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Abstract— Psychological studies have shown immense beha- suitably transfer knowledge gained from one effector to the
vioral flexibility in arm reaching tasks. Intermanual learning  other. The representations form due to the enforced compact
transfer (ILT) tasks have shown that both reaching movements integration of multiple sensory and motor information and

adapt to distorted spaces rather rapidly and the adaptation g )
generalizes to the behavior of other limbs. In this paper, we pre- their interdependence. Thus, internal bodyspaces may form

sent an ILT experiment and replicate it with feedforward neural ~ Simply because they are the most effective representation t
network (NN) architectures. We show that the NN architecture ensure an adaptive and flexible manipulation of the outside

is the key to successfully replicating the experiments. Moreover, environment by multiple means—choosing the limb or ex-

we show that dependent on the architecture and the initial ety currently most suitable and available for the task a
training schedule applied, an internal space representation hand

emerges that enables ILT. The results confirm that internal body ) ) .
spaces, identified in neuroscience and cognitive psychological ~The paper is structured as follows. We first provide back-
research, can emerge solely due to an interdependence betweenground on ILT. We then detail the experiment conducted in

different limb movements and the right neural architecture. We  gyr laboratory that shows learning transfer from the trdine
hypothesize that, in order to develop internal spatial represen- to the untrained hand in an aiming task. Next, we detail

tations observed in animals and humans, it might be sufficient the NN hitect d and sh hen | ina t f
to enforce the integration of multiple correlated sensory and € architectures used and show when learning franster

motor information into one compact internal representation. i? pos:'sible vyithin the architectures. Th? paper ends with a
final discussion, summary, and conclusions.

I. INTRODUCTION

In psychological research, intermanual learning transfer Il. INTERMANUAL LEARNING TRANSFER
(ILT) has been recorded for at least 150 years, e.g. [1], [2]. Investigators have used a diversity of tasks to demonstrate
Training one limb does not only improve performance of th¢,.T. One of the most typical ones is pointing under transfor-
trained but also of the untrained, contralateral limb. althh med visual feedback [4]. Despite high experimental effort,
many studies have investigated this topic and have showime mechanisms underlying ILT are not yet fully understood.
various types of ILT, it remains unclear how learning transf )
is accomplished in the brain. A. ILT Mechanisms

In this paper, we present a recent study on ILT. Participants To perform goal-directed movements, a number of pro-
showed learning transfer in an aiming task with a targetlems have to be solved A spatial target has to be selected,
specific prism-like visual displacement. After trainingtivi usually based on visual information. Additionally, a final
the right arm, the left arm exhibited the same adapted aimirsgm posture needs to be selected that is sufficiently close
behavior without any actual training. Thus, ILT of a diseatt to the target [5]. To do so, the target location has to
workspace was observed. be transformed from spatial, vision-based to effectoelas

We model this behavior with two multi-layer neural net-coordinates. The problem of learning such a transformation
work (NN) architectures, trained with standard backpropds often termed amverse kinematics problen®ther factors
gation techniques [3]. We show that it is impossible tancluding trajectory formation, motor command generation
qualitatively replicate the observed learning transfethvé obstacle avoidance, hand posture selection, and the consi-
naive approach. Based on the assumption that eye-centemstation of other environmental task constraints will net b
coordinates are transformed into an effector-independefuirther addressed in this study.
spatial representation, which controls both arms, we show It is yet unclear which of these processes contributes to
that ILT can be modeled using a Y-shaped NN architecturgvhich degree to ILT. Some researchers suggest that the
We show that when the two arms are trained with commolearned pattern of motor commands is transferred [6]. For
goals, an internal representation emerges that allows fexample, it was found that right-handers were more accurate
effective learning transfer. That is, also the untrainesh arin drawing meaningless figures with the right hand, if they
adapts to the distorted work-space environment, as ol$erdead previously practiced the drawing of mirror-reversed
in the experiments with humans. versions of the same figures with the left hand [7].

We hypothesize that an internal effector-independent body Other researchers have claimed that ILT occurs because the
space representation emerges, because the internal Nis laysctor learns a new mapping of vision-based target coomtnat

. .. onto effector-based target coordinates, which can be gener
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modalities, including vision, proprioception, auditioand Manipulated Feedback
vestibular sensation are combined to form modular spatial Projection of display /—;—\
representations in the posterior parietal cortex [10],].[11 and feedback via | I——— Computer
These effector-independent spatial representations neay b N

used to affect different effector systems and may conseguen
ly constitute the basis of ILT.

Support for this hypothesis can be found in a study in
which participants had to learn an artificial transformatio
of elbow- and shoulder-joint angles during an aiming task.
Thereby, also the untrained arm adapted to the transfasmati
[9]. According to the authors, the adjustments had been made
to a central representation not specific to either arm but
common to both arms. Other spatial mapping alterations can
by found in the literature [12], [13], which all confirm high
behavioral plasticity in humans. Humans are able to quickly
adapt to spatial alterations, whereby the adaptivity is n@lg. 1. Participants could not see their hand. Instead taalispot indicated

confined to a single extremity but appears to be transferaﬁfé“ current hand location. Neighboring targets had to behexh starting
9 y PP rom one of the three locations in the center column. The Vigeedback

to any ava”ab_le limb "fmd even.to tool usage [11]-. . for one of the outside targets was manipulated so that theagfispp hand
To summarize, profit from prior contralateral training hasocation did not correspond with its actual one.

been demonstrated for mirror-reversed as well as for non-

reversed versions of the originally practiced movemerite T . ) o )
results suggest that ILT occurrence and type are mainly digedback was given which always indicated a hit for any

pendent on the task-dependent goal representationstadtiva®mMing movement that ended outside of the starting square.
during training. The high relevance of activated goal reprd-Onsequently, error-based learning was impossible during
sentations was also shown in bimanual behavioral studies#®sting. _ _

which object manipulations [14] showed congruency effects !f ILT in this task was based on a re-interpretation of the
depend on task-dependent goal representations but not \Bgually perceived location of the manipulated target, exov
the symmetry of the actually executed movements. Alsgents of the untrained hand to the target should shifteden th
the efficient execution of bimanual circular motion patternSa@me direction as movements of the trained hand. Thus, if the
was shown to depend on non-conflicting goal representatioffgined hand has learned to make farther movements in the
[15]. However, it remains unclear to what degree transféfirection of the manipulated target, the untrained handilsho
depends on particular body-, task-, training-, and represe also show farther movements towards that target. If, howeve
tional constraints. In the remainder of this work, we focas oth€ ILT was based more on a directional representations, a
ILT based on coordinate re-mappings. The following Stud{,mrror—reversed version of the adapted movements should be
evaluates the capability of humans to remap coordinates afserved. Besides these two possible directions of adapfat
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transfer the remapping in an aiming task. also the generalization of the adaptation to targets in & n
. . vicinity was of interest.
B. ILT in an Aiming Task 2) Results: After adaptation training, the results of par-

In an experiment by Lenharet al. [16], [17] participants ticipants that were not aware of the spatial manipulation
exhibited ILT in an aiming task. The goal of the study was tdbased on a subsequent questionnaire) clearly indicatgd th
further investigate whether ILT is based on a re-interimta the trained hand adapted to the altered location. Also gene-
of the visually perceived target locations or on a transfer galization to the neighboring targets in the same movement
muscle-specific motor commands. direction was observable, aiming at them with slightlyliert

1) Experimental SetupAn experimental setup was usedmovements. The adaption decreased with target distance to
in which visual feedback could be displaced for individuathe manipulated target and did not generalize to opposite
targets (cf. Figure 1). Participants had no visual feedtmck movement directions. Figure 3 (bottom bars for each target)
their own hand but rather saw a virtual spot representing tl#hows the adaptation in arm movements.
position of the hand. An array of nine squares distributed in Test trials with the untrained hand revealed ILT. In fact,
a 3 grid depicted potential targets. Each critical movemento significant difference between the right and the left hand
started from a square in the middle column and aimed at oelaptation was found. ILT took place in various conditions
of the neighboring squares. For one single target the feddbawith respect to location of the manipulated target, but not
was manipulated. The virtual spot indicated that movements the opposite movement direction. Therefore, a transfer
towards this target were shorter than the actual movements. motor commands to homologous muscles of the other
Accordingly, the visual feedback signaled a hit when thé rearm could be ruled out as an explanation for the observed
position of the hand was beyond the target square. learning transfer. Rather, it appeared that a target locati

To determine the degree of ILT, performance of bothe-interpretation was used to control the aiming movements
hands was tested before and after adaptation. Hereby, viso& both hands.



I1l. SIMULATION OF ILT angles joint angles that reached 1.96cm further to the left.

Despite an extensive literature search, we were not apigirthermore, the middie column was sampled twice as often
to find a neural network (NN) model that simulated ||_-|—_to.m|m|c thg experiments with humans even closer. During
The aim of the following NN architectures is to model thethis adaptation phase, only one arm received feedback (
transfer observed in the human participants with a simpf&): Whereas the other received no feedback.

multi-layered NN, which is trained using backpropagation. Finally, network adaption was tested feeding in the nine
eye angle locations that corresponded to the nine target

A. Training and Testing Data locations, recording the joint angles and correspondimglha

The NN architectures tested were trained to learn tHecations generated by the NNs.
coordinate transformations from eye-orientation-baseget g A Multilayer Feed-forward Neural Network
coordinates to joint angle coordinates of the arm, whicldyie
a hand position that coincides with the target coordinatesr
To generate suitable training data, the two-dimensiondi/bo
model shown in Figure 2 was used, which included two arm
and the eyes fixating a particular target. Hereby, the upp
arm and forearm were assumed to be 26cm and 30cm lo
respectively. Eye distance was set to 6.4cm and shoul
distance to 34cm. These distances correspond on averag
the lengths of an adult human, where the forearm leng
includes part of the hand.

In an initial long training phase, ten NNs were trained with’”
different random seeds for each architecture with a Iet\s;rniﬂ1
rated = .1. The NNs learned the inverse kinematics of th
two arms, that is, they learned to transform eye angles,twhi

The neural network architectures were generated using the
learn software, publicly available online [18]. Figure 4
ows the initial multilayer feed-forward network used in
e initial experiments (NN 1). The network was constructed
ith nine hidden layers to be able to mimic multiple coor-
I[’1ate transformations and investigate effects of botitén
ocation. All hidden layers consisted of six neurons except
R the sixth layer, which consisted of four units, creating
a processing bottleneck. The bottleneck further enforces
ompact encodings, which is in accordance to the dimensio-
ality reduction technique recently shown to efficientlydan
ompactly encode multidimensional data in neural networks
19]. All neurons had standard sigmoid activations [18],

encode target locations, to arm angles, which determine tﬁé(éelpt for thfﬁ Iat§t h|dc:ten Ia);erbandblth::‘ c:utput layer, V;?'Ch
corresponding hand location. To do so, 1,000 data pairs o?d. inear activa |o_r|1hpa. erntsl obea e'ot Zar? tjhnn?ma ! i
two eye angle pairs &, 3), (ar, 3,)) and corresponding radian measures. The input layer consisted of the four inpu

joint angle pairs (;, &;), (v, 6,.), see Figure 2) were created.valuetS (. gl' O‘E’_ fr), 10 encodﬁ two p?_re_ltllel but se?at\rate
Both hands always had to reach the same point in spaiﬁrge S, and a bias neuron, whose activity was set to one

The locations were uniformly randomly generated within r;\)fl:grh (tJr:J:z ;f(l)? ;sr:m;:e}ctrlglnnlsn iterations, performance tests
20cm x 20cm area distantlOcm in front of the eyes. All 9 ' P

networks were trained for07” iterations, sampling the data 2ifnth%;f: ':ﬁggggdggg :;ae'gﬁds '\llj';lri grertc\),\rlc:)rr;l\cﬁ)lgtgi tral-
uniformly randomly with replacement. 9 y 9

n @ second much shrteradaptaion hase wih anty (1% 110 20 soortiacs, T it et e
iterations, the NNs were trained on the distorted workspa identical eve anale coo)r/dinates iNto tWo separate :Ers o
task used in the experiments with humans. In this phas%, y 9 P P

; . . o . t angles.
only nine locations were considered distributed i & 3 /°™ . - . .
gri(;/. Rows and targets within a row were distant 3.2cm. After the initial training, the adaption phase was applied t

Corresponding to the experiments with humans, the Iocatioenach of the ten networks. Figure 3A (top bars for each target)

. L shows the adaptation in horizontal direction aftet adapti-
of the upper left target was distorted by associating to fee ®on steps. The trained arm exhibits a very effective adaptati

moving 1.01 4 .348 further to the left than necessary (target
1). Also joint angles for the neighboring targets (targehd a

target 4) exhibit significant adaptation. Thus, human data w
mimicked which exhibited a generalized adaptation to targe
Q 4 but not to target 2 (Figure 3A bottom bars), because the

center column was the start column [16].
Q However, when testing the untrained arm, no systematic
adaptation was observable (Figure 3B top bars). The large

standard deviations indicate that the untrained arm was
ﬁ'm a affected by network crosstalk, but not in any directed way.
> 21— This shows that NN 1 itself is not able to account for ILT.

In order to evaluate if an effector-independent represienta
on evolves in NN 1 that can account for the transfer observed
in humans, we fixed all the weights of the connections from

Fig. 2. To mimic the experimental setup with humans, a spatial nede ~ the output layer until the bottleneck layer. Doing so, esror
used from which the training and testing data was generated. encountered during the adaption phase were back-proghgate
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Fig. 3. The figure shows horizontal deviations of the handnfthe nine visually perceived target locations (in millimejeDuring the adaptation phase,
target 1 was re-locatetd.6mm to the left. In all NN settings, the trained arm adapted éspatial distortion, exhibiting different amounts of geatieation
to the neighboring targets (A). The adaptation of the ungdiarm (B) strongly depends on the NN architecture (NN 1 \.2), if weight adaptation
was unconstrained or restricted to the layers before thiéebetk layer (free vs. fixed), and if the NN was trained on comrgoals or separate goals
only (NN 2 vs. NN 2 sep). Human data (lowest bar in all targetg)lshows typical adaption of the trained arm (A) and ILT ie tmtrained arm (B).

until the bottleneck layer without weight adaptation. From °“tP“t ”eurO”
the bottleneck layer on then, the errors were back-propdgat '
further and weights were adjusted until the input layer.

Figure 3A shows slightly smaller adaptations of the trained
arm compared to the adaptations with unconstrained weight
adaptation. However, now also the untrained arm exhibits ‘ bottleneck neurons R
strong adaptation tendency towards the left (Figure 3B). '
Thus, transfer is taking place. The transfer is not locadly-c
fined to target 1, though, but it extends to all target locatio
This indicates that earlier hidden layers in NN 1 commonly
represent the surrounding space but transformation effect
have a global rather than a local impact. Thus, ILT is not
well replicated.

hidden

hidden neurons

input neurons
bias neurons

C. Emergent Learning of an Effector-Independent Space NN 1 NN 2

The results so far m.dlcate that in ,NN 1 the Oth?r arm, I1’;—ig. 4. A multilayer neural network architecture (NN 1) and ahaped
affected by the adaptation, but rather in an unspecific @shi neural architecture was used in the NN experiments. A bettleriayer
Thus, the spatial representation of the two arms somewtratforced compact encodings.

interacts within the hidden layers, but the interactiona$ n

locally confined.

In neuroscience and psychology, though, it is well knovired after the bottleneck layer. Before the bottleneck laher
that internal body spaces exhibit local encodings. Morgoveeye angles may be suitably transformed into a maximally
effector specific cortical areas can be distinguished frowompact internal representation, which is enforced by the
effector unspecific, pre-motor areas [11]. Thus, we gerdratbottleneck layer.

a Y-shaped neural network, NN 2, that processed the eyeTo test the emergent plasticity of the resulting networks,
angles in several common hidden layers and splits into twwe again trained 10 sets of NN 2 weights, which yielded
parts after the bottleneck layer (see Figure 4). We expectedperformance ofRMS = .0067 & .0015 on the training
that the coordinate transformation from effector-indegmrt  data (in joint angle coordinates). After the adaptationsgha
representations to the two pairs of joint angles is accanpliand as in NN 1, the trained hand shows suitable adaptation



to the transformed target 1 as well as to the surroundirigansformation, as indicated by the large standard dewvisti
targets (Figure 3A). Even more interestingly, though, alsand the displacement in the opposite direction (Figure 3B).
the untrained arm adapts locally to the transformation. Thehus, common, interdependent training of the two arms
adaptation of targets 1, 2, and 4 show adaptations to the lsttems necessary to form emergent internal representations
comparable to the trained arm and in line with the humathat support ILT.
data. Moreover, adaptations to the other targets diffemfro
the actual correct position only slightly. Thus, local ILT IV. Discussion
occurs, similar to the one observed in humans. Our neural network simulations have shown that internal
Despite this very promising result, the adaptation in th&/N representations that are suitable for ILT only emerge
y-direction shows that the transfer is not confined to th&nder the following conditions. (1) The two simulated effec
horizontal direction but also affects the vertical axis.eThtors need to be trained interdependently. In our simulation
transformation in the vertical direction shows an obliquethis was accomplished by the training of common goals
negative distortion away from target 1. Target 9 was urduring training. (2) The network architecture needs to sxefo
dershot with —17.6 + 9.8mm (full data not shown). In independent processing of the inverse kinematics of the two
NN 1, these distortions were not as extreme—a maximu@ms, while relying on an internally hidden common code.
displacement oft.73 + 3.96mm was observe for target 3. This was accomplished by a Y-shaped NN architecture (NN 2
Thus, the horizontal direction exhibits ILT but additionalin Figure 4). (3) If the weight adaptation is back-propadate
crosstalk disrupts adaptation in the vertical direction. to the common layers and does not affect the separate layers,
To investigate whether the adaptation in the trained arthie ILT is even more similar to the one observed in humans.
before the bottleneck layer caused this effect, we agaifhis suggests that the internal adaptation of an effector-
fixed the weights between the output and bottleneck layetddependent internal common code yields the most accurate
during adaptation. Figure 3 shows that the displacemergéects.
are comparable to the ones without fixed weights, albeit Clearly there is lots of room to improve the applied neural
the adaptation is slightly more global. In comparison to tharchitecture and the utilized data. Research suggests that
adaption in NN 1, though, adaption remains much mortiternal body spaces are encoded with population codes
locally confined. Moreover, the adaptation in the verticaWith various, body-related topologies [11]. Moreover, ibid
direction is significantly decreased (maximum distortidn orectional, Bayesian-like processing occurs in the bral.[2
—4.10+8.41mm for target 9). Thus, this setup most closelyAn interesting challenge lies in the exploitation of this
replicates the local ILT observed in humans. knowledge to accomplish even more accurate and reliable

- . . . . ILT in artificial learning systems.
D. Training with Different Goal Location Pairs g sy

Recent insights from psychology furthermore suggest thdr Population-Encoded Body Spaces
generalization in motor learning strongly depends on the Recent neuro- and cognitive psychological investigations
history of motor actions. For example, it was shown thalbave shown that the brain encodes the surrounding space
knowledge transfer occurs from shoulder to wrist manipulatin various, multimodal, body-related spatial represeorest
ons but not vice versa, presumably since the wrist also movgkl], [22], [23]. For example, cortical areas were identfie
through space when the shoulder is moved, but not the othermonkeys that encode eripersonalarm space. A neuron
way round. The authors suggest that an interdependenicethis area may respond if the arm is touched at a certain
between effectors needs to be present in order to enalbbeation, if an object is close to that location, and everé t
knowledge transfer [20]. position is simply looked at [22].

To see if knowledge transfer depends on the interdepen-These spaces are mostly encoded by population codes,
dence between arm movements in our model, we generatiht is, neural representations in which each neuron has a
another training set in which each arm had to reach lacal receptive field in the encoded (body-) space. Intéygat
different target. Thus, they, §; pair for the left arm now neural activity by means of single cell recordings in mon-
differed from thea,., 8, pair. Again, 1,000 data entries werekeys, it is now even possible to derive current arm posture
generated and ten NN 2 networks were trained on the datad current arm movements from this activity [23]. Also
for 107 steps with different random seeds. As expected, thasychological experiments indicate that partially efbect
task was harder for the networks so that one out of thedependent internal neural representations exist [1F. A
ten networks did not succeed in learning the transformatisuggested, these effector-independent spatial repet&erst
accurately. We consequently replaced that network with anight be used to accomplish re-mappings and some types of
additional network trained with an additional random seedLT observed in humans [9], [8], [12], [13].

Performance evaluations on the training data yielded an Our simulations focused on re-mappings from eye to joint
RMS of .0186 4 .0030 in joint angle coordinates in the ten angles. The currently applied networks, however, did not
successfully trained networks. apply population encodings. Due to the sparsity of all layer

Figure 3A shows that also this network (NN 2 sep) is abland the bottleneck layer in particular, it can also not be
to adapt to the transformation locally with the trained armexpected that the neurons in the layers exhibit local réeept
However, the untrained arm does not show any systemafield properties. Thus, a future research challenge will be
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