Interactive Semi-Transparent Volumetric Textures

Hendrik P. A. Lensch

Katja Daubert

Hans-Peter Seidel

Max-Planck-Institut fiir Informatik*

Abstract

Volumetric textures are often used to increase
the visual complexity of an object without in-
creasing the polygon count. Although it is
much more efficient in terms of memory to
store only the volume close to the surface and
to determine the overall shape by a trian-
gle mesh, rendering is much more complicated
compared to a single volume. We present
a new rendering method for volumetric tex-
tures which allows highest quality at interac-
tive rates even for semi-transparent volumes.
The method is based on 3D texture mapping
where hundreds of planes orthogonal to the
viewing direction are rendered back to front
slicing the 3D surface volume. This way we
are able to correctly display semi-transparent
objects and generate precise silhouettes. The
core problem is to calculate the intersection
of prisms formed by extruding the triangles of
the mesh along their normals and the render-
ing planes. We present two solutions, a hybrid
and a purely hardware-based approach.

I

(a) (b)
Figure 1: (a) Rendering artifacts can occur if
the planes aren’t rendered orthogonally to the
viewing direction. (b) Prism formed by extrud-
ing one triangle of a mesh along its normals.

1 Introduction

Modeling objects for computer graphics appli-
cations always is a compromise between trying
to get enough detail to make the object look
realistic, while keeping the polygon count low,
so that it will render at sufficiently high rates.
A well known and often employed method is

*{lensch,daubert,hpseidel }@mpi-sb.mpg.de,
Stuhlsatzenhausweg 85, D 66123 Saarbriicken.

to have a fairly coarse mesh of the objects sur-
face, and then add realistic detail using some
texture-related techniques. In this paper we
will focus on techniques in which these tex-
tures are volumes, so called volumetric tex-
tures [11]. These volumes are applied, usually
repetitively, to the surface, with the surface
normal vectors controlling the direction of the
third texture dimension, giving the surface a
certain thickness.

Software-based techniques for visualizing
volumetric textures have been known for a
long time but are usually too slow for interac-
tive display. Recently, Meyer et al. [16] intro-
duced a hardware-based method for interac-
tively rendering volumetric textures by slicing
the volume over each facet. However, since the
slicing direction is not necessarily orthogonal
to the viewing direction, artifacts can occur
at grazing angles (Fig. 1(a)). Furthermore,
rendering semi-transparent volumes with this
method would require a costly depth sorting
of the faces of the base geometry to correctly
account for transparency.

In this work we propose an alternative algo-
rithm which assumes the surface geometry to
be a triangle mesh. Extruding a triangle along
its three normals results in a prism, as shown
in Fig. 1(b). We now generate planes in the
whole range of the surface volume, from back
to front, orthogonal to the viewing direction,
and slice each plane with each volume prism.
As we always generate planes orthogonal to
the viewing direction artifacts are avoided.We
can obtain high quality images at interactive
rates. The presented algorithm can correctly
handle semi-transparent volumetric textures
without sorting primitives beforehand.

The main contributions of this paper are
two algorithms to efficiently compute the in-
tersection of planes and prisms: a hybrid one,
only partly implemented using graphics hard-
ware (Section 5) and a second designed to be
mapped fully onto hardware (Section 6).

VMV 2002

Erlangen, Germany, November 20-22, 2002

2 Related Work

The initial idea of applying volumetric tex-
tures to a simple object in order to render
surface detail consisting of complex geometry
has been proposed by Kajiya and Kay [11]
who rendered fur on a teddy bear. Perlin and
Hoffert [18] extended the approach and modi-
fied the surface structure by three-dimensional
texture functions, so called hyper textures (see
also [23]). Volumetric textures have been suc-
cessfully applied in the areas of tree and land-
scape modeling [17, 4], or to improve the ap-
pearance of synthesized textiles [9]. A survey
on volumetric textures can be found in [7]. Al-
though volumetric textures can replace very
complex surface geometry by a simple vol-
ume the rendering effort is not necessarily de-
creased. Most of these techniques use a purely
software-based approach for rendering.

Volume rendering has been an active area
of research in the last two decades. Software-
and hardware-based techniques have been pro-
posed, e.g ray casting [10, 15], splatting [21] or
forward projection [8, 22].

The classical approach for hardware-based
volume rendering using 3D texture map-
ping [3, 1] renders several slices through the
volume from back to front integrating the
pixel intensity. These slices are generated by
simple polygons to which the 3D texture is ap-
plied. We will basically follow this approach
to display volumetric textures.

Different approaches exist to choose the ori-
entation of the textured polygons slicing the
volume. One technique precomputes three dif-
ferent sets of slices, each perpendicular to one
of the major axes of the volume (see [13, 19,
6]). According to the current viewing direc-
tion the best set is selected and displayed.
The orientation of the slicing may flip when
changing the viewpoint.

Better quality can be achieved when align-
ing the texture slices in such a way that they
are always perpendicular to the viewing direc-
tion (screen-space aligned). For each frame
the position of the slices and the texture coor-
dinates have to be recomputed by intersecting
the volume by a number of planes. We will
apply the same technique and compute the
slicing on the fly for each single prism con-

666

O® &S

Figure 2: Plane-prism intersections can result
in triangles, quadrilaterals or pentagons.

structed from a triangle in the base mesh. For
a complete, coherent review on volume visual-
ization techniques see [2].

Meyer et al. [16] combined a hardware-
based volume rendering approach with volu-
metric textures using three sets of orthogo-
nal slices. In order to minimize artifacts at
grazing viewing angles, Meyer et al. introduce
certain criteria to control the number of slices
needed, depending on the viewing direction
and a maximal “depth” the user is allowed to
see between the slices of a volume. A signif-
icant drawback of this method is, that it ex-
plicitly can not handle semi-transparent vol-
umes, as this would require sorting the facets
from back to front for each view. As we glob-
ally generate planes from back to front and
then render the intersections with the prisms
building the volume, our method is capable
of correctly displaying semi-transparencies, as
demonstrated e.g. in Fig. 7.

Lengyel et al. [14] render fur using volumet-
ric textures, by displaying the object in con-
centric shells from the body outwards, similar
to the approach by Meyer et al. In order to
deal with artifacts near grazing viewing an-
gles, “fin” polygons are placed orthogonal to
the surface in silhouette regions and textured.
This approach however breaks down for regu-
lar structures, and volumes with larger trans-
parent regions.

3 Prisms and Planes

The input required for the algorithms pre-
sented in the next sections is a 3D volume
texture as well as a 2D surface description, in-
cluding surface normals. We will restrict our-
selves to triangle meshes, which can easily be
constructed from other meshes by tessellation.

For each triangle in the base mesh the three
normals at the vertices span a prism. The
thickness of the volume over a triangle can

be varied by assigning different lengths to the
normals. If a surface triangle’s normals vary
strongly, self-intersecting prisms might occur,
leading to invalid results during rendering. De-
generated cases need to be excluded in the
construction phase. By assigning texture co-
ordinates to the six vertices of the resulting
prism we map the 3D volume data set into
the prism.

As we will need to refer to the prism’s edges
later on, we will introduce the following names:
The three edges belonging to the original mesh
triangle will be called lower edges, the three
edges corresponding to the normals we will
refer to as normal edges, and the three edges
connecting the normal’s endpoints to a new
triangle are the upper edges (see Fig. 3(a)).

Volume rendering is done by generating
planes from back to front and intersecting
them with all prisms. To obtain the highest
quality we will always orient these slices per-
pendicular to the viewing direction. We de-
termine the location of the last and first plane
using the bounding volume of all the prisms.

The main problem we have to solve for ren-
dering is to find the intersection of the cur-
rent slice with the prism. A first step to com-
pute the intersection polygon is to classify the
intersection based on the intersection of the
plane with prolonged normal edges (Fig. 3(b)).
The plane intersects each normal edge either
above (case a), within (case b) or below the
prism (case c). Based on this classification we
obtain 27 different cases how a plane can in-
tersect a prism. Due to symmetries we can
reduce them to four basic cases, shown in
Fig. 2: no intersection, intersections resulting
in a triangle, in a quadrilateral, or a pentagon.
Furthermore, the classification of the normal
edges into a, b, ¢ also determines which of the
nine edges of the prism will be intersected.

This information will be used in the fol-
lowing slicing algorithms. The first one is
implemented in software using the hardware
just for rendering, followed by a hybrid ap-
proach where the classification is done in
software while the actual intersection is per-
formed within a vertex program. In Section 6
the entire plane/prism intersection is done on
the graphics board.

666

o’

normal edges 3
lower edges \‘_';\AI

(a) (b) (c)
Figure 3: (a) Nomenclature of the prism’s
edges. (b) We classify the normal edges by the
position of the intersection point of the plane
with the normal edge (here: above (a), within
(b), above (a)). (c) The software algorithm
considers two classified normal edges at once.
The classification (here a and c) decides which
of the prism edges to intersect (see Section 4).

4 Software Slicing

In the first implementation, given a plane and
a prism, we compute the intersecting polygon
in software and render it using OpenGL. As-
suming the prism’s normal edges are classified
as explained above, what remains is to find
the intersections of the plane with all nine
edges. In addition, these intersections have
to be in the correct order to define a polygon.

Instead of intersecting the nine edges sep-
arately we consider the intersections of the
plane with the quadrilateral spanned by two
neighboring normal edges at a time (Fig. 3(c)).
The classification directly determines which of
the four edges will be intersected. For in-
stance, if we know that the first normal edge is
classified as a (above), and the next as ¢ (be-
low), the plane must intersect the upper and
the lower edge connecting both normal edges,
as depicted in Fig. 3(c). To avoid considering
intersection points twice, we decide that only
intersections with the first normal edge will be
drawn for this quadrilateral.

Visiting the quadrilaterals in the same or-
der as the edges in the original triangle mesh
will ensure that the resulting polygon is cor-
rectly oriented and the vertices are issued in
the correct order.

The algorithm for slicing a surface volume
with a number of planes using the idea ex-
plained above is given in Fig. 4. A number
of slices through the complete object are ren-
dered from back to front. For each plane in-
tersection tests are performed with all prisms.
Bounding spheres are used to detect trivial

for each plane // (from back to front)
classify normal edges;
for each prism // (each corresp. to mesh facet)
if (!trivial reject)
glBegin(GL_POLYGON)
for each pair of normal edges [i,i+ 1]
look at classificatioms (c[i],c[i+ 1])
if(a,a) ; // do nothing, plane is above
if(a,b) isect(upper);
if (a,c){isect (upper);isect (lower);}
if (b,a){isect (normal) ;isect (upper);}
if(b,b) isect(normal);
if (b,c){isect (normal) ;isect (lower) ;}

if (c,a){isect(lower) ;isect (upper);}
if(c,b) isect(lower);
if(c,c) ; // do nothing, plane is below
end for;
glEnd Q) ;
end if
end for;
end for;

Figure 4: Software algorithm.

cases where the prism is not intersected at
all. Otherwise, the edge intersections are com-
puted based on the classification. The isect
subroutine computes the intersection point with
the given edge, interpolates texture coordi-
nates, and issues the corresponding glVertex
and glTexCoord commands.

5 Hybrid Algorithm

To make this algorithm more efficient, we will
now map parts of the isect routine onto hard-
In the following we will rely heavily
on vertex programs, a feature available on
newer graphics cards. They consist of assem-
bler style code working on 4-vector registers
which are called for every vertex before ras-
terization. The input consists of attributes for
each vertex, as well as global program parame-
ters. Vertex programs control a vertex’s color,
texture coordinates, position, normal etc. [24].

As just mentioned, a vertex program is
called for each vertex. Unfortunately there
is no way to decide, inside a vertex program,
that this vertex should not be rendered. As
a consequence we have to know in advance
how many vertices we want to render, which
makes it impossible, at a first glance, to put
the classification of the normal edges into a
vertex program.

ware.

666

However, the intersection of a plane and
a line can easily be computed with a vertex
program. The plane parameters (normal and
point on plane) are set as program parame-
ters. The line’s beginning and end point are
passed to the vertex program as vertex at-
tributes. The vertex program computes the
intersection and sets the position of the out-
put vertex correspondingly. Additionally, we
can pass along other vertex attributes like
the texture coordinates corresponding to both
points and have them interpolated to set the
texture coordinate of the output vertex.

To use this vertex program with our soft-
ware algorithm explained above, a fake vertex
is set up for each of the prism’s nine edges and
stored in a vertex array. This means, for each
prism edge we generate vertex attributes (po-
sition and texture coordinates) for the starting
and end point. The display routine still looks
like Fig. 4 and computes the classification of
every normal edge in software. However, the
isect routine is changed to now call glVertex
for the fake vertex corresponding to the prism
edge determined by the classification.

In our implementation we do not generate
all nine edges (fake vertices) for each prism,
instead we make use of the fact that edges
are shared by neighboring prisms. This dras-
tically reduces the amount of data stored in
main memory. (For the torus mesh in Fig. 8
we need 243 kB of memory for the attributes,
reduced to only 109 kB when sharing edges.)

6 Hardware Algorithm

As already mentioned, the main problem with
writing a vertex program for slicing planes
and prisms lies in the differing number of ver-
tices the resulting polygon may have. While
the presented hybrid algorithm decides which
of the prism’s lines to intersect based on a
software classification step, we will now pre-
sent an algorithm which is fully implemented
as a vertex program. Although this algorithm
currently is not faster than the hybrid one, we
think that it will be superior in the near fu-
ture since the performance of graphics boards
currently is increasing faster than processor
speed. After explaining the strategy, we will
show how to map it to a vertex program.

6.1 Strategy

The key idea of this method is to render the
fixed number of six vertices per prism, two
corresponding to each quadrilateral spanned
by two normal edges as in Fig. 3, or to put
it another way two corresponding to each nor-
mal edge. The vertices are named v0;, v0,,
vl;, vl,, v2;, v2,, indicating the number of
the normal and the quadrilateral (left/right).

In order to figure out where to place each
vertex we assign five edges to each vertex:
the corresponding normal edge and the ad-
jacent two upper and two lower edges. We
will call one set of corresponding upper and
lower edges the primary edges and the other
set the secondary edges. Fig. 10 visualizes the
normal and primary edges that are assigned
to the six vertices by different colors. Un-
fortunately, this setup prevents us from shar-
ing data between neighboring prisms since pri-
mary and secondary edges will be different for
every primitive.

The position of each vertex will be set to
the intersection of the plane with one of the
five assigned edges. The strategy used to in-
tersect edges and to choose positions is listed
in Fig. 5: First we try to intersect with the
normal edge. If no intersection can be found,
we intersect the two primary edges and choose
the intersection closer to the normal edge. If
still no intersection occurs we intersect the
secondary edges and again choose the inter-
section closer to the normal edge. If none of
the three cases hold, the plane does not inter-
sect the prism at all. In this case all vertex
positions will be set to somewhere outside the
scene.

As we render six vertices, but the resulting
intersection polygons have at most five ver-
tices, several vertices will be mapped to the
same positions as their neighbors. All six ver-
tices will be displayed by the graphics board
which does not affect the rendering quality.
Fig. 6 demonstrates which vertices take care of
rendering which corner of the triangle, quadri-
lateral and pentagon depicted in Fig. 2.

If the vertices are rendered in the correct
order, i.e. first the left then the right vertex
corresponding to each corner (v0;, v0r, vly,
vlr, v2;, v2,) using the above strategy we ob-

// — case 1: normal edge —

A = intersect(normal);

if (Ae[0...1]){
interpolate(normal, \); return;}

// case 2: primary edges

Ay = intersect(upper primary);

if (A €(0...1]) Ay = 2.0;

A; = intersect(lower primary);

if (AN €(0...1]) N = 2.0;

if ((Ay < Ap and Ay € (0...1]){
interpolate(upper primary, Ay);return;l}

if (A} < Ay and A € (0...1]){
interpolate(lower primary, J\;);return;}

// — case 3: secondary edges —

Ay = intersect(upper secondary);

if (A €(0...1]) Ay = 2.0;

A; = intersect(lower secondary);

if (A €(0...1]) N = 2.0;

if (Au < Ap and Ay € (0...1]){
interpolate(upper secondary, Ay);return;}

if (A < Ay and N\ € (0...1]){
interpolate(lower secondary,)\;);return;}

setVertexToNirvana() ;

Figure 5: Order in which each vertex tries
to intersect the assigned edges. Setting in-
valid values to 2.0 avoids accidently selecting
an out-of-range value with the "<"-operator.
interpolate interpolates a vertex position
and a texture coordinate from the end points
of the corresponding edge using the given .

Figure 6: Color of vertices corresponds to ap-
plicable case — black: mormal edge (case 1),
dark grey: primary edge (case 2), light grey:
secondary edge (case 3).

tain a correctly oriented intersection polygon.

6.2 Implementation

In this section we will explain the important
steps when implementing the algorithm using
vertex programs. The vertex program is setup
to provide each vertex with six points mark-
ing the beginning and end point of the edges,
and the six corresponding texture coordinates.
The plane parameter and normal, as well as a
few constants are passed as program parame-

666

ters.

The most critical point when coding the al-
gorithm in a vertex program is that there are
no statements to control the program flow.
Vertex programs are designed to be able to
run in parallel for all vertices at once and
therefore are linear in their execution. All
code in a vertex program is executed. This
means that if we implement the different cases
shown in Fig. 5 we will have to compute all
cases and then take care that only the results
of the correct case are finally chosen.

The structure of our vertex program can be
split into two parts. First we compute all five
intersections or A-values (one for the normal
case, two for the primary edge case, two for
the secondary edge case), which is easy to
code. In the second part we select the cor-
rect case, based on the previously computed
values. This part is more complicated, as we
have to somehow emulate the if-statements,
e.g using instructions which set a register dif-
ferently, depending on the value of another
register. MIN / MAX assign the component-wise
minimum / maximum of two source vectors
to a destination register, and SLT (set on less
than)/ SGE (set on greater than or equal to)
perform a component-wise assignment of ei-
ther 0.0 or 1.0 into the destination register
depending on two source registers.

We handle the selection of the correct case
using six registers. Five of these registers,
which we will call validity registers, each cor-
respond to one A-value and will be set to one
if the corresponding A-value is in the correct
range, to zero otherwise. For instance:

SGE tmpl, A, 0.0; // tmpl =1 if A > 0.0
SGE tmp2, 1.0, X\; // tmp2 =1 if 1> X
MUL valid, tmpl, tmp2; // combine

In the primary case and secondary case, the
validity registers also control which of Aypper
and Ajower to choose (the smaller value in
the correct range, or none if both are out of
range). At the end the final A-value Apes is
computed as a weighted sum of all A-values,
with the validity registers as weights.

Before actually computing the weighted
sum, we have to make sure that only one
A is selected. Here we have to respect the
order given by Fig. 5, the normal case is

666

preferred to the primary case, and this case
again is preferred to the secondary case. We
use a sixth register sel for this task. It
is initially set to one. The weighted sum
then is computed step by step. After each
addition the selection register is updated. It
will be zero after the first valid A has been
encountered:

Ares = Apres + sel * valid; * \;
sel = (1 - valid;) * sel

Analogous to selecting A\, we use the weigh-
ted sum with the same weights to select the
correct points and texture coordinates between
which to interpolate.

Note, that some of the computed A-values
could be infinity, which leads to invalid re-
sults when multiplying with zeros (in the se-
lection or validity registers). Therefore we up-
per bound all computed A-values to 2.0, using
the MIN-statement.

7 Results and Discussion

We implemented both the hybrid approach
and the pure hardware algorithm on two PCs,
one with a GeForce3, one with a GeForced
graphics card, both with an AMD Athlon
1GHz processor. We tested both algorithms
for the semi-transparent data set shown in
the middle of Fig. 8 on different surfaces: the
distorted torus seen in the same figure which
consists of 576 triangles, and the terrain from
Fig. 7 which has 3200 triangles. The results
for both algorithms for a varying number of
planes can be seen in Table 1.

We can render arbitrary volumetric textures
at high interactive rates using the hybrid so-
lution. The rendering times of this method
currently even exceed those of the hardware
solution, which we explain with a better load
balancing between the CPU and the graphics
card, as the CPU computes the vertex clas-
sification in this algorithm, whereas all deci-
sions are left the vertex program in the pure
hardware solution. The amount of computa-
tion time needed for the software classification
in relation to the complete rendering time is
about 22% for the torus scene, and about 46%
for the terrain scene.

Torus Terrain
planes board | hyb. hw hyb. hw
250 GF3 38 10/1.6 14 6/0.3

GF4 38 25/4 13 12/0.7
GF3 20 5/0.8 7 3/0.1
500 GF4 | 20 13/2 7 6/0.4
1000 GF3 12 3/0.4 1 1.4/0.1
GF4 12 6/1 4 3/0.2

Table 1: Comparison of rendering times (in
fps) for different algorithms. Second number
in hardware column gives rates without trivial
reject. Image resolution: 512 x 512.

Comparing the rendering times for the two
different graphics cards we observe that the
rendering times for the hybrid solution are
fairly identical, whereas the hardware solu-
tion already computes considerably faster on
a GeForce4, nearly achieving the rates of the
hybrid solution. We attribute this to the fact
that vertex programs execute more efficiently
on a GeForced, and are confident that for fu-
ture graphics boards the hardware solution
will overtake the hybrid solution since the per-
formance of graphics boards is currently in-
creasing faster than the performance of pro-
cessors.

We tested two different implementations of
the hardware algorithm, one using a display
list to render the whole scene, i.e. computing
the intersections for one plane, and another
using vertex arrays, stored in AGP-memory.
We obtained identical rendering times for both
implementations, from which we conclude that
the bottleneck for the hardware algorithm is
the execution time for the vertex programs
(hardware algorithm’s vertex program: 107 in-
structions, hybrid algorithm: 28 instructions).
To store the vertex attributes for the torus
scene we need 243 kB for the hybrid approach
and 486 kB for the hardware approach.

Adding a trivial reject test based on bound-
ing spheres to the hardware implementation,
86% of the triangles are rejected for the torus
scene and even 95% for the terrain scene. The
resulting speed-ups (torus scene: 6X, terrain
scene: 14-15x) are due to the smaller number
of vertex programs being executed.

The presented algorithms can either be used
to render the volume as is (Fig. 8 (top)), in
which the semi-transparent egg sitting in the
fully opaque torus was simply mapped onto
the geometry), or combined with pixel shad-

666

ing (in Fig. 8 (bottom), 9, 11, and 12 we ap-
plied simple Phong lighting).

Fig. 9 and 12 show volumes without semi-
transparencies with 128 x128x 128 voxels. The
car park was sliced with 1500 planes to get
subtle details, whereas 200 planes fully suf-
fice for the chain data-set. The volume for
the outdoor scene in Fig. 7 consists of a mix-
ture of fully opaque (trees, floor, flowers) and
semi-transparent voxels (ground fog, smoke).
The image was rendered with 1000 slices. No-
tice how the nearly transparent ground fog
only becomes visible at grazing angles. The
volcano-scene in Fig. 11, which also consists
of a partly semi-transparent volume for the
smoke rings, was sliced with 4500 planes and
greatly profits from a simple per-pixel lighting
algorithm.

7.1 Per-Primitive Programs

Even though the bottleneck for the hardware
rendering algorithm doesn’t seem to be the
data transfer from and to the graphics card,
a considerable amount of data could be saved
if there were a per-primitive program. This
program could be given all the data for one
primitive (position and texture coordinates for
six vertices), instead of passing each vertex
all attributes like we currently are forced to
do in the hardware algorithm. (In our case
that would lead to a data reduction to 1/6).
The vertex program would also be simpler to
code: the A-values could be computed for all
nine edges, then, depending on the different
values, we would select the order in which to
render the intersections.

If a per-primitive program could decide how
many vertices to render, or just not to render
a vertex, we could avoid scenarios like ours,
where we are forced to place several vertices
at the same position or to project vertices out-
side the scene if they needn’t be drawn.

8 Conclusion and Future Work

This paper presents a new method for hard-
ware accelerated rendering of volumetric tex-
tures applied to triangle meshes. We pro-
pose a hybrid (software/hardware) and a pure

hardware-based algorithm to efficiently per-
form plane/prism intersections. Using the hy-
brid algorithm to render volumetric textures
we achieve high interactive frame rates on cur-
rent graphics hardware. Although the pure
hardware algorithm performs slower at present
we expect it to overtake the hybrid algorithm
on future graphics platforms offering more ef-
ficient execution of vertex programs.

The presented method is the first to
correctly handle semi-transparent textures
in hardware at interactive rates. Semi-

transparent volume textures require rendering
slices through the complete object from back
to front as it is done with our technique. Ren-
dering a stack of slices per prism at once [16]
would require a careful sorting of the prism
with respect to their distance to the viewer
which is costly.

Arbitrary materials like fur [14], textiles [9,
5], etc. can be rendered on a 2D surface in
hardware using our method. Another possible
application would be to render displacements
in hardware as proposed by Kautz et al. [13],
using our method to generate the intersection
polygons and thereby removing artifacts due
to non-orthogonal viewing directions.

As future work, we would like to combine
the volumetric rendering with more complex
shading models, e.g. anisotropic ones [12].
The design of rendering planes from back to
front should make it possible to apply other,
more sophisticated rendering methods than di-
rect volume rendering, for instance iso-surface
extraction, LIC, and others listed in [20)].

References

[1] K. Akeley. Realityengine graphics. In Proc. of
SIGGRAPH 93, pages 109-116, 1993.

[2] K. Brodlie and J. Wood. Recent advances in vol-
ume visualization. Computer Graphics Forum,
20(2):125-148, 2001.

[3] B. Cabral, N. Cam, and J. Foran. Acceler-
ated volume rendering and tomographic recon-
struction using texture mapping hardware. In
IEEE Volume Visualization Symp., pages 91—
98, 1994.

[4] N. Chiba, K. Muraoka, A. Doi, and J. Hosokawa.
Rendering of forest scenery using 3d textures.
The Journal of Visualization and Computer
Animation, 8(4):191-199, 1997.

[5] K. Daubert and H.-P. Seidel. Hardware-based
Volumetric Knit-Wear. In Proc. of Eurograph-
ics 2002, 2002.

666

[10]

[11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

[23]

[24]

S. Dietrich. Elevation Maps. Technical report,
NVIDIA Corporation, 2000.

J. M. Dischler and D. Ghazanfarpour. A sur-
vey of 3d texturing. Computers € Graphics,
25(1):135-151, February 2001.

G. Frieder, D. Gordon, and R. Reynolds. Back-
to-front display of voxel-based objects. IEEE
Computer Graphics and Applications, 5(1):52
59, 1985.

E. Groller, R. T. Rau, and W. Strafler. Mod-
eling textiles as three dimensional textures. In
Eurographics Rendering Workshop 1996, pages
205-214, 1996.

L. Tuy H. Tuy. Direct 2D display of 3D ob-
jects. IEEE Computer Graphics and Applica-
tions, 4(10):29-33, 1984.

J. T. Kajiya and T. L. Kay. Rendering Fur With
Three Dimensional Textures. In Proc. of SIG-
GRAPH 89, 1989.

J. Kautz and H.-P. Seidel. Towards Interactive
Bump Mapping with Anisotropic Shift-Variant
BRDFs. In Proc. EG/SIGGRAPH Workshop
on Graphics Hardware, pages 51-58, 2000.

J. Kautz and H.-P. Seidel. Hardware Accelerated
Displacement Mapping for Image Based Render-
ing. In Proc. of Graphics Interface 2001, pages
61-70, 2001.

J. Lengyel, E. Praun, A. Finkelstein, and
H. Hoppe. Real-Time Fur over Arbitrary Sur-
faces. In Symposium on Interactive 3D Graph-
ics, pages 227-232, 2001.

M. Levoy. Display of surfaces from volume data.
IEEE Computer Graphics and Applications,
8(3):29 37, 1988.

A. Meyer and F. Neyret. Interactive Volumetric
Textures. In Proc. of Eurographics Workshop
on Rendering, pages 157-168, 1998.

F. Neyret. Synthesizing verdant landscapes us-
ing volumetric textures. In Eurographics Ren-
dering Workshop 1996, pages 215-224, June
1996.

K. Perlin and E. M. Hoffert. Hypertexture. In
Proc. of SIGGRAPH 89, pages 253-262, July
1989.

G. Schaufler. Per-Object Image Warping with
Layered Impostors. In Proc. of Ewurographics
Rendering Workshop, pages 145-156, 1998.

R. Westermann and T. Ertl. Efficiently using
graphics hardware in volume rendering applica-
tions. In Proc. of SIGGRAPH 98, pages 169—
178, July 1998.

L. Westover. Footprint evaluation for volume
rendering. In Proc. of SIGGRAPH 90, pages
367-376, 1990.

J. Wilhelms and A. van Gelder. A coherent pro-
jection approach for direct volume rendering. In
Proc. of SIGGRAPH 91, pages 275-284, 1991.

S. P. Worley and J. C. Hart. Hyper-rendering of
hyper-textured surfaces. In Implicit Surfaces,
pages 99-104, 1996.

C. Wynn. OpenGL Vertex Programming on

Future-Generation CPUs. Slide collection, avail-
able from www.nvidia.com.

Figure 7: Volumetric texture with semi-
transparent parts (smoke, ground fog) applied
to terrain mesh.

Figure 8: Volume data set (128 x 128 x 128),
consisting of an opaque torus supporting the
semi-transparent egg (right). Top: wvolume
rendered as is. Bottom: wvolume rendered in
combination with a simple per-pixel lighting
algorithm.

Figure 9: The volume consists of 2 chain-links
and was rendered with 200 planes. We use
per-pizel lighting. Notice the precise silhou-
ettes.

666

ﬁ s

V]]
(™
_..:, poN
V2,

Figure 10. For the pure hardware algo-
rithm we construct the siz fake vertices
v0;, v0r, vl 01,021, v2,-. Each of them is as-
signed a normal edge (red), two primary edges
(green) and two secondary edges (blue). The
I or r subscripts define in which direction

(left/right) the primary edges are oriented.

Figure 11: Volume consisting of opaque (vol-
cano, floor), semi-transparent (smoke), and
fully transparent parts. The volume is lit using
a stmple per-pizel lighting algorithm. (volume
resolution: 128 x 128 x 128)

Figure 12: Volume (128 x 128 x 128) consist-
ing of several cars, a ground plane and some
trees, assembled to a car-park scene (rendered
with 1500 planes), using a simple lighting al-
gorithm.

