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Abstract

The hippocampus is well understood as representational apparatus of the environ-
ment. Since the world is its own best model, a purely representational function
would be wasteful, and it is obvious that it must have some behavioral function as
well. Here, a model is proposed in which a neuronal structure inspired by the hip-
pocampal network represents the topological syntax of the world. As in the classical
understanding of place cells, the agent’s position is encoded in a neuronal activity
pattern. In a second step, the network is used to plan goal-directed trajectories.
By releasing a wave of activity from an ensemble of cells representing the goal, the
network’s synaptic weights are temporarily altered via spike-timing-dependent plas-
ticity. In this process, goal-directed weights are strengthened to create a synaptic
vector field. Simulation experiments demonstrate the model’s navigational ability,
with motor execution based on a voting process of active neurons. In doing so,
this study shows the potential of synaptic vector fields for biologically plausible
planning in state-action representations. In an extension of the model, a second
neuronal layer is added to capture a hierarchical structure in the environment. Sim-
ulation experiments show that such a hierarchical structure can successfully guide
the agent to subgoals in tasks of goal-directed navigation. Subgoal selection by the
model resembles the strategy of human subjects in comparable navigational tasks.
Since hierarchical planning is suspected to increase planning depth in human cog-
nition, the influence of the additional layer on planning across large distances is
investigated. Comparison with a network without hierarchical structure indicates a
benefit of the second layer on planning depth.
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Chapter 1

Introduction

This chapter motivates the model-based approach to cognitive modeling, in the sense
that the agent learns an S-A-S’-model consisting of encountered state S, conducted
action A and predicted outcome state S’. Following existing work on the topic, levels
of behavior in space are presented. It is argued that in order to achieve a certain
level of behavioral complexity, model-based (state-action) representations need to
evolve that form the basis of the computational model presented in chapter 2. Neu-
robiological background is given to stress the importance of population-coding in
biological representations which in turn demands the biologically plausible model
developed in this thesis to be population-coded. Section 1.2 then stresses the power
of task-decomposition and hierarchical representations for cognition. To conclude
the introduction, 1.3 presents the central part of this thesis: A neural network
combining topological state-action representation with hierarchically structured be-
havior.

1.1 Topological Representations of Space

A Computational Perspective on Behavior in Space

The most fundamental task of spatial behavior is moving away from a stimulus such
as light or a chemical gradient - or towards it. Required for fleeing and feeding, this
skill requires only a minimum of information processing as realized in the famous
Braitenberg vehicles (Braitenberg 1984). Following the line of thought from Mallot
and Basten 2009, behavior in space can be arranged in order, ascending in behav-
ioral complexity and necessary computation. The following descriptive list is to be
understood in terms of David Marr’s first and second level of inquiry (Marr [1982]
2010) that he developed to analyze information processing systems. Firstly, what is
the task the system is solving? And secondly, which representations and algorithms
can be used to do so? The third level, how such a system can be implemented in
hardware, is discussed later.

1. Recognition-triggered response in selective cases, e.g. feeding or fleeing. Com-
putationally, this requires a mapping of few stimuli to respective responses.

2. Path-integration and landmark guidance to allow homing after excursion.
Path-integration requires continuously updating a ”home-vector” (Cartwright
and Collett 1987, Müller and Wehner 1988).

3. Following previously traveled routes to places of interest (Mallot and Basten
2009). This requires an ability to learn new stimulus-response associations,
distinguishing this skill from purely inborn stimulus-response mappings.
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1.1. TOPOLOGICAL REPRESENTATIONS OF SPACE

4. Combining segments of previously traveled routes in novel ways to form a map
of the environment (Tolman 1948, Mallot and Basten 2009). Computationally,
this recombination requires adaptive stimulus-response mappings that depend
on the current motivational drive. In a re-encountered state, the agent has
to choose from multiple actions associated with it, depending on its current
motivational drive. As demonstrated by the so-called successor representation
in Stachenfeld et al. 2017, this can be achieved without a full S-A-S’ repre-
sentation. In the successor representation, states are superpositions of future
locations in reach. Without knowing which new state S’ will exactly result
from an action A, value-function based goal-directed behavior and usage of
previously learned representations for novel tasks is still possible (ibid.).

5. Route selection and planning. Humans are able to choose between alternative
routes. To choose between alternatives in planning and thus enable truly flex-
ible behavior, self-projection as well as inference of future states by having a
model of the world is required (Behrens et al. 2018). This ability to plan is in-
deed based on a model of the world which is constructed from past experiences
according to Buckner and Carroll 2007. In spatial cognition, two schools of
though have addressed the construction of such an internal representation: the
map-based and the graph-based approach, where the labeled graph is some-
what in between (for a review see Warren 2019). The model described in this
thesis is built on the graph-based (topological) approach.

Mallot and Basten continue this order by adding metric knowledge and lastly com-
munication about space as the most complex tasks (Mallot and Basten 2009). Since
the approach presented in this thesis does not aim to solve problems based on large-
scale metric or communication, but to model a system for flexible, goal-directed
navigation, we will not go into further detail on these more complex skills.

Models for Topological Navigation

Many computational models of spatial navigation have been constructed based on
topological representations of the environment (Arbib and Lieblich 1977, Schölkopf
and Mallot 1995, Arbib and Bonaiuto 2012, Baumann 2019). Already Tolman’s
narrow strip maps are qualitative predecessors thereof (Tolman 1948). Later, Kevin
Lynch used the concept of a graph to describe spatial navigation in his book ”The
Image of the City”. Lynch describes our mental representation of the city as con-
sisting of five fundamental elements: paths and nodes, as well as edges, landmarks
and districts (Lynch 1960, pp. 46–47). One of the first quantitative approaches
to model the nature of an animal’s (in this case a rat’s) representation of space in
a graph was conducted by Arbib and Lieblich 1977 who coined the term ”World
Graph”. This graph consists of nodes corresponding to places and edges as the
motoric movements to travel between them. Kuipers developed a comprehensive
computational theory of spatial cognition, summarized in Kuipers 2000. His modu-
larized approach is illustrated in figure 1.1 showing the information flow needed to
construct a topological representation and beyond that a metric one from low-level,
sensory input. The causal level (as described above as S-A-S’-representations) leads
to a topological representation.

12



1.1. TOPOLOGICAL REPRESENTATIONS OF SPACE

Figure 1.1: Representations of the spatial semantic hierarchy (Kuipers 2000). Open-
headed arrows: information flow without dependency, close-headed ar-
rows: dependency. Figure adapted from Kuipers 2000.

Recently, Baumann 2019 has shown that navigation in three-dimensional environ-
ments can work with a state-action model in which states are stored as ”micro-
snapshots”. Baumann implemented the model as a graph, with nodes (states) cor-
responding to SURF image features (Bay and Tuytelaars 2006). These nodes are
connected with edges labeled by movement instructions. By allowing multiple such
features to be simultaneously perceived by the model, population coding of posi-
tions (see below) becomes possible. By computing a bundle of shortest paths based
on a graph search algorithm, the agent can navigate in a goal-oriented way. Move-
ment execution is based on a voting process of action labels attached to recognized
features preactivated in goal direction by the graph search (Baumann 2019).

Encoding Location in Neuronal Activity

The third and last level of Marr’s approach introduced in the beginning of the chap-
ter is concerned with possible hardware implementations of the information flow.
For the neurobiological understanding of the implementation of spatial cognition in
the brain, the discovery of so-called place cells (O’Keefe and Nadel 1978) was a huge
step. Place cells possess firing fields centered at discrete locations in space (ibid.).
Over the past decades, research on place cells has led to a theory of the hippocampus
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as a representational structure of the environment in which the agent’s position in
space is encoded. This encoding typically is assumed to be population-coded in the
activity of neurons (Wilson and McNaughton 1993). Pfeiffer and Foster 2013 showed
that place cells in rats display ”preplay”: At decision points, rats stop and appear to
mentally probe multiple alternatives, sequentially activating place cells correspond-
ing to places along possible trajectories (ibid.). How can such a population-coded
representation, be it topologically arranged such as the state-action graph by Bau-
mann 2019 or a metric map, be used to generate behavior? The model put forward
in this thesis addresses this question while aiming for biological plausibility.

1.2 Hierarchically Structured Behavior

Solving Complex Tasks

Studies on human problem solving such as conducted by Huys et al. 2015 have
shown a strong tendency of subjects to apply strategic decomposition of complex
problem spaces. In addition to approximations and simplifications, humans are
able to split problems into subproblems that are easier to solve (ibid.). In the
study by Huys et al., subjects were faced with a moderately deep planning problem
across six interconnected states in which state-transitions were either rewarded or
punished. After learning the rewards associated with the transitions, subjects were
asked to plan a path to maximize reward. Statistical analysis of the action selection
indicated that while doing so, subjects combined sequences of actions that previously
had proven successful to so-called ”chunks” and associate those with a joint reward
value. This simplification, while leading to suboptimal performance in some cases,
saved computational cost associated with evaluating a full decision tree (Huys et al.
2015).

Hierarchical Structure in Space

Such hierarchical representations appear to be important in spatial problem solving
as well. Already Kevin Lynch described ”districts” in the city, ”conceived [...] as
having two-dimensional extent, which the observer mentally enters ’inside of,’ and
which are recognizable as having some common, identifying character” (Lynch 1960,
p. 46). Stevens and Coupe 1978 observed a peculiar effect of human large-scale nav-
igation related to representations of such regions. Stevens and Coupe asked subjects
to judge the relative position of Reno (Nevada) and San Diego (California). Surpris-
ingly, the majority of subjects judged Reno to be north-east of San Diego, whereas in
fact Reno lies to the north-west. Stevens and Coupe concluded that subjects solved
the task on a hierarchically super-ordinate level, relying on their knowledge that
Nevada lies to the east of California. Many other studies confirm such an influence
of regions on spatial cognition, see for example Hirtle and Jonides 1985, McNamara
et al. 1989 and recently Schick et al. 2019.

Wiener and Mallot 2003 further investigated the effect of such environmental regions
on human navigation in two experiments. Both experiments began with a learning
phase, in which subjects explored a virtual environment of discrete places marked
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by characteristic landmarks (cf. figures 3.1 and 3.10). In section 3.1, these experi-
ments (referred to as HN1 and HN2, short for human navigation) are used to test
the model proposed in this thesis. The virtual environments used in the study by
Wiener and Mallot consisted of clearly distinguishable regions. Regions were made
obvious by choice of landmarks from the same semantic categories such as ”car”
or ”animal”. When asked to navigate to a specific landmark in the testing phase,
subjects appeared to follow two interesting heuristics:

1. Experiment 1: The environment consisted of two interconnected islands sepa-
rated by a river (see figure 3.1.) When choosing between equally long routes
to a goal on the other side of the river, subjects preferred routes that led them
to the goal region as quickly as possible (Wiener and Mallot 2003).

2. Experiment 2: The environment consisted of places around a hexagonal street,
with landmarks from three semantic categories (see figure 3.10). When the
subjects could choose between two equally long routes crossing multiple region
boundaries, they preferably chose to cross as few region boundaries as possible
to reach the goal (Wiener and Mallot 2003).

Based on the presented amount of evidence, it can be concluded that human problem
solving deeply relies on such hierarchy-based heuristics and recognition of regions.
The findings of Wiener and Mallot 2003 are the motivation for the simulations
conducted in section 3.1. By simulating the same navigational tasks with the com-
putational model proposed in this thesis, it is tested if the model architecture is able
to replicate the effects of hierarchization on behavior.

Two Types of Hierarchical Structure

In a close, functional investigation of hierarchically structured behavior by Botvinick
2008, the author identified two overlapping structures. In correlational hierarchies,
subtasks that frequently occur together, such as picking up a key and unlocking the
door when opening a safe, will over time be associated with each other. In addition
to action-action associations, such correlational hierarchies can also include associ-
ations to the context in which the actions are executed (ibid.). The second type of
hierarchical structure determined by Botvinick are instrumental hierarchies. These
are built on means-end relations, ”pick up the key in order to unlock the door”.
The end of one action sets up the initial condition for the next. The example cited
here already shows the overlap of the two concepts. Nevertheless, it is useful to
distinguish between the two. In spatial cognition, correlational hierarchies occur if
places share a common functionality, are visually similar or are designated with a
regional name that might be purely historical (Schick et al. 2019). Instrumental hi-
erarchies instead are built upon topological representations that were introduced in
the previous section. ”At intersection X turn right and go 500 meters straight to get
to the supermarket”, might be an action sequence part of the larger (and hierarchi-
cally superior) task of ”going shopping”. Sutton et al. 1999 use similar examples to
introduce the concept of hierarchical reinforcement learning which will be discussed
below. Overlap between the two hierarchical concepts can be observed in studies
on taxi drivers who prefer to use a system of frequently used routes, a ”skeleton
in the cognitive map” (Kuipers et al. 2003). Even though these routes are pre-
ferred due to frequent usage, the drivers obviously must still know where each road
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leads and which to use after that. This hierarchy of routes is closely connected to
the chunks of actions observed in the previously described study by Huys et al. 2015.

A last hierarchical concept in spatial cognition worth being introduced here is the
importance of decision points. Quoting Kevin Lynch: ”[P]eople heighten their at-
tention at such places and perceive nearby elements with more than normal clarity.
This tendency was confirmed so repeatedly that elements located at junctions may
automatically be assumed to derive special prominence from their location”(Lynch
1960, pp. 12–13). Decision points often are important subgoals in navigation (Spiers
and Maguire 2008, Stachenfeld et al. 2017). Even more, they appear to be of impor-
tance in the animal kingdom as well: the aforementioned ”preplay” in rats occurs
particularly frequent at decision points such as crossroads (Pfeiffer and Foster 2013).

Models of Hierarchical Planning

After realizing the advantage of learning a transition model that allows for flexible
and adaptive behavior in section 1.1, the question arises, how such a model can be
extended to make use of the hierarchical structures described above. The topic of
hierarchical planning is of great use in the research field of robotics and artificial
intelligence, but since this thesis aims to develop a biologically plausible model,
we limit ourselves here to reviewing two approaches inspired by human cognition
and refer to the robotics literature for application-oriented systems (see for example
Kaelbling and Lozano-Pérez 2011). One approach developed by Wiener and Mallot
2003 to explain the behavior of human subjects in the navigation tasks described
above, is the ”fine-to-coarse” planning heuristic. It was formulated as an algorithm
by Reineking et al. 2008 and describes a heuristic that makes use of the hierarchical
structure of the environment. In fine-to-coarse planning, the agent’s representation
of space consists of a topological state-action graph of discrete places and transi-
tions between them. By adding nodes representing regions as an additional layer and
connecting them to nodes of discrete places in the respective region, the represen-
tation becomes hierarchical. By creating a so-called focal representation, illustrated
in figure 1.2 in working memory, the agent plans on multiple levels of resolution
simultaneously: Regions further away are not represented in full resolution (figure
1.2b), planning yields only a coarse route to the goal (Wiener and Mallot 2003). In
the region currently occupied by the agent, space is represented in full resolution,
which enables the agent to take the correct step towards the transition to the next
region. At least in this planning phase, the nodes allowing for transition to the next
region must be connected to this next region node to allow simultaneous planning
on different levels. After taking a step towards the goal, the focal representation is
updated (ibid.). Following region transition, places within the newly occupied region
are represented in detail in working memory. This results in high computational cost
due to frequent replanning, but low memory requirements for fine-to-coarse plan-
ning, since the route does not have to be stored in full detail (Wiener and Mallot
2003).
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Figure 1.2: Fine-to-coarse route planning as described by Wiener and Mallot 2003.
Three regions represented by the nodes on top comprise four places
each. When planning the next step towards the goal on the right, the
agent creates a focal representation in working memory. (Adapted from
Wiener and Mallot 2003)

A second approach to hierarchical planning and action-execution is hierarchical re-
inforcement learning (HRL, Sutton et al. 1999). To tackle problems of traditional
reinforcement learning (Sutton and Barto 1998) such as lack of generalization and
problems in large task spaces, Sutton et al. 1999 introduced the options framework
of HRL (figure 1.3). Whereas an agent in traditional reinforcement learning has the
same set of actions to choose from in each state, the HRL agent is equipped with so-
called options, that correspond to setting subgoals many timesteps ahead Botvinick
2008. In the typical example of the four room problem (figure 1.3a), an option can
be to reach the door leading to the room closest to the goal. This option, denoted
as ”o1” in figure 1.3b then determines the next action choices (”a2-a4”). Botvinick
and Weinstein 2014 describe HRL in the context of model-based vs. model-free
learning and provide an overview over neurobiological findings concerning a neu-
ronal implementation of HRL (see also Botvinick 2008 and Botvinick et al. 2009).
Concerning the selection of subgoals, Sutton et al. 1999 assume that ”the subgoals
are given and do not address the larger question of the source of the subgoals”. 15
years later, Botvinick and Weinstein 2014 still discuss it as a focus of HRL research.
This problem of learning appropriate subgoals, termed the option discovery problem
is fundamental challenge for hierarchical reinforcement learning (Botvinick and We-
instein 2014). With the model introduced in this thesis, we hope to shed some light
on how a hierarchically structured neural network as representational apparatus of
the spatial task domain might be of help in discovering suitable subgoals.

17
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(a) Four-rooms environment (b) Options in HRL

Figure 1.3: Hierarchical Reinforcement learning. In the four-room environment
shown on the left, the agent can execute primitive actions (transition
to neighboring places). To make reinforcement learning more efficient,
Sutton et al. 1999 introduced so called options (shown on the right as
o1 and o2), constituting a mid-term policy that influences action selec-
tion (a1-a5) and is comparable to setting subgoals. In the example on
the left, such an option could be to reach the nearest doorway. (Figure
adapted from Botvinick 2008

1.3 A Neuronal Model for Topological Navigation

As indicated in the previous sections, the goal of this thesis is to implement biologi-
cally plausible navigation based on a topological representation of space as described
by Baumann 2019. The model is then extended to represent a hierarchy of places
and regions in the environment. Conditions for biological plausibility are realistic
timing properties of the neurons as well as adaption of synaptic weights based on
local information available at the synapse alone, i.e. depending solely on pre- and
postsynaptic neuronal activity. Furthermore, mechanisms contained in the model
are based on neurobiological findings. Since the aforementioned discovery of hip-
pocampal neurons with spatially selective firing-fields (O’Keefe and Nadel 1978),
similarly functioning cells have been the starting point of many neural network
models of spatial cognition (Burgess and Recce 1994, Voicu and Schmajuk 2002,
Bicanski and Burgess 2018, Li et al. 2020). In these models, the environment is
encoded in a layer of place cell-like neurons. A frequent approach in literature is
to perform goal-directed navigation by spreading a gradient for hill-climbing from
the goal throughout the network (Voicu and Schmajuk 2002). To do this in a bi-
ologically more plausible way, Ponulak and Hopfield implemented a spiking neural
network in which a wave of activity is released from a set of cells representing the
goal (Ponulak and Hopfield 2013, see also Hopfield 2010). The passing wavefront
then alters the synaptic weights so that goal-directed weights are strengthened tem-
porarily, which results in a so-called synaptic vector field (Ponulak and Hopfield
2013). The model proposed in this thesis builds on the approach of Ponulak and
Hopfield, but with some important differences: Instead of encoding a metric rep-
resentation, the network represents environmental topology: Significant features or
places become represented by individual cells. In combination with synaptic connec-
tions corresponding to actions, this results in a state-action neural network based
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1.3. A NEURONAL MODEL FOR TOPOLOGICAL NAVIGATION

on salient features of the environment, a neuronal version of a state-action graph as
described by Baumann 2019. In addition, the developed framework is extended by a
hierarchical structure, in which additional cells connect to low-level features belong-
ing to a common region. To summarize, the relation of the neural representation to
the external world is threefold:

� A topology of neural connections is learned that corresponds to the topography
of the underlying features in reality. Through higher-level neurons, the network
is able to encode regions in space and thus represent a hierarchical structure
in the environment.

� The agent’s position is encoded by a population vector of neuronal activity in
the network. This activity typically forms an attractor state Amari 1971.

� Goal-directed movements are planned and then executed by temporarily al-
tering the synaptic weights in the network so that goal-directed weights are
strengthened. Then, following the resulting vector field by executing the
learned state-action model, the agent navigates to the goal.

This thesis thus aims to investigate the behavior of a model combining the state-
action approach and voting-based action selection of Baumann 2019 with the synap-
tic vector field-based, neurobiologically motivated planning from Ponulak and Hop-
field 2013. Navigational behavior of the model is probed in multiple simulated
scenarios. Beforehand, it is hypothesized that this hierarchical structure increases
planning depth and helps the agent to navigate to suitable subgoals.
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Chapter 2

Methods

2.1 Neuronal Dynamics

After the short introduction in section 1.3, this chapter goes into detail on the
proposed model and its biological foundation. First, the mechanics of the spiking
neurons used to represent the environment are explained, followed by the mechanism
of synaptic plasticity to generate synaptic vector fields. Then, an explanation of how
these vector fields can be used to generate goal-directed movements together with
a demonstration thereof follows. The chapter concludes with a detailed description
of the implementation of hierarchy in the neuronal model. A list of all parameters
is attached in appendix A.2.

Neuron Model

The model described in this thesis implements a state-action representation of the
agent’s environment (Baumann 2019) as a neural network. To do so, leaky integrate
and fire neurons with little modification from the approach in Ponulak and Hopfield
2013 take the place of graph nodes. Directed synaptic weights replace the graph
edges and give the connection strength between the respective neurons. The weights
of these excitatory connections can be learned in a Hebbian manner (Hebb 1949),
requiring a dedicated learning phase (as demonstrated in Ponulak and Hopfield
2013). Since the focus of this thesis lies on planning and goal-directed navigation,
weights are given beforehand, depending on the effort to get from one feature to the
other. Long distance and difficult terrain corresponds to low (or even nonexistent)
weights. The exact network architecture depends on the simulation and is described
in chapter 3. A representation sufficient for navigation is achieved as soon as each
position the agent occupies in the environment yields a stable bump of activity in the
network. The membrane potential um of each neuron is governed by a differential
equation:

τm
dum(t)

dt
= −(um(t)− ur) +Rm(isens(t) + isyn(t) + ins(t)− iinh(t)) (2.1)

Here, τm denotes the membrane time constant and ur the membrane potential at
rest. Rm is the membrane resistance, isens the sensory input described in detail
later, isyn the incoming synaptic currents from other cells in the network and ins an
optional, neuron-specific, Gaussian noise current used only in the planning depth
simulation (section 3.2). iinh denotes the global inhibitory current described in more
detail in appendix A.1. Simulated in discretized time, the membrane potential is
updated each timestep, following an Euler integration of equation 2.1.
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Sensory Input

One of the advantages of equation 2.1 is that sensory input can be integrated in var-
ious forms. Using visual input, each cell can be modeled as receptive to a particular
feature of the environment, such as in the aforementioned feature-graph of Baumann
2019. This is in line with the discovery of cells in the medial temporal lobe being
sensitive to visual features on different levels of abstraction (Steinmetz et al. 2011).
Development of these feature sensitive cells is imaginable via competitive learning
as described by Rumelhart and Zipser 1985 and applied in Krotov and Hopfield
2019. Upon recognition of a feature, sensory input current to the respective cell is
high. Network parameters, especially the inhibitory current, are set so that a stable
peak of activity is present in the navigation phase, resembling an attractor network
(Amari 1971, Wilson and Cowan 1973, Hopfield 1982). When neurons are modeled
as sensitive to recognized features, the center of gravity of the sensory input shifts as
the agent moves through the environment. This change in input current shifts the
activity bump through the network. Bicanski and Burgess 2018 implemented such
a shift of an activity bump by an external signal, albeit not with spiking neurons.
Figures 2.3c-f illustrate an activity bump, indicated by active neurons in yellow,
moving through the network. Which synaptic input is used in the navigation phase
depends on the simulated scenario, and combination of multiple sensory inputs is
possible by summation. In chapter 3 for example, place recognition is used, and
single cells represent discrete positions in the discretized environment and receive
sensory input if the agent is at that specific position.

Synaptic Input

In addition to the sensory input, each neuron k integrates incoming currents from all
connected neurons j in the network. These currents are summed up in a supralinear
fashion, again based on Ponulak and Hopfield 2013:

isyn,k(t) = asyn · tanh

(
bsyn

∑
j

H(iout,j(t))

)∑
j

wjkiout,j(t) (2.2)

Here, asyn and bsyn are positive constants and H(i) is a step function which equals
one for positive arguments and zero otherwise. iout,i is the current going out from
neuron j and wjk the synaptic weight between the two neurons. This process of
synaptic input summation is repeated for each neuron k. In combination with the
global inhibitory system, the supralinear summation (Nettleton and Spain 2000,
Urakubo et al. 2004) limits the spread of activity from randomly spiking neurons
by preferring multiple incoming currents over a single one of equal strength. To
maintain a stable activity bump created by sensory and synaptic input, the global
inhibitory current iinh described in appendix A.1 is tuned accordingly. Such a stable
activity bump is necessary for the network to function as a localization system in
the environment. If multiple activity bumps were present, the network does not
provide clear information to the agent. The same issue occurs if there is no such
bump present.
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2.2. SYNAPTIC PLASTICITY

Action Potential

As soon as the membrane potential of a neuron (equation 2.1) surpasses the threshold
of uthresh, an action potential is released. This process is modeled as the release of the
resulting synaptic current (spike) that immediately reaches its maximum value ispike
and then decays exponentially to zero, governed by the time constant τspike = 25 ms
(Ponulak and Hopfield 2013):

iout,k(t) = ispike · exp

(
− t

τspike

)
(2.3)

where t is the time since the last spike. After the release of an action potential,
the neuron goes through a dead time in which the membrane potential is kept
at zero. Instead of a neuron specific inhibitory current as a mechanism of spike-
frequency adaptation (Ponulak and Hopfield 2013), a longer refractory period until
the wavefront has spread through the network is chosen, as implemented in the same
paper. Both approaches facilitate the wavefront propagation (ibid.) that is explained
in more detail in the next section. To keep the model simpler and because the
additional neuron-specific inhibitory current does not alter the network’s behavior
in principle, the decision was made to use only an extended refractory period.

2.2 Synaptic Plasticity

Synaptic Weight Updates

Route planning in the sense of preparing the network for goal-directed navigation
is started by activating the neurons associated with the goal (Ponulak and Hopfield
2013). A goal for navigation thus is defined by a set of features and their corre-
sponding cells. The activation might either be the result of upstream processing or
of a motivational drive, as implemented in many computational models (e.g. Voicu
and Schmajuk 2002, Arbib and Bonaiuto 2012). In such models, the agent learns to
associate drive satisfaction with a set of neurons representing the future goal. Here,
this process is not modeled in more detail. Following a sufficiently strong activation
of these cells, a wave of spiking neuronal activity throughout the network is released
(Ponulak and Hopfield 2013). Ponulak and Hopfield relate such an activity wave
to rhythmic activity in the brain, specifically theta-oscillations (Lubenov and Sia-
pas 2009, Patel et al. 2012) and sharp wave ripples (Ellender et al. 2010). During
the planning phase that prepares the representation for goal-directed navigation,
sensory input is turned off to prevent an activity wave spreading from the cells
representing the current position of the agent (Ponulak and Hopfield 2013). Other
possible causes of error in wavefront propagation are backward flowing waves due
to synaptic currents exciting cells around the current wavefront towards the goal.
These are prevented by the refractory period described in the previous paragraph.
As the wave propagates and the neurons in the network spike consecutively, synaptic
strength is adapted based on a spike-timing-dependent plasticity rule (adapted from
Kempter et al. 1999, see also Gerstner et al. 2014, chapter 19.2). The updates occur
in incremental fashion each time either the post- or the presynaptic neuron spikes.
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2.2. SYNAPTIC PLASTICITY

This discretization of increasing weights in quanta, only when spikes occur, is ex-
pressed in the continuous notation through delta functions:

∆wjk(t) = aDec + d ·
(
δk(t) a

+(sj) + δj(t) a
−(sk)

)
(2.4)

Here, sj is the time since neuron j’s last spike. aDec is a constant that governs the
weight decay and d is the parameter controlling the polarity of the STDP process as a
globally released neurotransmitter (Seol et al. 2007) depending on the network mode.
d = −1 is used for wave propagation and d = 0 for goal-directed navigation. d = 1
is for topology learning, which is not used in the simulations included in this thesis.
In equation 2.4, a+(sj) and a−(sk) define the strength of the STDP/Anti-STDP
process, which is why they are preceded by δi(t) and δj(t) respectively, indicating if
the post- or presynaptic neuron has spiked.

a+(sj) = −A+ · exp

{
− sj
τSTDP

}
(2.5)

a−(sk) = −A− · exp

{
− sk
τSTDP

}
(2.6)

A+ is a constant regulating the strength of the STDP process and A− > A+ controls
the Anti-STDP process. This implementation of STDP is based on Ponulak and
Hopfield 2013, but with more convenient notation. The STDP process described
above allows simulating an exploratory phase as well. Since simulations in chapter 3
only require wavefront propagation and consecutive navigation, a simplified update
rule is used:

∆wjk(t) = d · (δk(t)− 1)δj(t) · a−(sk) (2.7)

Here, weight updates are conducted only if the presynaptic neuron j spikes, yielding
the same net behavior for reverse STDP. Another difference to Ponulak and Hopfield
2013 is that only on the last previous spike from the respective neuron is considered in
a−(sk) and a+(sj), not the whole spike train. This implementation detail should not
influence the results, since the decay parameter τSTDP = 20 ms (Morrison et al. 2007)
of the STDP process is way smaller than the time between passing wavefronts. Thus,
interactions between spike trains collapse to nearest-neighbor interactions between
spike-pairs (Morrison et al. 2007, Morrison et al. 2008). As the wavefront passes,
Anti-Hebbian updating as observed by Roberts and Leen 2004 leads to goal-directed
synapses becoming stronger than their opposing counterparts. In equations 2.4 to
2.6 this is expressed by A− being larger than A+ (Ponulak and Hopfield 2013) and
in equation 2.7 only the reverse process is left. The process of reverse STDP weight
updates is illustrated for two cases in figure 2.1. Neuron j spikes at time t1, followed
by a spike of a connected neuron k. Depending on the time difference between the
two spikes, the reverse synaptic weight wkj increases by a large factor (short time
difference, on the left) or a small factor (large time difference, on the right).
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2.2. SYNAPTIC PLASTICITY

Figure 2.1: Updating of synaptic weights through STDP. Neuron j spikes at time t1.
Left: Neuron k spikes shortly after j, at time t2, leading to temporary
strengthening of the synapse leading from neuron k to j indicated by
the bold arrow. Center: Neuron k spikes at time t3 � t2, long after
neuron j, leaving the synaptic weights unchanged. Right: Exponential
decay of weight adaption depending on spike-timing.

Note that during wavefront propagation, sensory input is down-regulated to prevent
an activity wave from the current position. Furthermore, the inhibitory system is
turned off (Ponulak and Hopfield 2013). When planning a path towards a new goal,
the temporary change in synaptic strength is reset to the value before planning.
There is experimental evidence that this might be realized with sharp wave ripples
in the brain (Lubenov and Siapas 2008).

Displaying the Synaptic Vector Field

To illustrate the representational network, it is useful to depict each cell at its
preferred location, denoted by xj . This position, where the cell is most active, can
then be embedded in the environment to yield an interpretable map of the network,
such as in figure 3.3a. The network is fine-tuned so that a bump of activity does
not move without change, either in the afferent sensory signal or in the network
connectivity. This is a fundamental property the network has to fulfill in order to
allow navigation guided by a synaptic vector field (SVF). Recalling the threefold
relationship of the neural network to the environment in which the agent moves
(learning of the topology, localization, goal-directed navigation, cf. section 1.3),
the question remains, how the created vector field can be transformed into actual
motor commands. Following the idea of a state-action graph in which edges are
associated with actions such as a turning angle to change the direction of forward
movement (Baumann 2019), the implementation of motor signals in this model is
fundamentally different from the one described in Ponulak and Hopfield 2013 and
Hopfield 2010. In both these models, the bump of activity is shifted by the SVF.
The agent then tries to align the current sensory input with the proposed position
from the moved bump in the network (Hopfield 2010) or simply is drawn to the
new (metric) position of the bump by a mechanism not described in more detail in
Ponulak and Hopfield 2013.
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Here instead, each synaptic connection is associated with a movement command
αjk as illustrated in figure 2.2. This movement command is equivalent to the action
to get from the place or feature represented by neuron j to the one represented by
neuron k and is interpreted as vector instead of a turning angle as in Baumann 2019.

αjk = xk − xj (2.8)

To illustrate where the synapses leading away from neuron j go, a vector is in-
troduced as a weighted average over action commands associated with outgoing
synapses:

r′j =
∑
k

wjkαjk =
∑
k

wjk(xk − xj) (2.9)

Since finite attractor networks underlie a central bias that draws activity bumps to
the center (Muller et al. 1987, Burgess and O’Keefe 1996), it makes sense to consider
the change of weights ∆wjk as a result of the plasticity process instead of the full
weight. The synaptic vector then can be written as

rj =
∑
k

∆wjk(xk − xj) (2.10)

and can be interpreted as the direction in which the agent will move, controlled by
the motor system described in the following section. Due to this interpretability,
rj will be used to illustrate the SVFs. An exemplary SVF is illustrated in figure
2.3, where a wavefront of activity is spread throughout the network as described
above. Again, the grid-like architecture of the network does not reflect the positions
of the neurons in the brain tissue, but is an illustratory embedding based on their
preferred locations. The resulting vector field in figure 2.3b points towards the goal
marked by a circle.

Figure 2.2: Neuronal state-action network as the agent perceives feature j: The
action command αjk is associated with the synapse from neuron j to
neuron k. αjk corresponds to the action to get from the feature repre-
sented by neuron j to the one represented by neuron k, transferring the
state-action graph by Baumann 2019 to the neuronal domain.
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In such a state-action network, the external topology is reflected in the synaptic
connections. Note however, that neurons are not necessarily located next to each
other in the brain (as indicated in figure2.2. In fact this is quite improbable, since
neurons representing space such as hippocampal place cells have to undergo fre-
quent remapping and do not seem to be topographically positioned in the brain
(O’Keefe and Nadel 1978, Wilson and McNaughton 1993, see also Samsonovich and
McNaughton 1997).

2.3 Motor Efferences

To produce motor commands, a voting process is conducted. Since actions are
associated with synapses in the manner of a state-action graph, votes are weighted
by the synaptic weight. By doing so, less feasible actions with low weights can be
overruled. To account for the current position of the agent encoded in the bump of
activity, each vote is weighted by the activity of the presynpatic neuron j, given by
the outgoing current iout.

ẋag(t) =
1

ispikeT

∫ t

t−T

∑
j,k

iout,j(t
′)αjk dt

′ (2.11)

By substituting the synaptic action label αjk with the vector between preferred
neuronal positions (cf. equation 2.8) and using the synaptic vector of equation 2.10,
the velocity can be written as

ẋag(t) =
1

ispikeT

∫ t

t−T

∑
j

iout,j(t
′) rj(t

′)dt′ (2.12)

Thus, the result of the voting process over all neurons j determines the direction of
movement. Since shifts of direction occur on a much slower timescale (> 100 ms)
than neuronal spikes that show (sub-)millisecond timing precision (Nemenman et al.
2008), the integrational time window T is introduced. Figure 2.3 illustrates move-
ment of an agent through a learned 2D-environment. The cells are modeled as place
cells, i.e. receive sensory input in the shape of a Gaussian around their preferred
location (cf. appendix A.3). After creating the SVF as described above, the agent
shifts to the navigation phase, bringing weight updating to a halt. During this phase
shift, network activity is reset. Then, a bump of activity builds up due to sensory
input (figure 2.3c) representing the agent’s position and navigation commences. Ex-
ecuting motor commands determined by the voting process of equation 2.12 guides
the agent correctly towards the goal.
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(a) 20ms after release (b) 40ms after release (c) Movement initiation

(d) 5 s into navigation (e) 9 s into navigation (f) 13 s into navigation

Figure 2.3: Demonstration of model function: (a) and (b): A wavefront of spiking
activity is released from the neuron marked by a circle, representing
the goal. The inner color of the neurons indicates the outgoing current
iout, with red indicating low currents and yellow for high currents. The
resulting synaptic vectors (cf. equation 2.10 pointing towards the goal
are indicated with arrows. (c): The agent marked by an X starts its
movement in the top left corner. Sensory input causes the corresponding
neurons to spike. (d)-(f): The agent continues its trajectory to the goal.

2.4 Neuronal Hierarchy

As explained in chapter 1, hierarchical structure is essential to understanding hu-
man spatial cognition. To capture what Botvinick terms a correlational, hierarchical
structure (Botvinick 2008), this thesis proposes cells disconnected from direct sen-
sory input. This approach is motivated by the discovery of neurons in the medial
temporal lobe responding to image properties at multiple levels of abstraction (Stein-
metz et al. 2011). Higher-level cells as modeled in this thesis possess connections
to multiple cells on the level below them as illustrated in figure 2.4. Apart from
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these two properties (lack of direct sensory input and relatively uniform connections
to associated lower-level neurons) and their far-reaching connections to neighboring
higher-level cells, they are modeled in the same way as the previously described
cells, following the equations from section 2.1. The mentioned distinctions define
their function in activity transmission. Through these properties, they represent a
hierarchically superior level as described by O’Reilly and Frank 2006: they remain
active over finer-grained events at levels below and provide a more abstract canvas
for planning. Since this thesis is concerned with spatial cognition, the higher-level
neurons will be referred to as region cells. Further abstractions beyond these two
levels shown in figure 2.4 are imaginable. Note that the used type of higher-level
cells does not necessarily have to be located in the same part of the brain. It is
imaginable that neurons with more abstracted receptive fields are located in other
brain areas than the proposed topological system. The prefrontal cortex has been
proposed as containing such an abstracted representation for decision making (Mar-
tinet et al. 2011). As illustrated in figure 2.4, the regions are overlapping. Neurons
in the transition zone between two regions (referred to below as transition neurons)
are connected to multiple region cells.

Figure 2.4: Hierarchical network structure as implemented in the model. Higher-
level cells effectively representing the regions r1 and r2 are connected
to feature sensitive cells on the lower level via interlevel weights winter.
Neurons on the lower level are connected to nearest neighbors via w1

and to second-nearest neighbors via w2.

Path-Planning in a Hierarchically Structured Network

During the process of wavefront propagation illustrated in figure 2.3, activity quickly
spreads across the network of region cells. Figure 2.4 illustrates the overlap of such
regions. Neurons in the transition zone are characterized by their affiliation to
multiple region neurons. Due to their larger number of connections to higher-level
cells than their counterparts further from the border, they receive stronger synaptic
inputs when both region neurons are activated. This in turn leads to new waves of
spiking activity from these neurons even if they have not yet been reached by the
propagating wave of activity on the lower level. The influence of this accelerated
signal transmission on navigation with SVFs and on planning depth is investigated
in the next chapter.
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Chapter 3

Simulation Experiments

3.1 Comparison to Human Navigation

Does the proposed hierarchical structure lead to behavior in line with studies on
human navigation? To investigate this question, two experimental studies on human
behavior from Wiener and Mallot 2003, introduced in the first chapter as HN1 and
HN2, were simulated. The original study by Wiener and Mallot showed an influence
of hierarchical structure in the environment on human navigation, described in detail
in section 1.2. Experiment HN1 showed a preference of the subjects to take routes
that allow access to the target region as soon as possible even when alternative
routes were equally short. In experiment HN2, subjects tended to choose routes
crossing as few region boundaries as possible.

3.1.1 Entering the Goal Region (HN1)

As in the underlying study from Wiener and Mallot 2003, the virtual agent is placed
in a virtual environment of two interconnected islands shown in figure 3.1. Instead of
the exploration phase in which subjects learned the topology of the twelve discrete
places marked by unique landmarks, the agent’s representation of the environment
is given as a neuronal state-action network as explained in chapter 2. In the rep-
resentational network that is shown in figure 3.2, each neuron corresponds to one
of the twelve landmarks distributed across two islands, as illustrated in figure 3.1.
This is justified by the fact that the landmarks used in the virtual environment pro-
vide by far the most salient structure for feature learning as described by Baumann
2019. To simplify experiment description and discussion, neurons, the places they
represent and the positions at which these are located are numbered in the same
way: neuron 0 represents place 0 that is located at position 0. Connections between
the neurons correspond to transitions between the respective positions.
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Figure 3.1: An illustration of the experimental setup from Wiener and Mallot 2003.
The twelve connected places shown on the left are distributed on two
islands (as can be seen in the middle), each marked by an individual
landmark. The rightmost picture depicts one of these landmarks, a
monkey. Most subjects preferred to reach the goal region (i.e. island)
as quickly as possible in navigation tasks, neglecting alternative, equally
short routes. (Figure adapted from Wiener and Mallot 2003)

In the study of Wiener and Mallot, most subjects recognized the hierarchical struc-
ture of the environment. Landmarks on each island belonged to different semantic
categories: animals such as the monkey in figure 3.1 or cars. To capture such a
correlational hierarchy, two region neurons are added, one for each island. These
region neurons shown on top of figure 3.2 are connected to all lower-level, landmark-
sensitive neurons of that island. Additionally, they are connected to all neurons at
transition point (next to a bridge) on the opposite side of the river with synaptic
weight winter = 10. Both region neurons are connected with wr = 3. Neurons on the
lower level are connected to neighbors corresponding to places one and two edges
away in the environment with weights w1 = 6 and w2 = 1. These weights are chosen
to yield synaptic currents on the order of a realistic value for synaptic currents, i.e.
0.3 nA (Gerstner et al. 2014, ch. 3.1.2). An overview of the parameters used is given
in tables A.1 and A.2 in the appendix.

Figure 3.2: Cross-section of the network architecture in simulation HN1. Of the
twelve neurons on the lower level only the foremost are fully shown, the
other two rows are indicated by the dotted circles on the right. r1 and
r2 denote the neurons on the hierarchically superior level. The synaptic
weights w1, w2, winter and wr connect the neurons.
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Analogously to the human subjects after the learning phase, the virtual agent is
placed in one of the twelve locations and asked to navigate to a given target position.
As in Wiener and Mallot 2003, the configurations of start and target positions are
split into different route types to analyze the resulting route choices dependent on
the spatial configuration. These route types are listed in table 3.1.

Route Type Start Place → Target Place

A1, A2 4 → 8, 5 → 7

B 5 → 9

C 2 → 6

D 5 → 6

E1, E2 4 → 11, 5 → 10

Table 3.1: Route types for the navigation tasks in the environment displayed in 3.1.
Due to symmetry in the network, many route types are equivalent for the
model and can be subsumed in one categorie, e.g. the route from place
3 to place 11 is equivalent to 5 → 9, hence both belong to category B.

HN1: Vector Field in Small Networks

When given the task to navigate to one of the twelve landmarks, the virtual agent
activates the neuron representing the goal (referred to from now on as goal neuron
for brevity) to start the planning phase as described in chapter 2. The wavefront of
spiking activity spreads throughout the network creating a synaptic vector field as
shown in figure 3.3. For better understanding, neurons are plotted at the position
they represent, even if they need not be aligned like that in the brain. The synaptic
vector illustrated as arrows are calculated following equation 2.10. Before each new
navigation task when the agent is placed at the new start position, weights are reset
and a new wave of spiking activity is released from the next goal. Both with and
without hierarchical structure in the network, the synaptic vectors point towards
the goal, indicated by a circle in figure 3.3. To answer the question of the influence
of a hierarchical structure, the figure contains the vector fields for both cases. The
synaptic vectors from neurons further away from the river separating the two islands
appear to have a slightly stronger component towards the center if the network is
extended by a hierarchical structure (on the right of figure 3.3). To quantify the
difference of the vector fields, the resulting route choices are analyzed below.
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(a) SVF without hierarchy (b) SVF with two region neurons

Figure 3.3: Resulting vector fields after wavefront propagation in the neural network
representing the environment of the two islands. The neuron correspond-
ing to the start place is marked by a square, the goal neuron by a circle.
The configuration of start and goal position corresponds to route type C
from table 3.1. Colors represent the outgoing current of the respective
neurons, red indicates low currents, yellow indicates high currents. The
network of the left plot consists of only one layer without hierarchical
structure. In the right plot, two region neurons are added as a hierar-
chically superior layer, illustrated as larger circles on the frame of the
respective region. Since the synaptic connections of these regions are
not associated with actions, they do not possess synaptic vectors.

HN1: Trajectories in Small Networks

After establishing the vector fields in the planning phase, the model shifts to the
navigation phase. Since goal-directed navigation in the model is based on a voting
process of the currently active neurons (cf. section 2.3), behavior depends on the
width of the activity bump. The wider this bump is, the more neurons participate
in voting, as defined in equation 2.12. In networks with few neurons that represent
important decision points, this leads to erroneous movement signals, because neurons
from places far away begin to participate in the voting process. To prevent such
an effect, the activity bump is limited to the landmark currently occupied by the
agent. An alternative solution that allows for broader bumps of activity would have
been to increase the size of the network and have multiple cells representing each
place. In the small network, trajectories consist of transitions between the discrete
places. The transition probabilities are calculated from the synaptic weights going
out from the respective neuron j (cf. figure 2.2):

pjk = ∆wjk

(∑
k′

∆wik′

)−1
(3.1)
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Instead of using the full value of wij, the difference to the weight before planning is
used, as discussed in section 2.3. The denominator in equation 3.1 ensures that the
sum over all outgoing probabilities equals one:∑

j

pij = 1 (3.2)

Following these movement probabilities, the probabilities of the agent taking each
route segment lead to the trajectories displayed in figure 3.4 and 3.5. Suboptimal
route choices by the agent break the trial and are not shown as trajectories.

(a) Without hierarchy (b) With two region neurons

Figure 3.4: Trajectories of the virtual agent in route type C from start position
(square) to goal (circle) printed on top of the SVF to illustrate how the
vector field leads to goal-directed behavior. Each neuron is shown at
the position of the landmark it represents. Numbers in brackets denote
the probability of the agent to reach this position, the numbers next to
the edges indicate the probability of the agent to travel along this edge
during one run.
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(a) Without hierarchy (b) With two region neurons

Figure 3.5: Vector field and trajectories of the agent in route type E without and
with hierarchical structure in the neuronal architecture. The route al-
lowing fastest possible access to the goal region is the one on the bottom,
chosen by the agent in 62% respectively 64% of trials.

In this manner, a probability for reaching the goal and choosing the route to fastest-
possible region transition can be obtained for each route type in table 3.1. Figure
3.6a shows the overall success rate for finding an optimal (shortest) route to the
goal. Both the hierarchical and the single-level model perform well and have a 97%
(single-level) and 96% (two-level) probability for reaching the goal on an optimal
route. These numbers are pooled over all route types A-E, and as figure 3.6a shows,
variation is low. The worst performance of a single-level, SVF-based agent is a 92%
probability for an optimal solution in route type B. The worst performance of the
two-level model could also be observed for route type B, at 93%. An agent choosing
random, not necessarily goal-directed actions at each position performs consider-
ably worse, at 11% probability. Similarly to the SVF-based agents, the random
walk-agent performed worst in route B, reaching only a 6% probability to navigate
optimally. Figure 3.6b shows the probability of taking the route with the quickest
possible transition to the goal region, together with the chance level. Chance level
is determined by the performance of an agent choosing randomly between equally
fast, shortest-possible routes to the goal. Detailed calculation of the chance level can
be found in appendix A.4. With and without hierarchical structure, the SVF-based
model traverses to the goal region at chance level ±8% for all route types with two
exceptions in route types C and D.
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(a) Navigation success (b) Route choice

Figure 3.6: Comparison of model behavior with and without hierarchical structure
for each of the five route types listed in table 3.1. Additionally, behavior
is compared to chance level (choosing randomly between optimal routes)
and to a random walk-agent.

In route D, the single-level SVF-based model has a probability of fastest-possible
region transition that is 14% higher than chance level, whereas the hierarchical two-
level model is only 8% above chance level. The other notable difference occurs in
route type C, where performance of the SVF-based models is considerably worse
than chance level: 19.6% with one neuronal level, 18.4% with two, compared to
33.3% chance level. Pooled across all five route types, the single-level model chooses
fastest-possible region transition with a 44.8% chance, the two-level model with
44.4% and chance level lies at 43%. Note that this must be distinguished from
random walk that would achieve a way lower probability since the chance agent
chooses only between alternative, optimal routes as explained above.

Figure 3.7: Probability for fastest-possible transition to the goal region pooled across
route types A-E. Performance of the agent guided by a SVF is compared
to the behavior of humans subjects from Wiener and Mallot 2003, indi-
cated here as ”WM03”, as well as chance level (red).
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As can be seen in figure 3.7, the additional hierarchical level does not alter the
probability of the agent to take routes leading to the goal region as quickly as
possible. Both SVF-based models, consisting of one, or two levels respectively, lead
the agent to the goal region at approximately chance level. Human subjects from
Wiener and Mallot 2003 instead took the route allowing fastest possible transition
to the goal region with an average probability of 67.7% (first test-block) and 74.4%
(second test-block).
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HN1: Increasing Network Size

The initially suspected effect of the hierarchical structure depends on the activation
of neurons in transition areas that are connected to multiple regions (cf. section 1.3).
To investigate if the number of low-level neurons connected to one region neuron, i.e.
the region size, alters the SVFs, the same experimental setup as above is repeated
with a larger network. In theory, this should increase the effect of the hierarchical
structure, since activity on the lower level takes longer to traverse the network, while
the region neurons already activate the boundary region. The number of neurons
on each region is multiplied by a factor of 3 along both axes. Neurons directly by
the separating river (next to the bridges connecting the island) are still connected
to both regions, leaving the general network architecture from figure 3.2 untouched.
By activating the goal neuron, a wave of spiking activity spreads throughout the
network and creates an SVF as before.

(a) Without hierarchy after 14ms (b) With hierarchy after 6ms

(c) Without hierarchy after 70ms (d) With hierarchy after 70ms

Figure 3.8: Comparison of wavefront propagation between a network without
(shown on the left) and with (on the right) hierarchical structure. For
the networks with two layers, region neurons are shown in increased size
on the rectangle framing the regions. In the bottom figures, activity has
spread throughout the whole network, having established an SVF.
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Comparing figure 3.8a to figure 3.8b, the hierarchically structured network shows
a wavefront with a different shape as the network without hierarchical structure.
In the two-level network, neurons in the transition region spike early, after approx-
imately 4 ms, while the single-level network without hierarchical structure shows
a wavefront spreading radially from the goal neuron. The SVF of the single-level
network displayed in figure 3.8c points towards the goal, while the SVF in the hi-
erarchically structured network (figure 3.8d) shows a bias towards the transition
region. Synaptic vectors close to the goal still point towards the goal, but the fur-
ther away from it, the bigger the tendency of the vectors to be oriented towards the
river. Multiple neurons in the boundary region do not possess any synaptic vector.
Additionally, synaptic vectors on the river side of the goal region point back towards
the other region.

(a) Without hierarchy (b) With hierarchy

Figure 3.9: Influence of hierarchical structure on agent trajectories in larger net-
works. The trajectories result from the SVF illustrated in figure 3.8.
Numbers next to horizontal arcs denote the probability of the agent
travelling along that edge.

Figure 3.9 illustrates the trajectories resulting from the vector fields in figure 3.8.
While the single-level network performs well and reaches the goal in 98% of trials,
the hierarchical network gets stuck in front of the border and does not cross the river
to the other region. The single-level network prefers to navigate the agent directly
towards the goal, maneuvering diagonally across the island (cf. figure 3.9a). The
agent controlled by the hierarchical model shown in figure 3.9 however, begins by
navigating relatively straight towards the boundary region where it then gets stuck.
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3.1.2 Navigation Across Multiple Region Boundaries (HN2)

A second experiment from Wiener and Mallot 2003 introduced briefly as HN2 in
section 1.2 is simulated to test the navigation behavior of the model across multiple
region boundaries and towards multiple goals. To do so, the environment shown in
figure 3.10 is represented in a manually constructed network. The virtual park of the
study from Wiener and Mallot 2003 consisted of twelve places, each with a unique
landmark belonging to one of three semantic categories: cars, animals and buildings.
Three regions could be distinguished as indicated by the different shades of grey in
the left image of figure 3.10 and places from the same region were connected. The
network representing this environment is illustrated in figure 3.11.

Figure 3.10: The environment of experiment HN2. The hexagonal environment lay-
out is shown on the left. In the middle, a birds-eye view of the 3D
environment illustrates the virtual environment. The right image de-
picts one of the six crossroads as encountered by the subjects in Wiener
and Mallot 2003. As all twelve places, it is marked with a landmark,
in this case a go-kart. (Figure adapted from Wiener and Mallot 2003)

Figure 3.11: Unfolded network representing the hexagonal environment structure
of HN2. Neurons on top represent the three regions. r3 is shown
twice to illustrate its connection to both r1 and r2. Lines in black
illustrate synaptic connections corresponding to paths between places
(state-transitions) in the environment. Neurons marked in yellow rep-
resent the three goals for route type A. The neuron for the start position
is marked by a square.
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As in the previous simulation, each lower-level neuron corresponds to a place, i.e.
receives sensoric input if the agent currently perceives this landmark. Neurons on
this low level are connected to neighbors corresponding to places one edge away with
weight w1 = 6. Neurons in the middle of figure 3.11 represent the six places on the
corners of the hexagonal path (cf. figure 3.10). Neurons representing the places at
the end of dead-end streets away from the hexagon are shown in the bottom.

HN2: Navigating to Multiple Goals

To compare behavior of the model with the human subjects from Wiener and Mallot
2003, the same wayfinding tasks are set. Both route types consist of three goals each
and are illustrated in figure 3.12. Each route type offers two equally long solutions
to reach the three goal places. These two options differ in the number of region
borders they cross. Wiener and Mallot had added a third, asymmetric route type
as a distractor to prevent subjects from learning and exploiting the symmetry of
routes A and B instead of planning. Since the model proposed here is obviously
incapable of such an understanding, this distractor is omitted in the simulation. To
test the influence of a hierarchical structure in the neuronal representation, two dif-
ferent networks architectures are tested. One of these is equipped with a hierarchical
structure to capture the regions of the environment. Each of the three regions is
represented by a dedicated neuron. These region neurons (illustrated in the upper
part of figure 3.11) are connected with weight winter = 10 to all neurons representing
places contained in the region, as well as neurons of transition places, i.e. places
from which the respective region can be reached. As in HN1, the region neurons
themselves are interconnected with weight wr = 3.

In the planning phase, a wave of spiking activity is simultaneously released from
all goal positions by increasing the membrane potential of the goal neurons beyond
threshold. For route type A, these goals are places 1, 6 and 9 while for route type
B they are places 3, 6 and 11, denoted by ”G” for ”goal” in figure 3.12.

Figure 3.12: The two route types used in Wiener and Mallot 2003 to analyze human
behavior in wayfinding tasks across regions are simulated in HN2 with
the SVF-based model. Both route types allow for two equally long
routes that differ in the number of region boundaries they cross. (Figure
adapted from Schick et al. 2019)
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HN2: Synaptic Vector Fields

As in the previous previous simulation, the resulting SVF is illustrated by using the
synaptic vectors from equation 2.10. In both route types, the synaptic vectors of
each neuron point towards the nearest goal, with the exception of neuron 1. Here,
the vector is ambiguously pointing between position 10 and 2 as can be seen in
figure 3.13b. Comparing the SVFs in the hierarchical network with the single-level
architecture does not show any visible difference, neither for route type A nor B.
Consequently, it makes sense to analyze the resulting behavior of the agent. Fol-
lowing equation 3.1 of the previous section, the transition probabilities p(j, k) of the
agent are calculated from the synaptic weights. With these transition probabilities,
the agent’s trajectories can be illustrated (figure 3.14). Each time the agent reaches
a subgoal, the synaptic weights must be reset and a new wave must be initialized
before commencing navigation. Otherwise, the SVF would draw the agent back to
previously visited goals.

(a) Network architecture (b) SVF for route B

Figure 3.13: Hierarchical network architecture and exemplary SVF for simulation
experiment HN2. The three region neurons r1-r3 are illustrated in
larger size. Before navigating to the three positions of route B, the
agent at position 0 activates the three goal neurons at positions 3, 6
and 11. The resulting vector field is shown on the right.
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HN2: Trajectories to Multiple Goals

Starting from position 0, both the single-level and the two-level network lead the
agent to position 1 with 100% probability, reaching the first subgoal of route A.
The discrete nature of the environment then forces the agent to choose one of three
possibilities: return (to start position 0), continue left (to 10) or right (to 2). The
agent’s choice at this position also distinguishes the two shortest routes, illustrated
in figure 3.12.

(a) 2-level network, agent at position 0 (b) 1-level network, agent at position 0

(c) 2-level network, agent at position 3 (d) 1-level network, agent at position 3

Figure 3.14: Navigation to the first two subgoals of route B: Comparison of tran-
sition probabilities in a hierarchical network (left) with a single-level
network (right). Edges with high probabilities are shown in bold. The
agent’s current position is marked by a square. The probability of the
agent to reach a position is denoted in brackets next to it.
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For both route types, the agent based on a hierarchically structured network per-
forms similarly to the single-level model: going onward from position 1 to either
position 2 or 10 with a 50% probability each. After reaching position 2 or 10 in
route type A, both agents (with and without hierarchical structure) reach the other
two subgoals with 100 % probability. In route type B, the both agents commence to
the first subgoal (marked by a circle in figures 3.14a and 3.14b): position 3 or 11,
respectively. Figures 3.14a and 3.14b illustrate these trajectories. Then however,
performance between the two networks differs. After navigating from position 3
back to position 2, the hierarchical model has a 55% chance of navigating to posi-
tion 11 - back via position 1 (the upper leg of the split trajectory in figure 3.14c).
This corresponds to a suboptimal solution, being one edge longer than going to
the other subgoal, position 6, first. With a 45% probability, the hierarchical agent
will continue along this optimal route. The single-level model chooses this optimal
solution in 100% of cases, as can be seen in figures 3.14c and 3.14d, respectively.

(a) 2-level network, agent at position 6 (b) 1-level network, agent at position 6

Figure 3.15: After reaching the second subgoal at position 6 (marked by a square),
the agent commences by replanning towards the remaining targets at
positions 6 and 11.

When the agent has reached this second subgoal, replanning by resetting the synap-
tic weights and releasing a new wave of activity lead it to the last goal with 100%
probability. This is shown in the trajectory in figures 3.15a and 3.15b.
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HN2: Crossing Region Borders

For comparison to human behavior, the probability of choosing the route crossing
less region boundaries, pXLESS, is of interest. Counting only the shortest routes to
the goal (as did Wiener and Mallot 2003 with the human subjects), this probability
is fully determined by the transition probabilities from position 1 to position 2 and
10 respectively. These probabilities, denoted by p(1, 2) and p(1, 10), are illustrated
as labels on the respective edge in figure 3.14a for the hierarchical network and 3.14b
for the single-level network.

pXLESS(Route A) = p(1, 10) (3.3)

pXLESS(Route B) = p(1, 2) (3.4)

Disregarding suboptimal route choices of the two-level model leads to a tie between
the single-level and the two-level model. Both models choose the route across less
borders with a 50% chance (figure 3.16), showing no influence of the region neu-
rons on model behavior in this regard. Performance of the SVF-based models is
equal to chance level (50%) for both route types. As in HN1, chance level refers
to choosing randomly between the two optimal solutions illustrated in figure 3.12,
not to a random walk. Wiener and Mallot 2003 investigated the same choice in
human subjects, counting only subjects who recognized the region structure of the
environment. These chose the route crossing fewer boundaries far more frequently,
i.e. in 65% of all cases in route type A and in 71% of all cases in route type B (figure
3.16).

Figure 3.16: Comparison of the chosen routes between the two artificial agents based
on SVF-planning with single-level or two-level networks. In addition,
the behavior of human subjects from Wiener and Mallot 2003 as well
as the chance level of 50% is shown.
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3.2. PLANNING DEPTH

3.2 Planning Depth

After investigating the influence of hierarchical structure on the behavior of an
artificial agent in the previous section, the goal of this section is to investigate if the
neuronal hierarchy can increase the agent’s planning depth. A multitude of studies
underline the importance of hierarchically structured behavior for human cognition
(cf. section 1.2 of the introduction). Huys et al. 2015 link hierarchical organization
to the ability to solve more complex problems. In spatial cognition, this corresponds
to navigating larger areas. Can the proposed neuronal structure aid in vector field-
based navigation across large networks? To investigate this, the navigational ability
of the model is tested with and without hierarchical structure in two settings:

1. With a neuron-specific Gaussian noise current ins of mean 0 and width 1 nA
as additional input to each neuron (cf. equation 2.1)

2. With a neuron-specific Gaussian noise current ins of mean 0 and width 1 nA
as well as a global inhibitory current linearly increasing during the wavefront
propagation phase with a rate of δinh = 0.015 ms−1

By doing so, it is evaluated if the hierarchical structure makes the network more
robust against noise (and therefore increases planning depth). The second setting
simulates a decaying wavefront. In this rather crude manner it will be investigated
if the hierarchical structure can carry the wavefront and with it the guiding vector
field across larger distance, thereby increasing the navigable area.

(a) One level (no hierar-
chy)

(b) Two levels, core region
size of 12 neurons

(c) Two levels, core region
size of six neurons

Figure 3.17: The network of 24x24 neurons is organized (a): without regions, (b):
in two by two regions and (c): in four by four regions of core size six by
six. Including overlap with other regions, regions in the network center
contain eight by eight neurons (the area marked in grey). In the top
right corner, the goal neuron is drawn in yellow.
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Network and Noise Configuration

A two-dimensional network of 24x24 neurons is set up. The neurons’ preferred lo-
cations are set on a grid as illustrated in figure 3.18. A wave of activity is then
initiated by activating the goal neuron in the upper right corner of the network,
illustrated yellow in figure 3.18. The wave of activity then spreads across the net-
work, creating a goal-directed vector field (cf. section 2.2). Each lower-level neuron
is connected to neighbors one and two edges away on the grid with weights w1 and
w2 respectively (cf. figure 2.4). To test the influence of a hierarchical structure,
as well as the influence of region size, three networks, illustrated in figure 3.17 are
compared:

1. A network without hierarchically superior neurons, consisting of only one level

2. A network with an additional layer of two by two region neurons that split the
environment up into four regions

3. A network in which the additional layer of region neurons consists of four by
four neurons, splitting the environment up into 16 regions of equal size

As before, regions overlap, i.e. neurons on the border are connected to region neurons
of all adjacent regions. In the second case, each region contains 13x13 neurons
considering the overlap. In the third case with 16 regions, each consists of up 8x8
depending on the position in the grid and hence the amount of neighboring regions
(whose boundary neurons then are attached as well).

Figure 3.18: Illustration of the network model used in the ”Planning Depth” exper-
iment. The grid of 24 by 24 neurons is divided into regions. Shown are
regions of size six, but the simulation is repeated with smaller regions,
i.e. more region neurons. In the upper right corner the goal neuron
is illustrated in yellow. The diagonal arrow away from it indicates the
axis along which the vector field quality is evaluated.
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Resulting Vector Fields

Despite the applied noise, the network without hierarchical structure displays a sta-
ble propagation of the wavefront as shown in figure 3.19a, 3.19c and 3.19e. The
number of spurious spikes unrelated to the wavefront is very low (< 1 per experi-
mental run) and the wavefront spreads evenly and radially outward from the goal.
When the increasing inhibitory current is applied in the second part of the simula-
tion experiment (figure 3.19b, 3.19d and 3.19f), the wave arrives at a halt, traversing
only a limited range in every run. In the simulation run shown in 3.19f), only eight
neurons are activated along the diagonal axis.

Repetition of the same simulation with a hierarchically structured network of 2x2
regions leads to a much faster spread of activity. Whereas the single-level network
takes 80 ms for half of the network in figure 3.19c, the two-level version takes only a
quarter of that time to get this far (figure 3.20c). However, the hierarchical network
suffers from a large number of spurious spikes at random positions. These spikes,
unrelated to the propagation of the wavefront, lead to partially chaotic spread of
spiking activity as can be seen in figure 3.20a, 3.20c and 3.20e. When the wavefront
is released accompanied by the inhibitory current (figure 3.20b, 3.20d and 3.20f), the
activity still spreads throughout the whole network in all twenty runs. Furthermore,
the inhibitory current used to simulate decay of the wave appears to decrease the
number of spurious spikes. Nevertheless, the inhibitory current slightly slows down
the wavefront, an effect that can be observed with smaller regions as well. Com-
paring the activity in the network with two-by-two regions without the inhibitory
current after 30 ms (figure 3.20c) to the same network with inhibitory current af-
ter 38 ms (figure 3.20d) clearly shows the slower speed of activity propagation. In
both scenarios, the wavefront in the hierarchical network spreads preferably from
the transition regions along the region boundaries indicated by black lines (figures
3.20c and 3.20d).

The third network features smaller regions and thus a larger number of regions (4x4)
as illustrated by the black lines separating regions in figures 3.21a, 3.21c and 3.21e.
The number of spurious spikes at random positions in the network is again much
larger than without hierarchical structure. However, the distortion of the circular
shape of the wavefront due to activity at the region borders is lower that in the
network with larger regions. When simulating a decaying wavefront by the use of
incremental inhibitory current, the activity is still able to spread through the whole
network, as illustrated in figures 3.21b, 3.21d and 3.21f.
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SVF in Single-level Networks

(a) 1-level network with noise after
30ms

(b) 1-level network with noise and
wave decay after 30ms

(c) 1-level network with noise after
80ms

(d) 1-level network with noise and
wave decay after 80ms

(e) 1-level network with noise after
160ms

(f) 1-level network with noise and
wave decay after 160ms

Figure 3.19: SVF-creating wavefront spreading through network without hierarchi-
cal structure. Left: with noise, right: with noise and incremental in-
hibitory current.
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SVF in Two-level Networks of Two-by-two Regions

(a) 2-level network (2x2 regions)
with noise after 16ms

(b) 2-level network (2x2 regions)
with noise and wave decay after
18ms

(c) 2-level network (2x2 regions)
with noise after 23ms

(d) 2-level network (2x2 regions)
with noise and wave decay after
28ms

(e) 2-level network (2x2 regions)
with noise after 30ms

(f) 2-level network (2x2 regions)
with noise and wave decay after
52ms

Figure 3.20: SVF-creating wavefront spreading through a network with hierarchical
structure of two-by-two superior region neurons. Region neurons are
shown on the right. Left: with noise, right: with noise and incremental
inhibitory current.
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SVF in Two-level Networks of Four-by-four Regions

(a) 2-level network (4x4 regions)
with noise after 23ms

(b) 2-level network (4x4 regions)
with noise and wave decay after
26ms

(c) 2-level network (4x4 regions)
with noise after 30ms

(d) 2-level network (4x4 regions)
with noise and wave decay after
38ms

(e) 2-level network (4x4 regions)
with noise after 40ms

(f) 2-level network (4x4 regions)
with noise and wave decay after
62ms

Figure 3.21: SVF-creating wavefront spreading through a network with hierarchical
structure of four-by-four superior region neurons. Region neurons are
shown on the right. Left: with noise, right: with noise and incremental
inhibitory current.
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Vector Field Quality

Since the vector field guides the agent by means of the voting process described in
section 2.3, successful navigation requires the vectors to point towards the goal. As
a quantitative measure of goal-directedness, the vector field quality of neuron j is
introduced as the average correlation of synaptic vectors in the neighborhood with
the vector towards the goal.

SN(j) =
1

nj

∑
kεN(j)

sj(k) (3.5)

where N(j) is the neighborhood of neuron j, i.e. all neurons connected to it with
non-zero weights. nj counts the number of such neighbors for normalization. sj(k)
denotes the correlation of the synaptic vector of neuron k with the goal-directed
vector g from neuron j:

sj(k) =

{
0 if |rk| · |g − xj| = 0
rk

|rk|
· (g−xj)

|g−xj | otherwise
(3.6)

where rk is the synaptic vector of neuron k as in equation 2.10, and xj denotes
the preferred location of neuron j. The scalar product of the normalized vectors in
equation 3.6 equals one if they are parallel, minus one in case they are antiparallel
and zero if they stand perpendicular. In conclusion, SN(j) measures the average
correlation of synaptic vectors around neuron j with the goal-directed vector.

Figure 3.22: Vector field quality along the diagonal axis, S = 1 being the optimum:
all vectors in the neighborhood point towards the goal. S = −1 cor-
responds to vectors pointing away from the goal. Shown is the mean
value across twenty runs with respective standard deviation. Red lines
indicate region boundaries. Bottom row: inhibitory current increases
each timestep by δinh during the wave propagation to simulate decay
of the wave.
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Interpretation of this measure is as follows: The further away from the goal SN
declines, the greater the area that the agent can navigate. The SN diagrams are
calculated for each of the 23 neurons along the diagonal axis (excluding the goal
neuron) illustrated in figure 3.18. By averaging over twenty simulatory runs, the
mean value as well as the corresponding standard deviation are computed. Figure
3.22 displays the resulting diagrams as an indicator of planning depth. Without
superior levels (figure 3.22a), the vector field quality SN(d) one neuron away from
the goal on the diagonal axis is 0.64±0.02. Moving three neurons further away from
the goal, that value rises to 0.98± 0.01 where it stays until the bottom left corner.

Adding a hierarchical structure consisting of two by two regions (figure 3.22b), the
vector field quality around the goal is not affected. However, four neurons or more
away from the goal, the vector field deteriorates and reaches its minimum quality of
−0.09 two neurons behind the center of this region, four neurons before the bound-
ary region around the red line in the figure. Noticeably, the standard deviation of SN
increases from initially 0.02 close to the goal up to 0.41 at the minimum of correla-
tion between vector field and vector towards goal. Shortly after the region boundary,
SN almost reaches the optimum again, equaling 0.96 ± 0.02. Moving further into
the lower left corner of the network, vector field quality deteriorates again, however
not as badly as before. The local minimum of 0.37± 0.38 is reached seven neurons
after the boundary region. After that, a slow increase up to 0.66 for the bottom
left neuron can be observed. An inverse correlation between standard deviation and
vector field quality, i.e. standard deviation being high where the vector field is not
pointing towards the goal, can be observed in all configurations with hierarchical
networks in figure 3.22. With decreased region size, the vector field quality in the
first region does not suffer as much as with larger regions. The indent at the first
region boundary (figures 3.22c and 3.22f) is not as deep as for the network with 2x2
regions. Beyond this first region however, the vector field quality shows the same
pattern of decrease after region borders (down to 0.18) and simultaneously increased
standard deviation. Nevertheless, the standard deviation is smaller compared to the
network with 2x2 regions, reaching a maximum value of 0.18.

When the wavefront is assumed to be decaying, the vector field quality of the single-
level network is influenced the most. Figure 3.22d shows the rapid decay of SN
to zero. The hierarchical networks (figures 3.22e and 3.22f) show much less of an
influence. Even 23 neurons away from the goal, they still reach vector field qualities
of 0.95 for 2x2 regions and 0.99 for 4x4 regions.

54







Chapter 4

Discussion

Topological state-action encodings constitute a useful representation for spatial
problem solving (Schölkopf and Mallot 1995, Arbib and Bonaiuto 2012, Baumann
2019). Such representations allow novel combinations of previously traveled route
segments in goal-directed planning, a strong evolutionary advantage. Baumann
2019 proposed such a state-action model based on a large number of small image
features (”microsnapshots”). However, Baumann’s approach lacks a biologically
plausible way of route planning and action implementation. Ponulak and Hopfield
2013 proposed a spiking neuron model in which planning was achieved by releas-
ing a wavefront of spiking neural activity through a network of place cells, starting
from the neurons representing the goal. The model presented here aims to close the
gap between models based on topological representations and biologically plausible
planning. Additionally, overwhelming empirical evidence stresses the importance of
hierarchically structured behavior - and cognition - in humans (e.g. McNamara et
al. 1989, Wiener and Mallot 2003, Botvinick 2008, Huys et al. 2015 and Schick et al.
2019). Thus, functional cognitive models of these structures are of deep importance
to understanding cognition. To combine these three core concepts of topological rep-
resentations, biologically plausible planning and inclusion of hierarchical structures,
a neuronal state-action network was implemented. The neurons in the network
represent distinctive sensory features (or places) just as the nodes of Baumann’s
state-action graph. Path-planning is based on SVFs as in Ponulak and Hopfield
2013 and region neurons represent extended areas in space. After the planning
phase, the agent executes motor commands associated with synaptic connections
based on voting of currently active neurons.

The discussion is built up as follows: Firstly, in the light of the results of the
simulation experiments, the model is analyzed with regard to both effectiveness
of goal-directed navigation and replication of human performance. Secondly, the
question if the implemented neuronal hierarchy was able to increase planning depth
is discussed. Thirdly, a general discussion of the model and comparison with other
models of hierarchical planning follows. Suggestions for further research as well as
applications conclude this chapter.
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4.1 Performance in Wayfinding-Tasks

Effectiveness of Goal-Directed Navigation

The proposed implementation of SVF planning for neural state-action representa-
tions shows sound, goal-directed behavior. Agents based on a single-level neural
network reliably choose the shortest possible route to the goal. In simulation ex-
periment HN1, the agent based on a network of only twelve neurons was able to
navigate to the goal on a shortest-possible route with an average probability of
97.2% pooled over all five route types (cf. figure 3.6a). An agent following a ran-
dom walk performed considerably worse (figure 3.6a), showing the relative difficulty
of the task. Simulation experiment HN2 confirmed the reliability of the SVF-based
navigation. There, the single-level model reached the goal on optimal routes with
a probability of 100% (cf. section 3.1.2). Slightly suboptimal performance in HN1
may be the result of a central bias in the vector field (Muller et al. 1987, Burgess
and O’Keefe 1996, cf. section 2.2) that can be observed in figure 3.3: Neurons on
the upper end of the island have a small vector component back towards the start
position of the agent. Such a central bias could be prevented by adding a padding
of cells around the network to achieve homogeneity in outgoing connections across
the representational neurons.

Extension of the model by a hierarchical structure partially decreases the probability
to reach the goal on an optimal route. In HN1, performance of the two-level net-
work was similar to the single-level network with an average probability to take an
optimal route of 96% (figure 3.6a). In route type B of HN2 however, the hierarchical
model only chose the optimal route with a probability of 45%. In the majority of
trials (55%), the agent based on the hierarchical model took a longer route, as illus-
trated by the movement probabilities along the splitting trajectory in figure 3.14c.
Worse performance than without hierarchical structure (which found the optimal
route with 100% probability) stands in contradiction to the better performance of
human subjects that recognized the regional structure compared to those that did
not (Wiener and Mallot 2003). Due to the process of SVF creation, this tendency
to choose the route back across position 1 (cf. figure 3.14c) must be the result of
the hierarchical structure speeding up activity propagation from the two remaining
subgoals along this pathway. In the single-level network, the optimal route trans-
mitted activity fast enough to ”block” the other option. This can be understood
when looking at the topology of the network representing the environment from
figure 3.10: spiking of neuron 5 before neuron 2 and of neuron 2 before 1 led to the
vector field pointing from 2 to 5. Consequently, following this vector field (figure
3.14c) resulted in zero probability for the agent to take the suboptimal route across
position 1. The hierarchical structure however, challenged this way of computing
optimal routes by speeding up activity transmission on suboptimal pathways, us-
ing neurons 11-10-1-2 and the superordinate region neurons. However, this is not
in contradiction to literature: hierarchical structure is suspected to make planning
more efficient, not necessarily more optimal (Stevens and Coupe 1978, Huys et al.
2015), as described in section 1.2.
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In larger networks, a possible pitfall of the hierarchical structure becomes obvious:
local minima at region borders can prevent the agent from commencing towards
the goal. The trajectories in figure 3.9b illustrate this dilemma: When arriving at
the border separating the two regions, the agent encountered a lack of movement
commands and got stuck. A similar effect was observable in the ”Planning Depth”
experiment (section 3.2). The vector field quality measuring the correlation of the
vector field with the direction of the goal showed a strong decrease in front of the
region boundary, the area left of the red line in figures 3.22b and 3.22e. This
can be explained by simultaneous spiking of the neurons in this boundary region
due to their high input from two region neurons. Such simultaneous spiking was
also observed in HN1 (cf. figure 3.8d) and is in line with the theorized influence
of the hierarchical structure from sections 1.3 and 2.4: activation of neurons in
boundary regions through strong synaptic input from higher levels. However, this
input leads to wavefronts spreading in either direction from the boundary region.
These wavefronts in turn create an SVF pointing towards the boundary region, i.e.
from either side, thus creating a local minimum (see section 2.2 for the creation of
SVFs). A possible solution to this dilemma could be to replan (including a reset of
synaptic weights) when in such a local minimum, and inhibit the region node of the
previous region. An encoding of which places are behind and which in front could
be achieved by spike-timing of cells relative to brain rhythms. This so-called ”phase
precession” has been related to encoding information about the hippocampal place
cells representing places behind or in front of the agent (O’Keefe and Recce 1993).

Replication of Human Navigation

In small networks, addition of a hierarchically superior level does not appear to
induce a preference for fast transition to the goal region. As shown in figure 3.7,
both the two-level network (44.4%) and the single-level network chose fastest ac-
cess to the goal region only at chance level (43%) in simulation experiment HN1.
This stands in contrast to the clear preference of human subjects for reaching the
goal-region as soon as possible. Subjects of Wiener and Mallot 2003, abbreviated
as WM03 in figure 3.7, chose such routes far above chance level (first test-block:
pasap ≈ 67.7%, second block: 74.4%) when faced with the same navigational task.
A possible explanation for this behavior can be found when analyzing the wavefront
spreading from the goal. Due to the small network size, the wavefront on the lower
level reached the boundary region before the neurons there received enough synaptic
input (cf. section 2.1) from the region neurons as theorized in section 2.4. Thus, the
low-level wavefront prevented an influence of the higher levels on the shape of the
wavefront and with it on the SVF (cf. section 2.2). Since navigation of the agent is
based on the SVF, the effect of hierarchical structure on the agent’s preference to
transition to the goal region was very limited in small networks.

In larger networks, the hierarchical model tends to move towards boundary regions
first, whereas the single-level version appears to preferably navigate straight towards
the goal. The observed difference between the two models is illustrated in figure 3.9
for a network consisting of 108 neurons split up into two regions. The hierarchical
network led the agent towards the boundary region, whereas the single-level network
led him straight towards the goal. This behavior is in line with the observation of
Wiener and Mallot 2003 that human subjects prefer to navigate to the transition re-
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gion first. Regarding the network structure, this effect is only possible due to strong
input to neurons in the boundary region as a result of overlap between the regions
as illustrated in figure 3.2. Exciting neurons in boundary regions beyond thresh-
old released a wavefront from this boundary region as hypothesized in section 1.3.
This wavefront then created an SVF leading the agent straight towards the bound-
ary region. Further simulations could test if this tendency to navigate towards the
boundary region becomes stronger, the deeper the goal lies in the next region. In
theory, the wavefront on the lower level would need longer to reach the agent, and
thus increase the effect of the higher level. Indeed, subjects in the island-experiment
(replicated here as HN1) of Wiener and Mallot 2003 showed an increased effect for
goals further away from the boundary region.

The influence of the proposed hierarchical structure on route planning across multi-
ple region boundaries does not seem to lead to a general preference for routes across
less region boundaries. In simulation experiment HN2, both the single-level and the
two-level model made the choice between alternative optimal routes at chance-level
(figure 3.16). The same figure also shows the choices of human subjects from Wiener
and Mallot 2003 that had a far greater tendency (65% in route A, 71% in route B) to
choose routes across less region boundaries. As described in section 3.1.2, the crucial
decision is made at position 1. Since SVF-based planning strengthens goal-directed
weights based on spike-timing (cf. equation 2.7), the decision between walking left
to position 10 or right to position 2 depends on which of the respective neurons
spikes in shorter temporal proximity to neuron 0. If the activity wave on the lower
level of the network (cf. figure 3.11) is fast enough (which was the case here), the
hierarchical structure has only a very small influence. This conflict between multiple
transition nodes might explain an effect observed in the planning depth simulation
(section 3.2) as well: in the center of regions, vector field quality deteriorated (fig-
ure 3.22b, 3.22c, 3.22e and 3.22f). In these areas, the agent was drawn to multiple
boundary region simultaneously, because all of them received synaptic input from
the hierarchically superior neurons.

(a) Overlap of regions (b) Activity wave (c) Ambiguous SVF

Figure 4.1: Creation of an ambiguous SVF due to activation of multiple boundary
regions (subgoals). The agent is marked as an ”X” and region neurons
are illustrated on top. In (b) and (c), region neurons are omitted for
means of clarity.
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Figure 4.1 illustrates this issue: An agent is located in the center of region 1 that
overlaps with regions 2 and 3 (figure 4.1a). Upon activation of the region neurons,
these boundary regions are activated. This activity wave propagates to the agent
(b). The resulting SVF leads the agent to both boundary regions (c). A possible
way to reduce this effect would be to add inhibitory connections between transition
neurons. Upon activation of the first transition neuron, it could inhibit the other
transition neurons on the border between the respective regions, leading to a more
selective activation of transition neurons and thus a less ambiguous vector field.

4.2 Increased Planning Depth

The single-level model shows reliable, goal-directed SVFs for navigation across large
networks, even when noise currents are applied. The noise current used in section
3.2 was relatively high, drawn from a Gaussian distribution with mean zero and
standard deviation of 1 nA, the equivalent of 50% of the synaptic input from a
neighboring spiking neuron. As shown in figure 3.19a, 3.19c and 3.19e, the wave-
front propagated through the network of 24x24 neurons with very few distortions,
and created an SVF of high quality as shown in figure 3.22a. Along the diagonal
axis, vector field quality SN quickly rose to a value of one and stayed there all across
the network. The suboptimal value of SN = 0.64 ± 0.02 of the neuron next to the
goal resulted from the neighboring neurons used for the calculation of SN (cf. equa-
tion 3.5). Many of these neurons were located on the outer edge of the network and
suffered from the central bias discussed above. Consequently, SN values decreased
in proximity to the goal (3.22). A possible way to prevent this effect could be to
add additional neurons on the edges of the network to prevent the goal neuron from
being in a corner of the network. An additional negative effect on the SN value
stems from including the goal neuron itself in the computation, since it does not
send a movement command to the voting process of neighboring neurons (cf. equa-
tion 2.12). This lack of a synaptic vector negatively influences the average vector
field quality according to equation 3.5. Despite a lower vector field quality, the lack
of movement command might be a desired effect that could lead to slowing down of
the agent as soon as the goal neuron becomes active. As in figure 2.3e, the agent
stays at the goal without overshooting.

Furthermore, the simulation experiment showed that planning depth can be in-
creased through hierarchical structure if wavefronts are assumed to be decaying.
Wave decay was simulated by a global inhibitory current applied to all neurons,
thus pulling the membrane potential further and further away from the threshold (cf.
section 2.1). Under such circumstances, the single-level network showed a relatively
short range of activity propagation (figures 3.20f and 3.22d). Hierarchically struc-
tured networks however, achieved to spread activity and with it an SVF throughout
the whole network as can be seen in figures 3.20f and 3.21f. This was reflected in
the non-zero vector field quality far away from the goal neuron in comparison to
the single-level network (figure 3.22) as well. This increased range is in line with
the gain of planning depth through hierarchically structured representations (Huys
et al. 2015) suspected in section 1.2. The correlational hierarchy (Botvinick 2008)
of region neurons allows transmission of activity across a larger number of synapses
and with it planning across larger distances.
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While not having adversarial effects for planning depth, the additional layer of re-
gion neurons leads to partially worse and more fluctuating vector field qualities.
In hierarchical networks, a large number of spurious spikes (Ponulak and Hopfield
2013) was observed together with partially worse vector field quality as compared
to the single-level network (cf. figure 3.22). This unfavorable effect was probably
the result of additional synaptic input, which increased the membrane potential of
many neurons. Closer to the threshold (cf. section 2.1), the probability of these
neurons to spike increased. Supralinear summation (Ponulak and Hopfield 2013) in
combination with lower synaptic weights between levels might reduce the ability of
such spurious spikes to release wavefronts and thus mislead the agent.

Navigation with SVFs is not limited in scale. Equipped with enough neurons, the
neural network can represent arbitrarily large environments. As established above,
a decaying wavefront can be compensated by additional synaptic input, e.g. from
a hierarchically superior level. In addition to increasing planning depth, the hi-
erarchical structure speeds up transmission of activity as well. In the simulation
experiment described in section 3.2, wavefront propagation was sped up by a factor
of approximately four (cf. figures 3.19c and 3.20c). This acceleration resulted from
additional synaptic input to all neurons from the activated region neurons in the
hierarchically superior level (figure 3.18). Decreased synaptic input by the global
inhibitory current in the second part of the ”Planning Depth” simulation in turn
led to a slightly slower spread of activity. As a result of this increasing inhibition,
neurons in this simulation took longer to overcome the threshold for spiking.

4.3 General Discussion

Neural State-Action Networks

The model presented in this thesis is biologically plausible with regard to modeling
of the neuronal and synaptic mechanics. It is based on a detailed leaky integrate-
and-fire neuron model with experimentally confirmed parameters (listed in appendix
A.2). Establishing the SVF is conducted solely with information available at each
synapse, i.e. timing of pre- and postsynaptic spikes (Ponulak and Hopfield 2013).
SVF-based navigation in networks constructed of topological information and with
action voting based on current neuronal activity leads to effective, goal-directed
movement, even if multiple goals are present. Goal-directed trajectories of the arti-
ficial agent in navigation tasks (e.g. figures 2.3, 3.4 and 3.15) show the capability of
this approach. Based on the biological plausibility and the consistently good perfor-
mance of the non-hierarchical model, it can be used to navigate a simulated three-d
environment in future simulations. With the algorithm of Baumann 2019, a graph
of features can be constructed. The topology of the graph could then be transferred
to a neural network, upon which SVF-based navigation can be performed.
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Influence of the width of the activity bump representing the current position of the
agent is worthy of further investigation as well. Since active neurons determine the
executed movements of the agent according to equation 2.12, it matters how many
are active at a time. In simulation experiments HN1 and HN2, the activity bump
was assumed to occupy only one neuron to avoid erroneous signals from neurons rep-
resenting neighboring places. In larger networks, possibly with neurons representing
places along the grid edges connecting the places in HN1 (cf. figure 3.1), such a
strict limit is unnecessary. Figure 2.3 shows a trajectory with a wider bump of ac-
tivity, encompassing approximately seven neurons. A very rapidly moving agent can
distort the initially circular bump due to the exponential decay of neuronal activity
behind the agent. The activity bump then forms a comet tail behind the agent
leading to an effect of inertia, since these neurons still send their movement com-
mands to the voting process. This effect does not occur if the timescale at which the
activity bump moves through the neural network is much slower that the neuronal
timescale of milliseconds (Nemenman et al. 2008), which can generally be assumed
to be the case.

A disadvantage of the current model is the inability to represent trajectories and
thus choose between alternatives in advance. The fine-to-coarse planning algorithm
described in the introduction does not address such representations either (Wiener
and Mallot 2003). In another approach to hierarchical planning presented in sec-
tion 1.2, namely HRL, choosing between midterm strategies is possible through the
availability of options Sutton et al. 1999.

Initially, representing hierarchical structure was suspected to increase planning depth
as put forth by Huys et al. 2015. As discussed above, the simulation experiments
partially confirmed this assumption based on the implemented neuronal hierarchy.
Largely, this positive effect was due to greater robustness against decay of the wave,
a result of additional synaptic input from region neurons. For this benefit it is rather
unimportant which places are grouped together, as long as they are in close spatial
proximity. Proximity is important, because goal-directed vector fields depend on
activation of neurons in succession, the further away they are from the goal, the
later they must be activated as the wavefront passes. As long as the topology of
region neurons is in compliance with the places they represent, the exact borders of
the regions should not matter for this increase in planning depth. Possible pitfalls
of the implemented hierarchy have been discussed above, together with ideas for im-
provement. In an extended model, release of wavefronts by strong input to specific
neurons could be used to form a neuronal model of decision points. These have been
suspected to play a large role in navigation and constitute possible subgoals (Lynch
1960, Spiers and Maguire 2008 Stachenfeld et al. 2017). Another hierarchical struc-
ture in spatial cognition was described by Kuipers 2000: Taxi drivers prefer to stay
on a system of frequently used routes as long as possible when navigating across
the city and leave it only for the last leg of the route. Learning such a hierarchy
of routes can be implemented in the present model through the STDP process: By
traveling along a certain route multiple times in the exploration phase, the weights
there are strengthened according to equation 2.4. In the wavefront propagation
(planning) phase, the wavefront can be expected to spread faster along this route of
increased synaptic weights. Rapid spread of activity in the planning phase along a
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certain route will later lead the agent preferably along that route, thus replicating
the human preference for these routes as observed by Kuipers 2000.

Implementation of Hierarchy

The introduced region neurons are connected to lower-level neurons representing
places within this particular region as well as to places from which this region can
be immediately reached. Reasons for grouping these places together may include
shared functionality, visual similarity or designation with a region name for histor-
ical reasons (Schick et al. 2019). All three of these reasons lead to a correlational
hierarchy (Botvinick 2008) built upon statistical co-occurrence of the places in the
context of the respective functionality, with distinctive visual stimuli or with the
common, arbitrary name. Further simulations could be conducted to investigate if
correlations between the firing of feature-sensitive neurons can be used to learn the
hierarchical structure of the network. The same STDP-based adaption of synaptic
weights described in 2.2 could be used to strengthen connections between neurons
active in short temporal distance Gerstner et al. 2014, yielding Hebbian learning
(Hebb 1949). By doing so, formations of neurons could be tied together through a
region node without sensory input (cf. section 2.4) with the purpose of representing
the region and with connections to other such region neurons.

As discussed above, the effects of the hierarchical structure implemented in this
thesis can be summarized in three points:

1. Increased activation of boundary regions leads to the release of wavefronts
from there. These regions then become preferred subgoals for the agent.

2. By adding a second layer of neurons, the strict topology of the single-level
network is altered.Thus, wavefront propagation during planning can be faster
along suboptimal routes than along shorter alternatives. This can lead to
partially suboptimal trajectories.

3. Region neurons provide additional synaptic input to all lower-level neurons,
leading to both faster transmission of activity wavefronts in general and ac-
tivity transmission across larger distances if wavefronts are assumed to be
decaying. However, the same additional input leads to increased sensitivity to
noise.

Fine-to-Coarse Planning and Hierarchical RL

Agents based on the fine-to-coarse planning heuristic by Wiener and Mallot 2003
replicate human behavior in regionalized environments better than the neuronal
hierarchy implemented in this thesis. Nevertheless, the developed neuronal model
gives a neurobiological theory for hierarchical navigation and may in the future give
an explanation for how regions can be learned through STDP updating of synaptic
weights. Implemented as algorithm by Reineking et al. 2008, fine-to-coarse plan-
ning was described in section 1.2 as a heuristic to plan in hierarchically structured
representations. The topology of the state-action graph used by Wiener and Mallot
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is very similar to the neuronal state-action network described in chapter 2: on top
of the low-level representation based on discrete entities (whether they are image
features or places) lays an abstracted representation of regions. Interlevel connec-
tion signal associations of places with regions, while also connecting region nodes to
places from which they can be reached. The planning process which has to repeated
after every move does indeed replicate the human preference to reach the goal region
as quickly as possible. By solving the planning problem on the superordinate level,
the next region to be navigated is selected (ibid.). Thus, the preference of human
subjects to cross less region boundaries can be explained with the fine-to-coarse
heuristic: solving the planning problem first on the highest possible level (Reineking
et al. 2008) discards routes across more regions.

The proposed model finds suitable subgoals which has been a challenge for hier-
archical reinforcement learning. HRL has been introduced as a second approach
to hierarchical planning in section 1.2. It is a promising way to use hierarchical
structure for reinforcement learning of complex tasks (Sutton et al. 1999, Botvinick
2008, Botvinick and Weinstein 2014) with increasing neurobiological plausibility
(Botvinick et al. 2009). In the framework of reinforcement learning, topological
S-A-S’ models correspond to the model-based approach (Botvinick and Weinstein
2014) as opposed to the pure updating of value-functions as in traditional Q-learning
(Sutton and Barto 1998). In the traditional options framework of HRL (Sutton et
al. 1999, Botvinick 2008), subgoals are predefined. This is due to the difficulty of
learning meaningful subgoals in complex problem space (Botvinick and Weinstein
2014). The model proposed here provides selection of subgoals in the sense of neu-
rons with a high amount of synaptic inputs from higher levels. Here, these neurons
are located in boundary regions where regions overlap. Through the interplay of
SVF-based navigation and the implemented neuronal hierarchy, these areas become
navigational subgoals.

4.4 Suggestions for Further Research

As discussed above, the overlap of regions in the model can lead to successful se-
lection of subgoals. To investigate if such an overlap indeed is a factor in human
navigation, a behavioral experiment could be set up. Subjects explore a virtual en-
vironment of regions separated by visual barriers to prevent association of features
to multiple regions. Route choices in goal-directed navigation could then be com-
pared to the same setup of regions (albeit maybe marked by different indicators to
avoid learning of routes) without the visual barriers and thus allowing for overlap
of regions.

Additional Simulations of Interest

Thinking about daily life, sometimes navigational goals are not actual places in the
environment, but rather abstract regions (such as when planning a trip to Berlin).
This could be replicated in a simulation experiment without altering the model by
activating a region neuron alone as a goal. Region neurons themselves have no
counterpart in the environment, but represent an abstraction formed by the agent.
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Thus, model behavior when navigating to such abstracted entities could be tested.

The association of actions with synaptic connections was described in section 2.3.
An extension of the model could investigate learning of these motor commands.
Schölkopf and Mallot 1995 built a neuronal, topological model for navigation, in
which edges representing state-transitions possess learnable connections to neurons
representing actions. By extending the model presented in this thesis with such a
mechanism for learning these connections, a further step towards biological plau-
sibility could be made. Learning could be implemented by using the same STDP
updating from equation 2.4. As the agent explores the environment, connections
between the synapses encoding state-transitions and the motor neurons which are
active during the transition would be strengthened. The current model also does not
have actions associated to the connections between region neurons. By associating
these with an action as well, a task inspired by the study of Stevens and Coupe 1978
could be posed to the model. Activity in the currently active region node would
then participate in the voting of actions and thus provide a preference to follow
remembered large-scale directions. Replicating the study of Stevens and Coupe, the
task posed to the model would be to navigate from San Diego in California to Reno
(Nevada). The action associated with the connection from California to Nevada
would then be to ”go east” and guide the agent there, even if the correct choice
would be to navigate westwards, replicating the behavior of human subjects.

Application in Neuromorphic Computing

Spiking neural networks implemented in hardware, such as the Intel Loihi (Davies
et al. 2018) or the BrainChip Akida (Posey 2020), promise energy-efficient parallel
computation and on-chip learning. In addition to applications in image classifica-
tion as proposed by BrainChip (Posey 2020), neuromorphic hardware with on-chip
learning could also be used to solve navigational tasks. State-action networks with
SVFs created by wavefronts of spiking activity could be implemented in future ver-
sions of such microchips. With an action-execution system as described in section
2.3, goal-directed navigation becomes possible. Small autonomous vehicles could
profit from such small, low-power chips. Especially for airborne devices, power con-
sumption is critical. By generalizing state-action space to problem space, the range
of applications is increased beyond the spatial domain. If transmission of spiking
activity in such systems is shown to decay, the proposed hierarchical structure pro-
vides a possible solution. By increasing the range across which a vector field can be
induced, the navigable area is then increased.
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Chapter 5

Conclusion

This master thesis presents a computational model for route planning and navigation
in hierarchically structured environments. Aiming to be biologically plausible, the
mechanics of the model are based on neurobiological findings. As representational
apparatus from which later function is produced, a neuronal network represents
recognized features. Synaptic connections in this low-level network correspond to
transition actions between the respective features in the environment. A second net-
work layer captures regional structures such as places surrounded by water. Route
planning is achieved by spreading a wave of neuronal activity from the cells rep-
resenting the goal throughout the network. By using spiking neurons, it becomes
possible to update synaptic weights based on spike-timing. In combination with
the spreading wavefront, this synaptic plasticity leads to a temporary strengthen-
ing of synapses corresponding to goal-directed actions. This synaptic vector field
(SVF) is then used by the agent to navigate to the goal. Movement execution is
based on a voting process of synaptic action commands. Each vote is weighted by
the corresponding synaptic weight and the activity of the presynaptic neuron. The
navigational ability of the model was confirmed in a series of experiments, making
further research into SVF-based navigation in state-action representations promis-
ing.

Hierarchical structure is assumed to be a cornerstone of planning complex behav-
ior. Evaluation of the implemented neuronal hierarchy however led to ambiguous
results in terms of navigational efficiency. While helping to carry the vector field
across more synapses if the wavefront was assumed to be decaying, the hierarchical
structure also appears to increase the sensitivity of the network against noise. Nev-
ertheless, comparison of model behavior with existing studies on human navigation
showed promising results, strengthening biological plausibility of the model. Pro-
posals to overcome malfunctions of the two-level network were made and together
with increasing insight the neuronal architecture of the brain could shine more light
on the relevance of such neuronal hierarchies for shaping cognition.

Of relevance for the field of reinforcement learning is the promising subgoal selection
resulting from the neuronal hierarchy in combination with SVF-based planning.
Autonomous subgoal selection is an important problem of hierarchical reinforcement
learning. Further simulations could test if the second layer built in by hand here can
be learned instead with the same plasticity rules that are used to create the vector
field.

69





Appendix A

Supplementary Information

A.1 Inhibitory System

The inhibitory system based on Ponulak and Hopfield 2013 is switched off in the
wavefront propagation phase (except in the planning depth simulation experiment,
cf. section 3.2). Its purpose is to ensure the attractor-like behavior of the network
during navigation (Ponulak and Hopfield 2013), i.e. a stable bump of activity repre-
senting the current position of the agent (ibid.). The global inhibitory current from
the inhibitory population is given as in Ponulak and Hopfield 2013:

iinh(t) = ainhAinh(t) (A.1)

with the gating variable ainh set to one during navigation and to zero in wavefront
propagation. This switching is assumed to be governed by globally released neuro-
transmitter (Ponulak and Hopfield 2013). The activity of inhibitory system is given
by

Ainh =

{
αinh(ie(t)− Ie,0) if ie(t)− Ie,0 > 0

0 otherwise
(A.2)

with the threshold Ie,0 above which the inhibitory system becomes active (Ponulak
and Hopfield 2013). The input ie(t) to the inhibitory system is updated based on
the following differential equation depending on the total activity in the network
(ibid.):

τe
die(t)

dt
= −ie(t) + ae · Σspike(t) (A.3)

where Σspike(t) (pronounced ”sigma-spike”) counts the number of neuronal spikes
over a time window of the last 0.2 ms.
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A.2 Network Parameters

Fixed parameters for all simulations

To remain biologically plausible, the parameters were chosen as experimentally mea-
sured, if possible. Others were set to optimize network behavior.

Param. Value Meaning Source

aDec 0 ms−1 Synaptic weigth decay [1]
ae 20 nA Increment to inh. system -
aSLS 10 Factor for supralinear summation Ponulak and Hopfield 2013
A+ 0.5 ms−1 STDP parameter Section 2.2
A− 1 ms−1 Reverse STDP parameter [2]
αinh 20 Modulation of iinh -
bSLS 0.1 Factor for supralinear summation [3]
h 0.2 ms Timestep size Ponulak and Hopfield 2013
ispike 0.3 nA Presynaptic current peak Gerstner 2014, Ch. 3.1.2
Ie,0 5 nA Threshold for inhibition -
Rm 20 MΩ Membrane resistance Ponulak and Hopfield 2013
T 0.2 s Motoric integration time -
τe 25 ms Decay of input to inh. system -
τm 20 ms Decay time of membrane potential Ponulak and Hopfield 2013
τspike 25 ms Decay time of synaptic current Ponulak and Hopfield 2013
τSTDP 20 ms Decay time of STDP strength Morrison et al. 2008
ur 0 mV Membrane resting potential Ponulak and Hopfield 2013
uthresh 10 mV Threshold for action potential Ponulak and Hopfield 2013

Table A.1: List of the parameters used in chapter 3

[1] aDec is set to zero during wavefront propagation to prevent decay of unused
weights.

[2] To correctly adjust the strength of the STDP process as based on equations
2.5-2.7, it makes sense to regard an examplary case. Neuron 2 spikes s = 4 ms
after neuron 1, hence the weight from 2 to 1 (reverse STDP) changes as follows:

∆w21 = h · A− · exp

{
− 4

20

}
= 0.2 ms · A− · 0.82

For a realistic temporary change of 20%, A− can be set accordingly:

∆w12
!

= 0.2⇒ A− ≈ 1 ms−1 (A.4)

[3] bsls was altered from 0.05 (Ponulak and Hopfield 2013) to 0.1 to profit from
supralinear effect (cf. section 2.1) already with two inputs. Comparing the
factor asls · tanh bsls ·

∑
from equation (2.2) shows that 10 · tanh (0.1 · 2) ≈ 2

while 10 · tanh (0.05 · 2) ≈ 1 yields the same as linear input summation.
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Simulation Specific Parameters

Depending on the simulation experiment, different settings were used for the simu-
lation, listed below in table A.2.

Sim. (#Lvls. ) Chapter SLS w1 w2 winter wr δinh

Demo (1) 2.3 yes 3 1 - - -

HN1.small (1) 3.1.1 no 6 1 - - -
HN1.small (2) 3.1.1 no 6 1 10 3 -

HN1.large (1) 3.1.1 no 6 1 - - -
HN1.large (2) 3.1.1 no 6 1 10 3 -

HN2 (1) 3.1.2 no 6 - - -
HN2 (2) 3.1.2 no 6 - 3 3 -

PD (1) 3.2 no 6 1 - - -
PD (2) 3.2 no 6 1 5 3 -

PD-dec (1) 3.2 no 6 1 - - 0.015 ms−1

PD-dec (2) 3.2 no 6 1 5 3 0.015 ms−1

Table A.2: Parameters and settings used in each simulation. Simulation name (PD
= planning depth experiment, PD-dec = wave decay), in brackets: num-
ber of hierarchical levels. SLS: yes = supralinear summation as de-
scribed in section 2.1, no = linear summation of synaptic inputs. w1 and
w2: weights between neurons corresponding to places one and two edges
away in the environment, winter: weights between hierarchical levels, wr
weights between higher-level neurons. δinh increase of inhibitory current
in the wavefront propagation phase as described in section 3.2.
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A.3 Low-level Neurons as Place Cells

For the demonstration of navigation in chapter 2, sensory input to each cell is
implemented by the Euclidean distance of the agent to the preferred location of
the cell (Ponulak and Hopfield 2013). The firing field of the cell corresponds to a
Gaussian centered at the preferred location xk = (xk, yk):

isens,k = isens,max · exp

{
−
(

(xk − xag)2 + (yk − yag)2

2σ2
sens

)}
(A.5)

where isens,max is the maximum value of isens, σsens determines the size of the cells
place field and (xag, yag) is the agent’s current position. This approach is frequently
used in models of position-sensitive cells (Bicanski and Burgess 2018) and can be
explained neurobiologically by input of path-integrating grid-cells (Bicanski and
Burgess 2018, Li et al. 2020).

A.4 Comparison to Chance Level in HN1

To interpret the results of simulation HN1 better, it makes sense to compare behavior
of the artificial agent to an agent choosing goal-directed routes at chance level. We
consider an agent taking only the shortest possible routes (called solutions below).
This is equivalent to evaluating only the trials in which a solution was achieved as
did Wiener and Mallot 2003. To calculate the chance level for quickest possible
region transition, the fraction of solutions allowing for fastest region transition over
the number of total solutions is calculated for each route type from table 3.1:

(A) 4 → 8, the only solution leading to the goal region as quickly as possible is
4-7-8, the only alternative solution is 4-5-8, leading to a chance level of 50%.

(B) 5 → 9, solutions with quickest region transition: 5-8-7-10-9, 5-8-11-10-9 and
5-8-7-6-9, other solutions are 5-4-7-10-9, 5-4-3-6-9 and 5-4-7-10-9 leading to a
chance level of 50%.

(C) 2 → 6, solutions with quickest region transition: 2-5-8-7-6, other solutions: 2-
5-4-7-6, 2-5-4-3-6, 2-1-4-7-6 and 2-1-0-3-6, leading to a chance level of 33.3%.

(D) 5 → 6, solutions with quickest region transition: 5-8-7-6, other solutions: 5-4-
7-6 and 5-4-3-6, leading to a chance level of 33.3%.

(E) 4→ 11, solutions with quickest region transition: 4-7-10-11 and 4-7-8-11, other
solution: 4-5-8-11, leading to a chance level of 66.7%.
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A.5 Code Library References

A.5.1 LEMON

The spiking neural network was implemented in C++ as a graph in the LEMON
graph library.

LEMON Graph Library 1.3.1, (Dezso et al. 2011),
https://lemon.cs.elte.hu/trac/lemon

A.5.2 OpenCV

OpenCV was used to create the visual output of the model from the C++ script,
i.e. the images of spiking neurons and agent navigation.

OpenCV 3.4.0, 2014 (Bradski and Kaehler 2000),
https://opencv.org/
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