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Figure 1: (a) Six photographs of the Toscana scene featuring several transient objects. (b) For each background pixel the
computed labeling selects the most consistent source image. (c) The estimated background image is free of temporal occluders.
(bottom) Detail of a difficult region where the background is only visible in a single photograph.

ABSTRACT

We address the problem of reconstructing the background of a scene
from a set of photographs featuring several occluding objects. We
assume that the photographs are obtained from the same viewpoint
and under similar illumination conditions. Our approach is to de-
fine the background as a composite of the input photographs. Each
possible composite is assigned a cost, and the resulting cost func-
tion is minimized. We penalize deviations from the following two
model assumptions: background objects are stationary, and back-
ground objects are more likely to appear across the photographs.
We approximate object stationariness using a motion boundary con-
sistency term, and object likelihood using probability density esti-
mates. The penalties are combined using an entropy-based weight-
ing function. Furthermore, we constraint the solution space in or-
der to avoid composites that cut through objects. The cost func-
tion is minimized using graph cuts, and the final result is com-
posed using gradient domain fusion. We demonstrate the appli-
cation of our method to the recovering of clean, unoccluded shots
of crowded public places, as well as to the removal of ghosting
artifacts in the reconstruction of high dynamic range images from
multi-exposure sequences. Our contribution is the definition of an
automatic method for consistent background estimation from mul-
tiple exposures featuring occluders, and its application to the prob-
lem of ghost removal in high dynamic range image reconstruction.
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minimization, graph cuts, HDR reconstruction, ghost removal
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1 INTRODUCTION

Nowadays, digital photography consumer products are widely
available, and photography enthusiasts and researchers are con-
stantly exploring the possibilities beyond a single camera expo-
sure. By taking multiple exposures using a tripod, and by pro-
cessing them using standard image manipulation software, anyone
can create novel images. Turning opaque objects into translucent,
adding or removing transient objects, and compositing family por-
traits where everybody is smiling, are only few of the possible ap-
plications. In this paper, we focus on removing transient objects,
i.e. to estimate the background of a scene, provided a set of expo-
sures where the background is visible in at least some of them. Our
aim is to perform this task in an automatic fashion.

The input to our task is a set of low dynamic range color im-
ages (see Figure 1a). We assume all photographs are taken using
the same viewpoint, camera configuration, and lighting conditions.
These assumptions imply that if a scene object remains unaltered
between two exposures, then the camera will register the same light
rays. Our assumptions impose no restrictions on the time interval
between exposures. The output is a low dynamic range color image
featuring the scene background (see Figure 1c).

The natural approach to the problem follows from the definition
of background. Given an input set of images satisfying the afore-
mentioned conditions, the background is the set of pixels repre-



senting objects whose distance to the camera is maximal. However,
this definition implies the knowledge of pixel depth information.
Although such information can be recovered using, for instance,
stereo images or coded aperture [18], it is not available in our setup.
Instead, we rely on the following model assumptions: background
objects are more likely be photographed, and background objects
are stationary.

Our contribution consists of the assembling a model that defines
the scene background as the minimizer of a cost function over com-
posites of the input photographs. In particular, we derive a cost
function by combining and extending ideas from Agarwala et al. [1]
who addressed the problem of background estimation from still im-
ages by using a low likelihood penalty, and from Cohen [5] who
performed background estimation from video sequences relying on
a motion boundary inconsistency penalty. We increase the robust-
ness of the background estimation by combining improved formula-
tions of these two penalties using an entropy-based weighting func-
tion. Furthermore, we avoid partial classification of foreground ob-
jects as background by restricting the resulting composites to be
locally consistent with at least one input photograph.

While the derivation of our cost model, presented in Section 3,
builds on the assumptions mentioned above, we further demonstrate
the successful application of our pipeline on less restricted images,
e.g. in the reconstruction of high dynamic range images from multi-
exposure series, discussed in Section 4.1.

2 RELATED WORK

Background estimation from time image sequences or videos has
been extensively explored in the context of background removal,
specially in motion tracking applications. Gordon et al. [10] exploit
depth information recovered using stereo cameras in order to esti-
mate and remove the background. In the case of image sequences
where no depth information is available, several strategies have
been applied: Kalman filtering [23], mixtures of Gaussians [26],
non-parametric density estimation [8], mode estimation [20, 13],
principal component analysis [19], optic flow [12], and energy min-
imization [5].

Following the latter strategy, Cohen [5] casts the problem of
background estimation from videos as a labeling problem. His ap-
proach minimizes a cost function penalizing low color stationari-
ness and motion boundary inconsistencies. Low color stationari-
ness occurs at pixels with large temporal variance in a small time
interval. Motion boundary inconsistencies occurs at pixels where
the temporal gradient is large, i.e. the image starts to differ from
others, but other images do not contain spatial gradient at that loca-
tion (see Equation 4). In our work, we adapt this cost function to
the case of non-time sequence images, by replacing the low color
stationariness penalty with a term that does not require temporal co-
herence. Additionally, we adapt the motion boundary consistency
penalty, and include an additional constraint for local consistency
in order to ensure that the resulting background composite does not
cut through objects.

For non-time image sequences or photographs, background es-
timation has been previously approached using energy minimiza-
tion [1], and mode estimation [2].

Agarwala et al. [1] apply energy minimization to a wide range
of computer vision problems, background estimation among them,
in a framework that allows assisted interactive retouch. For esti-
mating the background, they define a cost function that includes a
likelihood term penalizing pixel values with low probability. Per
pixel probability distributions are estimated using histograms with
fixed intervals. In our work, we include a more reliable likelihood
term computed using non-parametric density estimators. This term,
combined with a motion boundary consistency penalty, enables
us to perform automatic background estimation (see Figures 5b
and 5c).

Recently, Alexa [2] adapted the mean shift algorithm [6] to ob-
tain robust estimates of the mode at every pixel location. In order to
achieve spatial coherence, a metric which penalizes pixels differing
from their neighbors is used. Spatial averaging is performed wher-
ever a reliable estimation of the mode cannot be obtained. This un-
fortunately introduces blurring artifacts in the result (see Figure 5a)
which our technique does resolve faithfully.

A closely related problem to background estimation is the re-
moval of ghosting artifacts in the reconstruction of high dynamic
range (HDR) images from multi-exposure sequences [15, 16, 22,
14, 11]. For HDR video sequences, Kang et al. [15] apply mo-
tion compensation to align moving objects. For static scenes, since
HDR images are typically computed as the weighted average of the
linearized input images, it is relatively easy to decrease the influ-
ence of unreliable or fast moving objects. Pixels could be weighted
based on its probability of belonging to the background [16], or
single exposures could be selected to represent non-static scene re-
gions [22, 14, 11]. While some of these techniques even provide
registration techniques for hand held image sequences [27, 22, 11]
we currently assume a static camera but could incorporate initial
alignment.

We apply our background estimation method to the reconstruc-
tion of HDR images from multi-exposure sequences (see Sec-
tion 4.1). While previous approaches (with the exception of [16])
aim to reconstruct ghost-free HDR images, regardless of including
transient objects in the final output, our method concentrates on re-
constructing images featuring only the scene background.

3 BACKGROUND ESTIMATION METHOD

3.1 Problem Statement

We start by formally defining the problem’s input and output.
Let I = {Il}

N
l=1 be an unordered set of input images. Let L =

{1, . . . ,N} be a set of labels, each corresponding to one image in

I. Let Il(p) ∈ [0,1]3 be the color value at pixel p of image l. Let
P be the set of pixel positions p in any image. A labeling is a
mapping f : P → L stating that a pixel p ∈ P has assigned the
label f (p) ∈ L . We denote f (p) as fp for short. Every labeling
f represents an image I f : p → I fp

(p). Our task can be defined as

obtaining a labeling f ∗ such that I f ∗ corresponds to the background
image of I.

The strategy for obtaining such a labeling is to assign a cost to
each possible labeling, and then obtain the one with the minimum
cost. Higher costs should be assigned to labelings as they deviate
more from the model assumptions. Since range information is not
available in order to distinguish foreground pixels, we construct a
model based on the following assumptions: background objects are
more likely to appear than transient ones, and background objects
are stationary. The first assumption relies on the observation that
most background objects are never occluded, and hence, the corre-
sponding pixels should have high probability of occurrence. There-
fore, we assign higher costs to labelings that choose pixels with low
probabilities. The second model assumption restricts background
objects to be static (flags or waving trees, for instance, do not fulfil
it), and therefore, we penalize pixels indicating object motion.

The resulting labeling might produce objectionable transitions
between labeling regions (see Figures 6, 3b, 3c), introducing syn-
thetic edges which have never been observed. Their influence can
be reduced by enforcing the boundaries to occur in well-matching
regions. Since the resulting transitions should be plausible with
respect to our input data we also require the result to be locally
consistent with at least one of the input images.



3.2 Energy Functional

In order to represent the cost function, we define an energy func-
tional of the form:

E( fp) = ∑
p∈P

Dp( fp)+ ∑
(p,q)∈N

Vp,q( fp, fq)+ ∑
(p,q)∈N

Hp,q( fp, fq),

(1)
where Dp( fp) denotes the data term, and Vp,q( fp, fq), Hp,q( fp, fq)
denote the smoothness term and hard constraint, respectively. The
data term defines the cost of assigning the label fp to pixel p. The
smoothness term and hard constraint determine the cost of assign-
ing the labels fp and fq to two neighbor pixels p, q. The set N

denotes the set of 4-adjacent pixels in the image domain P . We
describe each term in detail in the following sections.

3.2.1 Data Term

The data term should indicate how well a pixel satisfies the model
assumptions. Therefore, we include two parts in our data term: the
Likelihood term DL, and the Stationariness term DS, each corre-
sponding to one model assumption. The data term D at pixel p is
defined as

Dp( fp) = (1−β (p))DL
p( fp)+β (p)DS

p( fp), (2)

where β is a scalar that allows us to control the influence of each
term. We will first introduce the likelihood and stationariness terms,
and later discuss the choice for the β weights.
Likelihood. Agarwala et al. [1] introduced a data term that penal-
izes pixel values which have low probability along the image set. At
each pixel, they approximate the probability density function using
histograms with fixed intervals. We benefit from smoother approx-
imations using kernel density estimators. We define the likelihood
penalty DL for a pixel p on the image fp as

DL
p( fp) = 1−

3

∏
c=1

∫ Ic
fp

(p)+3λc

Ic
fp

(p)−3λc

d̂c
p(x)dx, (3)

where d̂c
p is the estimated density function for the pixel p on the

color channel c, and λc is the expected variation on each color chan-
nel. Note that the probability that a pixel value I fp

(p) belongs to the
background is computed as the joint probability over all color chan-
nels, assuming they are independent. For each channel c and pixel
location p, we estimate the density function dc

p(x) using Gaussian

density estimators. The kernel bandwidths λc were obtained ex-
perimentally from datasets with known ground true. In Figure 2b,
we illustrate the likelihood penalty assigned to one image from the
Toscana scene.

Note that the formulation of DL
p requires that the probabilities on

each color channel be independent. We satisfy this requirement by
first transforming the input images to the Lαβ color space, which
is known to be well decorrelated for natural images [21].
Stationariness. In order to approach our second model assump-
tion, background stationariness, we incorporate the motion bound-
ary consistency (MBC) term introduced by Cohen [5] in the context
of background estimation from videos. In summary, the MBC term
penalizes motion boundaries that do not occur at intensity edges of
the background. Motion boundaries are approximated as the gra-
dient of the difference between a photograph and the background.
This is justified since the boundary of moving objects occur pre-
cisely at locations where the two images start to differ. Thus, as-
suming Ik is the background image and Il is an input photograph
containing transient objects, motion boundaries are a subset of the
edges of the difference image Ml,k = Il − Ik. The motion bound-
ary inconsistency term validates that if Il displays the background
at a given location, then large values of ∇Ml,k are also large in
∇Ik. In his formulation, Cohen defines every other input photograph

as background model, and averages their corresponding penalties,
leading to the penalty

DS
p( fp) =

1

N
∑

l∈L

∥

∥

∥
∇M fp,l(p)

∥

∥

∥

2

2

‖∇Il(p)‖2
2 + ε2

, (4)

where ε is an arbitrary small value. Note that this formulation leads
to arbitrary large penalties for ‖∇Il‖2 approaching zero.

However, in order to correctly balance the stationariness and
the likelihood penalties, they are required to provide bounded re-
sponses. Therefore, we introduce a linear MBC approximation of
the form

DS
p( fp)=

{

∥

∥∇M fp
(p)

∥

∥

2
−‖∇Ī(p)‖2 if

∥

∥∇M fp
(p)

∥

∥

2
> ‖∇Ī(p)‖2

0 otherwise,

(5)
where M fp

= I fp
(p)− Ī denotes the difference with the average im-

age Ī = 1
N ∑l∈L Il , which is used as background model. The term

response is restricted to the unit interval, provided that gradient
magnitudes are normalized. Color gradient magnitudes are com-
puted in the Di Zenzo [28] sense in the CIELAB color space. In
Figure 2c, we present the stationariness cost corresponding to the
second image from the Toscana scene (see Figure 1a).

The benefits of the approximation of the background model as
the average of the input exposures are twofold. First, the runtime
complexity of the MBC term becomes linear in the number of im-
ages. Second, due to averaging, the intensity of true background
edges is diminished by transient objects. This reduces the occur-
rence of false positive motion boundaries caused by flat, texture-
less occluders.

Automatic Choice of β (p). The factor β (p) controls the relative
importance of the stationariness and likelihood terms. Our aim is to
select the appropriate factors in such a way that the most reliable in-
formation is preserved. We consider the set of observed intensities
as a discrete random variable, and assign them probabilities pro-
portionally to those already estimated in the likelihood term. The
amount of information carried by this random variable can be mea-
sured by the entropy. This measure is maximized by uniformly
distributed random variables, which do not carry information. We
use this property and define the normalized entropy-based weight

β (p) = −
1

ln(N) ∑
l∈L

Pp(l) ln(Pp(l)), (6)

where Pp(l) = 1−
DL

p(l)

∑k∈L DL
p(k)

(7)

is the normalized joint probability of exposure l at pixel p. The
factor ln(N) maps the weights to the unit interval. In Figure 2d, we
present the entropy image associated to the Toscana scene.

High entropy values reduce the likelihood penalty influence.
This can occur in two scenarios: the background is severely oc-
cluded, and the background is never occluded. In both cases, all
photographs will have uniformly distributed probabilities (low and
high respectively). In the case of an unoccluded background, this
behavior is negligible since no likelihood penalty would be as-
signed. Interestingly, severely occluded regions also remain un-
penalized. This enables the stationariness term in regions where
likelihood information is scarce. Furthermore, whenever likelihood
information is present, possible false positive motion boundaries
are also down-weighted. In the remaining cases, i.e. when both
terms are not reliable, we depend on the smoothness term to propa-
gate information from neighboring pixels.



3.2.2 Smoothness Term

In general, after minimizing the energy functional adjacent pixels
are assigned to different labels. We would like such changes to oc-
cur in regions where two images match very well. To support this,
we include a smoothness term that penalizes intensities differences
along labeling discontinuities, as introduced by Kwatra et al. [17].
The smoothness term V is defined as

Vp,q( fp, fq) =
γ

2

(

∥

∥I fp
(p)− I fq

(p)
∥

∥

2
+

∥

∥I fp
(q)− I fq

(q)
∥

∥

2

)

. (8)

The penalty is only applied for fp 6= fq. Intensity differences are
computed in a perceptually uniform color space, e.g. CIELAB. The
γ factor controls the weight of the smoothness term. Higher γ val-
ues increase the cost of labeling discontinuities. This leads to fewer
labeling regions. Note that the smoothness term is a soft regularizer,
and its effect can be shadowed by large values in the data term. In
order to ensure that the selected labeling discontinuities are plausi-
ble, we introduce a hard constraint that validates their consistency.

3.2.3 Hard Constraint for Local Consistency

We would like to ensure realistic background estimations, where
transient objects are either completely included in or removed from
the result. Including or removing whole objects would require accu-
rate image segmentations, which are not always semantically con-
sistent. Instead, we exploit the fact that the input images are in-
trinsically consistent by only allowing labeling discontinuities that
result into transitions that have already been observed. This hard
constraint for local consistency is defined as

Hp,q( fp, fq)=

{

0 if min
l∈L

∥

∥I fp
(p)− Il(p)

∥

∥+
∥

∥I fq
(q)− Il(q)

∥

∥ < tH

∞ otherwise.

(9)
The term H ∈ {0,∞} assigns zero costs to consistent transitions

and infinite otherwise. A transition is considered consistent if its
color distance to the closest image l falls below a threshold tH . If the
distance is too large, the transition is considered as never observed,
and it is avoided by setting an infinite cost. In all our experiments
we set tH to be 5% of the intensity range.

The consistency term corresponds to a constraint on the solution
space. It has been shown [25] that terms introducing zero or infin-
ity costs satisfy the requirements of the expansion move algorithm
(Section 3.4) for converging to strong local minima, as long as the
initial solution has finite cost. Figure 6 exemplifies the effect of the
constraint over a dataset where the background was not visible for
all pixels.

3.2.4 Interaction Between Terms

The effect of each term in the energy functional is illustrated in Fig-
ure 3, which shows a detail of the Cathedral scene introduced by
Agarwala et al. [1]. Figures 3b and 3c show the result obtained us-
ing only the likelihood and stationariness term, respectively. When
omitting the smoothness term, the resulting labeling is locally op-
timized. Figure 3d shows the result obtained using the likelihood
together with the smoothness term. Larger clusters appear since
it is less costly to keep uniform labelings when transitions are not
enforced by very unlikely regions. Observe that some transient ob-
jects persist in the result due their high probability. Figure 3e dis-
plays the result obtained using the stationariness and smoothness
terms. The algorithm assigns a single label corresponding to an im-
age featuring a blurred object with virtually no edge. The occluder
goes undetected since it carries little gradient information. Lastly,
Figure 3f shows the result obtained using the combined terms. The
stationariness term rules out the occluders that the likelihood term
alone could not detect, resulting in a more robust background esti-
mation.

3.3 Parameters

The background estimation pipeline requires two input parameters:
the smoothness weight γ , and the local consistency threshold tH .
Both consider color discrepancies across labeling transitions.

The local consistency constraint bounds the maximum color dis-
crepancy across transitions. Discrepancies above the threshold tH
are prohibited by assigning them an infinity cost. The selected
threshold should account for the compounded noise of the capturing
process, as well as for illumination variances. When the threshold
is set too low, legitimate transitions between background regions
are prevented. However, note that even for optimal threshold val-
ues visible artifacts still arise when illumination changes cause dis-
crepancies below the threshold. In such cases, the algorithm would
select any of the exposures under the threshold without regarding
the closest match. This justifies the inclusion of a soft regularizer.

The smoothness term weight γ controls the cost of introducing
labeling discontinuities. The assigned cost depends linearly on the
color discrepancy between the two incident images. As the smooth-
ness parameter γ increases, the number of labeling transitions (and
thus regions) decreases. The labeling energy also increases with the
parameter γ , since there are less transitions available for moving
to less costly areas. Nevertheless, since the maximum color dis-
crepancy is bounded by the consistency constraint, the background
can be correctly estimated for a wide range of γ values, provided
that they are sufficiently small to allow enough labeling regions for
compositing the background.

3.4 Implementation

The input images are first aligned in order to correct slight camera
movements. We limit ourselves to translations with respect to a
reference image, at sub-pixel resolution, choosing the translation
with maximum cross correlation.

The energy function E is minimized using the expansion move
algorithm [4]. Briefly explained, given a label α ∈ L and a label-
ing f , an expansion is a labeling f ′ such that the energy of f ′ is
strictly less than the energy of f , and the labelings only differ in a
way that labels in f are replaced by α , i.e. assigning more pixels to
the image α . Starting with an arbitrary labeling, the algorithm cy-
cles through all labels, trying to find an expansion for each of them.
Whenever an expansion is found, the current labeling is updated.
The algorithm continues until a cycle over all labels does not de-
crease the energy any further. The key step in the algorithm is the
expansion step, which is computed using graph cuts. For this step,
we use the software library provided by Kolmogorov [3].

In a final stage, we perform gradient domain fusion [9] in order to
correct any visible artifacts appearing due to illumination changes
between photographs.

4 RESULTS

For our experiments we generated two data sets named Toscana
(6 images) and Market (12 images), presented in Figures 1 and 4,
respectively. Both sets were captured using a tripod, and within
a three minutes interval. The camera used was a consumer four
megapixels Canon PowerShot A520, with minimum compression
settings. The images were downscaled to a resolution of 1024x768
pixels. Each scene features both large and small scale transient
objects, and natural lighting conditions. The resulting background
estimation for the Toscana and Market sets are shown in Figures 1c
and 4c, respectively. Each background computation took two min-
utes a standard desktop computer. The corresponding labelings are
presented in Figures 1b and 4b. The smoothness term weight was
set to γ = 12 and γ = 4, respectively, and the consistency threshold
was set to 5% in both experiments.

We further compare our method with the results reported by
Agarwala et al. [1] and Alexa [2] (see Figure 5). For the compar-
ison, we used a subset of 20 images from the Brandenburger Tor



(a) Input (b) DL (c) DS (d) β (e) (1−β )DL +βDS

Figure 2: Data term components: (a) Input image, (b) likelihood term DL, (c) entropy-based weights β , (d) stationariness term DS,
(e) weighted sum. Red corresponds to values close to one, blue to values near zero.

(a) Input images

(b) DL (c) DS (d) DL +V (e) DS +V (f) (1−β )DL +βDS +V

Figure 3: Interaction between the terms in the energy function. (a) Five photographs from the Cathedral scene [1]. (b) The likelihood
term and (c) the stationariness term without regularization lead to locally optimized labelings. (d) The likelihood term alone fails to detect
occluders in cluttered regions. (e) The stationariness term depends on gradient information and cannot detect flat or blurred objects. (f) The
combination of both terms faithfully removes all occluders. In (b)-(f), the bottom row shows the computed minimum cost labeling, and the
top row the corresponding background estimation.

(a) Input images (b) Computed labeling (c) Estimated background

Figure 4: (a) Eight (out of twelve) images from the Market scene. (b) Computed labeling. (c) Estimated background. The estimation removes
all temporal occluders for which the background behind is visible. The hard constraint for local consistency constraint forbids partial removal
of occluders. The sky region even though heavily segmented is smoothly reconstructed using gradient domain fusion.



scene introduced by Alexa [2]. The result by Alexa displays blur-
ring artifacts, which are most evident under the gate (see Figure 5a);
those artifacts are generated on regions where reliable mode estima-
tions could not be obtained. In our approach, a single representative
background image is selected and hence no blurring occurs. The
result by Agarwala et al. (see Figure 5b) displays no blurring arti-
facts but still contains several transient objects at highly occluded
background regions. In our method, due to the addition of the sta-
tionariness term, most transient objects are successfully removed.
(see Figure 5c). Occluders remain in regions where the background
was never visible, or whenever consistent transitions could not be
included.

4.1 Application to High Dynamic Range Image Recon-
struction

As a final experiment, we apply our background estimation method
to the problem of ghost removal in the reconstruction of high dy-
namic range images from multi-exposure sequences.

For this experiment, we generated a dataset consisting of six
photographs captured using exposure times 1/50s, 1/100s, 1/400s,
1/833s, and 1/1667. The dataset is presented in Figure 8a.

We recovered the camera response function using the algorithm
by Robertson et al. [24], and converted each photograph into rela-
tive radiance maps. It is critical that radiance values are consistent
across exposures. For this reason, we adjust the exposure times in a
way it minimizes the sum of squared intensity differences between
consecutive exposures. The longest exposure is taken as starting
point, and only correctly exposed pixels are accounted.

We adapt our energy function in order to handle multi-exposure
sequences. In the likelihood term, we need to exclude under- and
over-exposed pixels from the probability density estimation. In the
stationariness term, we also exclude such pixels from the averaged
background model, since gradient information is likely to be lost.
Furthermore, under- and over-exposed pixels are assigned an infin-
ity cost in order to avoid their inclusion in the final labeling. Lastly,
the constraint for local consistency is also made aware of such pix-
els, since consistency cannot be verified due to information loss.
For this reason, only transitions occurring between well exposed
pixels are validated.

After the aforementioned modifications, the algorithm estimates
an intermediate radiance map, where the value for each pixel is read
from a single photograph. We use this result as a model for com-
puting an averaged radiance map. The average only accounts for
pixels whose difference with the intermediate model falls below a
threshold. For tone mapping, we applied the adaptive logarithmic
operator by Drago et al. [7]. Figures 8b and 8c show the resulting
labeling and tone mapped background for the dataset. Note that the
chrominance attributes of the tree and house front are visible simul-
taneously, which does not occur in any of the individual exposures.
Furthermore, no ghosting artifacts appear from the transient objects
in the scene. A reference image is presented in Figure 7 in order
to illustrate the effect of considering an intermediate background
model.

5 CONCLUSIONS

We have presented an automatic algorithm for estimating a scene
background from a set of non-time sequence photographs featur-
ing several moving transient objects. The background is found by
minimizing a novel cost function, which combines a measure for
the likelihood of each input pixel being the background, with a
motion boundary consistency term. The objective function is fur-
ther weighted by an entropy measure that indicates how reliable the
background likelihood is. We furthermore prevent the algorithm
from cutting through objects by explicitly enforcing the output to
be locally consistent with our input data. We minimize the cost
function using the graph cut based expansion move algorithm, and

remove remaining gradient mismatches in the result using gradient
domain fusion.

We have demonstrated the suitability of our model on data sets
with few image samples and severely occluded regions. We also
compared our method with previous results by Agarwala et al. [1]
and Alexa [2]. Our algorithm does not introduce blurring artifacts,
avoids cutting through objects, and consistently removes more tran-
sient objects than previous approaches.

We also demonstrate the application of our method to ghost re-
moval in the reconstruction of high dynamic range images from
multi-exposure sequences featuring multiple occluders.

In the future we plan to investigate the application of the pro-
posed error metrics to other sensor fusion tasks, e.g. 3D range scan-
ning with temporal occluders.
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(a) The result by Alexa [2] features objectionable blurring artifacts. (b) The result by Agarwala et al. [1] features many remaining transient
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Figure 6: (left) Estimation obtained without the hard constraint
for local consistency. (right) Result after including the constraint.
In the input dataset, the background is not visible for all pixels.
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averaging, transient objects appear as ghosting artifacts in the HDR
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occluder’s contribution.
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