if a fixed seed for
the random number generator is used. This is due to the concurrent entry
of classifiers into the matchset: the ordering of classifiers in the matchset
cannot be guaranteed to be the same as for serial matching. Although
the same classifiers participate in the matchset as for serial matching, the
following selection mechanism of the steady state genetic algorithm selects
classifiers by their array index. Consequently different classifiers may be
selected, when parallel matching is used.

If 100% reproducable results are required (e.g. for debugging), there
are two workarounds for this. Either the multi-threading is turned off by
setting the corresponding flag in the settings to false or the matchset is
sorted after matching.

12



8 Final Comments

8 Final Comments

The code is distributed for academic purposes with absolutely no warranty of
any kind, either expressed or implied, to the extent permitted by applicable
state law. We are not responsible for any damage from its proper or improper
use.

Feel free to use, modify and distribute the code with an appropriate
acknowledgment of the source, but in all resulting publications please include
the following citation:

P.O. Stalph & M.V. Butz (2009), Documentation of JavaXCSF
(COBOSLAB Report Y2009N001). Retrieved from University
of Würzburg, Cognitive Bodyspaces: Learning and Behavior
website: http://www.uni-wuerzburg.de/fileadmin/ext00209/
user_upload/Publications/2009/Stalph09JavaXCSF.pdf

Please report any bugs or other inconsistencies in the source code to one of
the authors.

References

Butz, M. V., & Herbort, O. (2008). Context-dependent predictions and
cognitive arm control with XCSF. In Gecco ’08: Proceedings of the
10th annual conference on genetic and evolutionary computation (pp.
1357–1364). New York, NY, USA: ACM.

Butz, M. V., Lanzi, P. L., & Wilson, S. W. (2008). Function approximation
with XCS: Hyperellipsoidal conditions, recursive least squares, and
compaction. IEEE Transactions on Evolutionary Computation, 12,
355-376.

Butz, M. V., Pedersen, G. K., & Stalph, P. O. (2009). Learning sensorimotor
control structures with XCSF: Redundancy exploitation and dynamic
control. In Gecco ’09: Proceedings of the 11th annual conference on
genetic and evolutionary computation (pp. 1171–1178).

Drugowitsch, J., & Barry, A. (2008). A formal framework and extensions
for function approximation in learning classifier systems. Machine
Learning, 70, 45-88.

Holland, J. H. (1992). Adaptation in natural and artificial systems: An
introductory analysis with applications to biology, control, and artificial
intelligence. Cambridge, Massachusetts: The MIT Press.

Lanzi, P. L., Loiacono, D., Wilson, S. W., & Goldberg, D. E. (2005). Ex-
tending XCSF beyond linear approximation. In Gecco ’05: Proceed-
ings of the 2005 conference on genetic and evolutionary computation
(p. 1827-1834).

Lanzi, P. L., Loiacono, D., Wilson, S. W., & Goldberg, D. E. (2006). Pre-
diction update algorithms for XCSF: RLS, kalman filter, and gain

13



References

adaptation. In Gecco ’06: Proceedings of the 8th annual conference
on genetic and evolutionary computation (pp. 1505–1512). New York,
NY, USA: ACM.

Stalph, P. O., Butz, M. V., Goldberg, D. E., & Llorà, X. (2009). On the
scalability of XCS(F). In Gecco ’09: Proceedings of the 11th annual
conference on genetic and evolutionary computation (pp. 1315–1322).
New York, NY, USA: ACM.

Stalph, P. O., Butz, M. V., & Pedersen, G. K. (2009). Controlling a four
degree of freedom arm in 3D using the XCSF learning classifier system.
In Proceedings of the 32nd german conference on artificial intelligence
(ki-2009).

Wilson, S. W. (1995). Classifier fitness based on accuracy. Evolutionary
Computation, 3 (2), 149-175.

Wilson, S. W. (1998). Generalization in the XCS classifier system. Genetic
Programming 1998: Proceedings of the Third Annual Conference, 665–
674.

Wilson, S. W. (2002). Classifiers that approximate functions. Natural
Computing, 1, 211-234.

14


